用ASPEN11.1查询物理性质
- 格式:pdf
- 大小:788.34 KB
- 文档页数:6
1.新建一个Aspen临时文件,选Template,选Blank Simulation也一样2.选择“PropertyAnalysis”3.按“N→”继续,Aspen中“N→”表示下一步,设置完当页后点这个按钮就会自动到下一页的设置页面中,以下类似4.输入标题,随便输入注意图中红色方框,是设置该aspen文档的默认单位集,默认是ENG,即英制单位,其温度是“F”,后边会讲到。
点“N→”下一步5.输入“water”或者”H2O”都可以,点回车后图片如下继续点“N→”下一步6.选择“Process type”,常用物性方法计算类型,里面是不同的物性方法分类,比如当前选择的“COMMON”为常用方法,”CHEMICAL”化学工艺计算,“ELECTROL ”为电解质计算,不同的物质计算要选择不同的物性计算方法集,当然同一种物质也可在不同物性方法集中的选择物性计算方法,不同的物性计算方法集计算出来的物性会有所区别,精确度也不一样,具体见附件本例中选择“COMMON”集即可7.然后选择计算方法“STEAMNBS”此表为水和蒸汽计算8. 继续点“N→”下一步后如图,点确定即可9.点“New”10.选“GENERIC”,普通即可11.方框内设置流量及流量表示方法和单位,有摩尔,质量,体积12.这里设置温度和压力,注意温度和压力单位,英制单位默认温度为‘F’,压力为’psia’ ,“rearly”的帖子“如何用ASPEN11.1查询物理性质”中默认为‘C’,这是因为他在第4张图片中默认单位选的METCKGCM或SI-CBAR,至于单位集可百度13.我们将压力设置为一个大气压,选择温度为变化量14.选中“Temperature”,点击“Range/List”选择结果列表方式在“rearly”的帖子“如何用ASPEN11.1查询物理性质”中,他设置的”Lower”为10,很多海友反应计算结果报错,这就是开头第4项默认单位选择的问题,英制中温度单位为“F”,10F=-12℃,这时候的水已经成冰了,就不是计算方法“STEAMNBS”水和蒸汽计算范围了,所以会报错,故最低应设成32以上15.选中“HXDESIGN”点“>”右移,HXDESIGN是计算热交换为主,下面计算密度,热容等等,可参考下面的英文解释16.选择完成后不要点“N→”下一步,这里还有一个定义你想查询的物性,这个是可选的点击左边树形图,选择方框所示MASSVFRA:混合物的气相分率MASSFLMX:混合物的质量流率HMX:混合物的焓RHOMX:混合物的密度CPMX:混合物的恒压热容PCMX:混合物临界状态下的临界压力MUMX:混合物粘度KMX:混合物的导热系数SIGMAMX:表面张力MWMX:混合物分子量单位可根据个人习惯选择,物性可右键删除17.一路确定计算完毕,点击上图中红色方框内图标查看计算结果18.点击左边树状图方框内文件夹图标,最后得到计算结果如下可见变量“TEMP”变量中温度单位为’F’,点击改成“C”后就是我们熟悉的摄氏度了。
Aspen Plus介绍 (物性数据库)•Aspen Plus---生产装置设计、稳态模拟和优化的大型通用流程模拟系统•Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。
该项目称为“过程工程的先进系统”(AdvancedSystem for Process Engineering,简称ASPEN),并于1981年底完成。
1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。
该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。
全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。
它以严格的机理模型和先进的技术赢得广大用户的信赖,它具有以下特性:1.ASPEN PLUS有一个公认的跟踪记录,在一个工艺过程的制造的整个生命周期中提供巨大的经济效益,制造生命周期包括从研究与开发经过工程到生产。
2.ASPEN PLUS使用最新的软件工程技术通过它的Microsoft Windows 图形界面和交互式客户-服务器模拟结构使得工程生产力最大。
3.ASPEN PLUS拥有精确模拟范围广泛的实际应用所需的工程能力,这些实际应用包括从炼油到非理想化学系统到含电解质和固体的工艺过程。
4.ASPEN PLUS是AspenTech的集成聪明制造系统技术的一个核心部分,该技术能在你公司的整个过程工程基本设施范围内捕获过程专业知识并充分利用。
5.在实际应用中,ASPEN PLUS可以帮助工程师解决快速闪蒸计算、设计一个新的工艺过程、查找一个原油加工装置的故障或者优化一个乙烯全装置的操作等工程和操作的关键问。
Aspen Plus功能Aspen Plus AspenTech工程套装软件(AES)的一个成员,它是一套非常完整产品,特别对整个工厂、企业工程流程工程实践和优化和自动化有着非常重要的促进作用。
Aspen物性代号及常用的英语单词中英文对照Aspen 物性代号固有物性物性代号物性代号分子量MW临界压缩因子ZC临界温度TC偏心因子OMEGA临界压力PC偶极距MUP临界体积VC回转半径RGYR标准态下的物性物性代号物性代号生成热DHFORM API重度API生成自由能DGFORM溶解度参数DELTA沸点TB等张比容PARC标准沸点下的摩VB气体粘度MUVDIP尔体积汽化热DHVLB液体粘度MULAND凝固点TEP导热系数KVDIP相对密度SG表面张力SIGDIP关联式参数代号参数个数物性PLXANT9ANTOIN蒸汽压关联式参数CPIG11理想气体热容关联式参数DHVLWT5WASTON关联式参数RKTZRA1RACKETT液体容积方程关联式DHLCAT1CAVETT综合方程参数PLCAVT4CAVETT综合关联式参数VLCVT11SEALCHASD-HILDEBRNUD方程数VLSTD3标准液体容积方程参数WATSOL5水溶解度方程参数MULAND5AUDRADE液体年度关联式参数aspen中常用的英语单词中英文对照atm 1atm为一个标准大气压Bar 巴压力单位BaseMethod 基本方法包含了一系列物性方程Batch 批量处理BatchFrac 用于两相或三相间歇式精馏的精确计算Benzene 苯Blocks 模型所涉及的塔设备的各个参数Block-Var 模块变量ChemVar 化学变量Columns 塔Columnspecifications 塔规格CompattrV ar 组分变量Components 输入模型的各个组成ComponentsId 组分代号Componentsname 组分名称Composition 组成Condenser 冷凝器Condenserspecifications 冷凝器规格Constraint 约束条件Conventional 常规的Convergence 模型计算收敛时所涉及到的参数设置Databrowser 数据浏览窗口Displayplot 显示所做的图Distl 使用Edmister方法对精馏塔进行操作型的简捷计算DSTWU 使用Winn-Underwood-Gilliland方法对精馏塔进行设计型的简捷计算DV 精馏物气相摩尔分率ELECNRTL 物性方程适用于中压下任意电解质溶液体系Extract 对液体采用萃取剂进行逆流萃取的精确计算Find 根据用户提供的信息查找到所要的物质Flowsheetingoptions 流程模拟选项Formula 分子式Gasproc 气化Heat Duty 热负荷HeatExchangers 热交换器Heavy key 重关键组分IDEAL 物性方程适用于理想体系Input summary 输入梗概Key component recoveries 关键组分回收率kg/sqcm 千克每平方厘米Lightkey 轻关键组分Manipulated variable 操作变量Manipulators 流股调节器Mass 质量流量Mass-Conc 质量浓度Mass-Flow 质量流量Mass-Frac 质量分率Materialstreams 绘制流程图时的流股包括work(功)heat热和material物料mbar 毫巴Mixers/splitters 混合器/分流器Mmhg 毫米汞柱mmwater 毫米水柱Model analysis tools 模型分析工具Model library 模型库Mole 摩尔流量Mole-Conc 摩尔浓度Mole-Flow 摩尔流量Mole-Frac 摩尔分率MultiFrac 用于复杂塔分馏的精确计算如吸收/汽提耦合塔N/sqm 牛顿每平方米NSTAGE 塔板数Number of stages 塔板数OilGas 油气化Optimization 最优化Overallrange 灵敏度分析时变量变化范围Pa 国际标准压力单位PACKHEIGHT 填料高度Partial condenser with all vapor distillate 产品全部是气相的部分冷凝器Partial condenser with vapor and liquid distillate 有气液两相产品的部分冷凝器PBOT 塔底压力PENG-ROB 物性方程适用于所有温度及压力下的非极性或极性较弱的混合物体系Petchem 聚酯化合物PetroFrac 用于石油精炼中的分馏精确计算如预闪蒸塔Plot 图表PR-BM 物性方程适用于所有温度及压力下非极性或者极性较弱的体系Pressure 压力PressureChangers 压力转换设备PRMHV2 物性方程适用于较高温度及压力下极性或非极性的化合物混合体系Process type 处理类型Properties 输入各物质的物性Property methods & models 物性方法和模型psi 英制压力单位psig 磅/平方英寸(表压)PSRK 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系PTOP 塔顶压力RadFrac 用于简单塔两相或三相分馏的精确计算RateFrac 用于基于非平衡模型的操作型分馏精确计算Reactions 模型中各种设备所涉及的反应Reactors 反应器ReactVar 反应变量Reboiler 再沸器RECOVH 重关键组分回收率RECOVL 轻关键组分回收率Refinery 精炼Reflux ratio 回流比Reinitialize 重新初始化Result summary 结果梗概Retrieve parameter results 结果参数检索RKS-BM 物性方程适用于所有温度及压力下非极性或者极性较弱的体系RKSMHV2 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系RK-SOA VE 物性方程适用于所有温度及压力下的非极性或极性较弱的混合物体系RKSWS 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系RR 回流比Run status 运行状态SCFrac 复杂塔的精馏简捷计算如常减压蒸馏塔和真空蒸馏塔Sensitivity 灵敏度Separators 分离器Solids 固体操作设备SR-POLAR 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系State variables 状态变量Stdvol 标准体积流量Stdvol-Flow 标准体积流量Stdvol-Frac 标准体积分率Stream 各个输入输出组分的流股StreamVar 流股变量Substream name 分流股类型Temperature 温度Toluene 甲苯Torr 托真空度单位Total condenser 全凝器Total flow 总流量UNIQUAC 物性方程适用于极性和非极性强非理想体系UtilityVar 公用工程变量。
ij:是否是二元交互参数LL:是否是液液这张图ij?的意思是问有没有二元交互参数。
如果没有,物性方法选择活度系数模型中的基团贡献模型类UNIFAC.; a. r+ Z" k9 F i/ ~ "UNIFAC活度系数模型是UNIQUAC模型的一个扩展模型。
它把UNIQUAC用于分子的理论用于了官能团。
有限个数的官能团足可以组成无限个不同的分子。
与纯组分库中可能需要的组分(500至2000个组分)间交互作用参数的个数相比,可能需要的基团交互作用参数的个数很少。
由一个有限的、精选的实验数据集确定的基团间交互作用参数足以能够预测几乎任何组分对间的活度系数。
"所以,它能很好的预测VLE的活度系数。
但是如果要预测LL数据时,必须使用一个不同的数据集,这个时候你可以用aspen plus自带的UNIFAC-LL.如果有,物性方法选择分子模型类NRTL\WILSON\UNIQUAC.分子模型运行二元交互参数可以灵活准确的模拟许多低压(P<10atm)非理想溶液。
但是这里面WILSON不能用于模拟液液(LL)混合物。
正如前面所说的,活度系数方法适用于低压非理想溶液,如果是高压(P>10atm)非理想溶液,应该选用灵活的、有预测性的状态方程,如图所示的sp-polar、特殊混合规则的(ws,hv)方程。
图示把这些状态方程归为活度系数法是错误的aspen模拟中状态方程物性方法的选择在Aspen模拟中物性方法的选择至关重要,物性方法选择正确与否直接关系到模拟结果的准确性。
现向全体海友征集各种物性方法的使用条件、范围及相关注意事项。
例如:性质方法名:WILSON,γ模型名:wilson,气体状态方程:理想气体定律! J* v3 ~+ V1 c$ X7 e/ R f1 mWilson 模型属于活度系数模型的一种。
适用于许多类型的非理想溶液,但不能模拟液-液分离。
可在正规溶液基础上用于模拟低压下的非理想系统。
1.新建一个Aspen临时文件,选Template,选Blank Simulation也一样2.选择“PropertyAnalysis”3.按“N→”继续,Aspen中“N→”表示下一步,设置完当页后点这个按钮就会自动到下一页的设置页面中,以下类似4.输入标题,随便输入注意图中红色方框,是设置该aspen文档的默认单位集,默认是ENG,即英制单位,其温度是“F”,后边会讲到。
点“N→”下一步5.输入“water”或者”H2O”都可以,点回车后图片如下继续点“N→”下一步6.选择“Process type”,常用物性方法计算类型,里面是不同的物性方法分类,比如当前选择的“COMMON”为常用方法,”CHEMICAL”化学工艺计算,“ELECTROL ”为电解质计算,不同的物质计算要选择不同的物性计算方法集,当然同一种物质也可在不同物性方法集中的选择物性计算方法,不同的物性计算方法集计算出来的物性会有所区别,精确度也不一样,具体见附件本例中选择“COMMON”集即可7.然后选择计算方法“STEAMNBS”此表为水和蒸汽计算8. 继续点“N→”下一步后如图,点确定即可9.点“New”10.选“GENERIC”,普通即可11.方框内设置流量及流量表示方法和单位,有摩尔,质量,体积12.这里设置温度和压力,注意温度和压力单位,英制单位默认温度为…F‟,压力为‟psia‟ ,“rearly”的帖子“如何用ASPEN11.1查询物理性质”中默认为…C‟,这是因为他在第4张图片中默认单位选的METCKGCM或SI-CBAR,至于单位集可百度13.我们将压力设置为一个大气压,选择温度为变化量14.选中“Temperature”,点击“Range/List”选择结果列表方式在“rearly”的帖子“如何用ASPEN11.1查询物理性质”中,他设置的”Lower”为10,很多海友反应计算结果报错,这就是开头第4项默认单位选择的问题,英制中温度单位为“F”,10F=-12℃,这时候的水已经成冰了,就不是计算方法“STEAMNBS”水和蒸汽计算范围了,所以会报错,故最低应设成32以上15.选中“HXDESIGN”点“>”右移,HXDESIGN是计算热交换为主,下面计算密度,热容等等,可参考下面的英文解释16.选择完成后不要点“N→”下一步,这里还有一个定义你想查询的物性,这个是可选的点击左边树形图,选择方框所示MASSVFRA:混合物的气相分率MASSFLMX:混合物的质量流率HMX:混合物的焓RHOMX:混合物的密度CPMX:混合物的恒压热容PCMX:混合物临界状态下的临界压力MUMX:混合物粘度KMX:混合物的导热系数SIGMAMX:表面张力MWMX:混合物分子量单位可根据个人习惯选择,物性可右键删除17.一路确定计算完毕,点击上图中红色方框内图标查看计算结果18.点击左边树状图方框内文件夹图标,最后得到计算结果如下可见变量“TEMP”变量中温度单位为‟F‟,点击改成“C”后就是我们熟悉的摄氏度了。
2010年第29卷增刊CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·481·化工进展应用ASPEN模拟氨合成回路的物性方法分析解光燕1,叶枫1,王中博1,薛援2,丁苏文1(1新疆大学化学化工学院,新疆乌鲁木齐 830046;2中国石油乌鲁木齐石化公司,新疆乌鲁木齐 830019)摘 要:对化工模拟软件Aspen Plus 11.1的应用进行了研究和探索,并用此软件,对某化肥厂氨合成回路流程进行模拟计算,探讨选择适宜的物性方法,并对不同温度区间,对模拟结果的影响进行了讨论。
结果表明,根据工艺气体的组成及高温高压的操作条件,选择PENG-ROB和ELECNRTL 物性方法比较适宜,并能得到精确可靠的结果。
关键词:Aspen Plus;过程模拟;物性方法;氨合成在实际工厂流程模拟中,对于不同的物系应选用相对应的物性方法,才能得到与实际工况比较接近的计算结果,这样建立起的模拟平台才能为实际的生产或流程改造提供可靠的理论依据。
本文通过对合成氨装置的氨合成回路进行模拟,探讨Aspen Plus用于氨合成回路的适宜的物性方法。
1 流程模拟1.1 流程的建立某化肥厂氨产量为日产1000 t,简要的基本流程(如图1)为新鲜气与循环气混合压缩23 MPa经冷却后进入合成塔反应,反应后的气体经过换热冷却到10 ℃后进入氨分离器分离将液氨分离,分离后的气体小部分驰放,剩余的作为循环气循环使用。
1.2 单元模块的选择氨合成装置的主要单元设备如图1所示,包括反应器(合成塔)、产品分离罐、换热器、加热冷却器等。
氨合成塔R1、R2选用RStoic模块,分离罐V1选用flash2模块,换热器和加热冷却器E1、E2、E3、E4、E5、E6、E7全部都是在两个物流之间的换热,因此都选用用heatx模块,物流分流器S1用Fsplit模块。
1.3 物性方法的选择Aspen Plus软件功能强大,其中嵌入了比较全面的物性方法,可选择应用于不同特性(极性或非极性)和不同操作条件(高温高压,常温常压,或低温低压等)下的物系。