如何利用Aspen进行物性分析-纯组分,二元相图
- 格式:docx
- 大小:761.86 KB
- 文档页数:11
ij:是否是二元交互参数LL:是否是液液这张图ij?的意思是问有没有二元交互参数。
如果没有,物性方法选择活度系数模型中的基团贡献模型类UNIFAC.; a. r+ Z" k9 F i/ ~ "UNIFAC活度系数模型是UNIQUAC模型的一个扩展模型。
它把UNIQUAC用于分子的理论用于了官能团。
有限个数的官能团足可以组成无限个不同的分子。
与纯组分库中可能需要的组分(500至2000个组分)间交互作用参数的个数相比,可能需要的基团交互作用参数的个数很少。
由一个有限的、精选的实验数据集确定的基团间交互作用参数足以能够预测几乎任何组分对间的活度系数。
"所以,它能很好的预测VLE的活度系数。
但是如果要预测LL数据时,必须使用一个不同的数据集,这个时候你可以用aspen plus自带的UNIFAC-LL.如果有,物性方法选择分子模型类NRTL\WILSON\UNIQUAC.分子模型运行二元交互参数可以灵活准确的模拟许多低压(P<10atm)非理想溶液。
但是这里面WILSON不能用于模拟液液(LL)混合物。
正如前面所说的,活度系数方法适用于低压非理想溶液,如果是高压(P>10atm)非理想溶液,应该选用灵活的、有预测性的状态方程,如图所示的sp-polar、特殊混合规则的(ws,hv)方程。
图示把这些状态方程归为活度系数法是错误的aspen模拟中状态方程物性方法的选择在Aspen模拟中物性方法的选择至关重要,物性方法选择正确与否直接关系到模拟结果的准确性。
现向全体海友征集各种物性方法的使用条件、范围及相关注意事项。
例如:性质方法名:WILSON,γ模型名:wilson,气体状态方程:理想气体定律! J* v3 ~+ V1 c$ X7 e/ R f1 mWilson 模型属于活度系数模型的一种。
适用于许多类型的非理想溶液,但不能模拟液-液分离。
可在正规溶液基础上用于模拟低压下的非理想系统。
精馏工段第一个精馏塔模拟的是甲醇、碳酸二甲酯和水的共沸分离,而Aspen软件没有自带的甲醇与碳酸二甲酯的二元共沸物性参数,故我们利用Aspen进行了甲醇和碳酸二甲酯的二元物性参数的模拟。
首先查阅《化学化工物性数据手册》,我们发现甲苯与甲醇的共沸温度及组成和碳酸二甲酯与甲醇的共沸温度及组成十分相似,恰好Aspen有甲苯与甲醇的二元共沸物性参数。
我们利用甲苯与甲醇的二元共沸物性参数对碳酸二甲酯与甲醇的二元物性参数进行模拟。
Aspen模拟流程如下:
选择的物性方法为NRTL,经不断微调后,终于得到预想的结果,如图:
其中2的甲醇和DMC得质量分数与文献所给的共沸组成相同,即达到了模拟的要求。
此时,甲醇与DMC得二元交互参数如下:
从上图可以看到交互参数模拟的结果。
Aspen分析混合物露点、热容、平均分子量的方法首先,打开软件,进入物性分析
(1)点“next”图标,进入下一步
(2)此界面继续点“next”
(3)输入各组分物质,后点下一步。
(4)选择计算方法。
选择“PENG-ROB”,点下一步;
(5)出现一个界面,再点下一步
(6)出现如下界面,点确定
(7)出现如下界面,先别急,等下再回来完成此步。
(8)点下面的prop-sets,(因为要分析哪些物性,需要我们自己来设定)
(9)选择new,点OK
(10)选择cpmx等相关物性
CPMX:混合物恒压热容
TDEW:混合物某压力下的露点
MWMX:混合物的平均分子量
(11)选好后,点next,点“new”。
出现如下界面,这是刚才第7步出现的界面。
(12)输入各组分的含量。
(虽然单位是kmol/h,我们所模拟的这些参数只需要知道各组分的比例就可以得出了。
不管怎么输,只要比例正确就可以了)
Next
从180度开始,到250度结束,每隔5度计一个点(13)把刚才选择的物性,添加到结果列表中。
(14)运行后,点results,查看结果
(15)结果
注:CPMX:混合物热容。
只要压力、温度、组分含量任意一个改变,此数据就要重算。
TDEW:某压力下的露点。
压力、组分含量任意一个改变,此数据就要重算。
MWMX:混合物平均分子量。
只和组分含量相关。
ASPEN中NIST数据库的使用ASPEN中的NIST数据库可以查询二元物性参数,也可以查询纯物质参数,二院物性参数的查询论Step1 输入组分Step2 选择物性方法Step3 执行物性估算Step4 点击NISTStep5 选择pure,二元估算选择Binary mixtureStep6 点击evaluate NOWStep7 查看结果,图中TPT即为苯的三相点所查寻的数据英文可以一起全部复制和百度翻译。
数据库step1step2step4Step5Step7Name Description OMEGA Pitzer acentric factorZC Critical compressibility factor VC Critical volumeTC Critical temperatureDNLEXSAT TDE expansion for liquid molar densityMUP Dipole momentHFUS Heat of fusionDHVLTDEW TDE Watson equation for heat of vaporization DGFORM Gibbs energy of formation (ideal gas)CPSTMLPO ThermoML polynomials for solid CpCPIALEE TDE Aly-Lee ideal gas CpCPLTMLPO ThermoML polynomials for liquid CpDHFORM Heat of formation (ideal gas)MW Molecular weightTB Normal boiling pointFREEZEPT Freeze point temperatureDELTA Solubility parameter @ 25 CSG Specific gravityVLSTD API standard liquid molar volumeSIGTDEW TDE Watson equation for liquid-gas surface tension KVTMLPO ThermoML polynomials for vapor thermal conductivity KLTMLPO ThermoML polynomials for liquid thermal conductivity TPT Triple point temperaturePSTDEPOL TDE polynomials for solid vapor pressureWAGNER25 TDE Wagner 25 liquid vapor pressureMUVTMLPO ThermoML polynomials for vapor viscosityMULNVE TDE equation for liquid viscosityFAMILY Compound family nameSUB FAMILY Compound sub family nameOMEGA Pitzer acentric factor欧米茄Pitzer偏心因子ZC Critical compressibility factorZC临界压缩因子VC Critical volumeVC临界体积TC Critical temperature超导临界温度DNLEXSAT TDE expansion for liquid molar density液体的摩尔密度dnlexsat TDE膨胀MUP Dipole momentMUP的偶极矩HFUS Heat of fusion超声热融合DHVLTDEW TDE Watson equation for heat of vaporization dhvltdew TDE沃森方程的汽化热DGFORM Gibbs energy of formation (ideal gas)dgform生成吉布斯能(理想气体)CPSTMLPO ThermoML polynomials for solid Cpcpstmlpo ThermoML的多项式的固态CPCPIALEE TDE Aly-Lee ideal gas Cpcpialee TDE阿里李理想气体的CPCPLTMLPO ThermoML polynomials for liquid Cpcpltmlpo ThermoML液体CP多项式DHFORM Heat of formation (ideal gas)形成DhForm热(理想气体)MW Molecular weightMW分子量TB Normal boiling point结核病的正常沸点FREEZEPT Freeze point temperaturefreezept冻结点温度DELTA Solubility parameter @ 25 C三角洲“25 C的溶解度参数SG Specific gravity比重VLSTD API standard liquid molar volumevlstd API标准液的摩尔体积SIGTDEW TDE Watson equation for liquid-gas surface tension sigtdew TDE沃森方程的液-气表面张力KVTMLPO ThermoML polynomials for vapor thermal conductivity kvtmlpo ThermoML的多项式的蒸气导热系数KLTMLPO ThermoML polynomials for liquid thermal conductivitykltmlpo ThermoML的多项式液体导热系数TPT Triple point temperatureTPT三相点温度PSTDEPOL TDE polynomials for solid vapor pressure pstdepol TDE多项式的固体的蒸气压WAGNER25 TDE Wagner 25 liquid vapor pressure wagner25 TDE瓦格纳25液体的蒸气压MUVTMLPO ThermoML polynomials for vapor viscosity muvtmlpo ThermoML的多项式的气相粘度MULNVE TDE equation for liquid viscosity液体的粘度mulnve TDE方程FAMILY Compound family name族化合物的姓SUB FAMILY Compound sub family name亚族化合物亚家族的名字。
Aspen Plus在无机盐工艺开发与设计中的应用(Ⅰ)基础物性数据王红蕊;沙作良;王彦飞【摘要】准确而可靠的基础物性数据对化工工艺的开发和设计是非常重要的.Aspen Plus具有丰富的物性数据和一套比较完整的基于状态方程和活度系数方法的物性模型,可以利用它获取所需的基础物性数据.因此介绍了利用Aspen Plus 软件获取无机盐重要物性数据的方法.无机盐重要物性数据包括热力学性质数据、传递性质数据、相平衡数据等.经软件查询数据与文献数据比较,使用Aspen Plus 获取的基础物性数据准确可靠,可以快速地为无机盐工艺开发与设计提供服务.【期刊名称】《广州化工》【年(卷),期】2013(041)013【总页数】3页(P11-12,24)【关键词】Aspen Plus;基础物性数据;无机盐;工艺开发与设计【作者】王红蕊;沙作良;王彦飞【作者单位】天津市海洋资源与化学重点实验室,天津科技大学海洋科学与工程学院,天津300457;天津市海洋资源与化学重点实验室,天津科技大学海洋科学与工程学院,天津300457;天津市海洋资源与化学重点实验室,天津科技大学海洋科学与工程学院,天津300457【正文语种】中文【中图分类】O061在化工过程的开发、研究与工程设计工作中,准确而可靠的物性数据是非常重要的。
化工物性数据绝大部分是各种纯物质或混合物的物理和化学性质,主要由以下几部分组成:①基础物性常数,如 pH、沸点、熔点、凝固点、临界性质等;②热力学性质,如pVT性质、比热容、各种焓和熵等;③微观参数,如偶极矩等;④传递性质,如粘度、导热系数、表面张力、扩散系数等;⑤相平衡数据,如汽液平衡、液液平衡、固液平衡等[1]。
对于无机电解质来说,pH、泡点、溶解度、密度、粘度、比热容、导热系数、热焓及活度系数等数据是电解质溶液理论的基础也是无机盐工艺开发与设计的重要基础。
获取物性数据最直接的方法是通过实验和查阅文献,此方法较麻烦,耗时且工作量大[2]。
求混合物的比容:v=m 3/mol在Aspen 中求比容,可以考虑利用v=体积流量/摩尔流量。
选择压缩机作为模拟的模块。
选择等熵压缩,设置出口压力只要稍高于进口压力就可以了。
例如:求取630kmol/h 的CO ,1130kmol/h 的H2O ,189Kmol/h 的CO2和63Kmol/h 的H2组成的混合物在1atm 和500K 下的比容。
用RK 方程。
根据上面的结果就可知进料的体积流率是82443.568m 3/h,摩尔流率是2012Kmol/h 。
那么计算比容=382443.56840.976/2012m kmol 。
求进料物流中气相分率:选择flash 作为模拟的模块,在设置flash 参数时,要求温度与压力都与进料物流的一致,这样在flash 中的就只进行单纯的气相与液相的分离,而不会发生气相进入液相或液相进入气相的情况,这样就可以根据flash 出口物流中的气液组分得到进料的气相分率等情况。
例如:在180F 及70psia 时,进料物流中丙烷、正丁烷、正戊烷、正辛烷的摩尔分率是0.1、 0.3、0.4 、0.2。
例如:下列物流离开精馏塔,其状态是138psia和197.5F。
如果压力被降低(绝热)到51psia,气相分率和温度是多少。
(提示在flash2前放一个阀,由阀的阻。
求解化学反应平衡时的各组分的多少:选择RGibbs反应器,只要将出口的温度与压力设置好就可以知道该条件下达到化学平衡时的各组分的量。
只要利用该方法计算的结果求出平衡常数K,与实际的常数作比较就可以了。
例如:水煤气变换制氢的化工过程222CO H O CO H+⇔+,在平衡时222co Hco H Oy yKy y=,由热力学数据给出500k时,K=148.4,按照化学计量比进料,求化学反应达到平衡时的平衡组分。
根据最后的反应结果计算K=0.9210.921135.91430.0790.079⨯=⨯,与给定的结果有些差别。