高考数学专题讲座完整版.ppt
- 格式:ppt
- 大小:932.00 KB
- 文档页数:33
高考数学专题讲座 第11讲 直线与圆考纲要求:(1)理解直线斜率的概念,掌握两点的直线的斜率,掌握直线方程的点斜式\两点式\一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行于垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单应用. (5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程.理解圆的参数方程. 基础达标1.若直线l 的倾斜角为π+arctan(-12),且过点(1,0),则直线l 的方程为________________.x +2y -1=02.已知定点A (0,1),点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是________________. (-12,12)3.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,π12)内变动时,a 的取值X 围是 ( C ) A .(0,1)B .(33,3)C .(33,1)∪(1,3) D .(1,3) 4.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是 ( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=45.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是 ( C )A .相交B .相切C .相离D .不确定6.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,则a = ( C ) A . 2 B .2-2C .2-1 D .2+1 例题选讲例1.(1)过点M (2,1)作直线l 与x 轴、y 轴的正半轴分别交于A 、B 两点.① 若△AOB 的面积取得最小值,求直线l 的方程,并求出面积的最小值;② 直线l 在两条坐标轴上截距之和的最小值;③若|MA |·|MB |为最小,求直线l 的方程.解:(1)①由于已知直线l 在坐标轴上的截距,故选用直线的截距方程:1=+bya x (i ) 由已知a >0,b >0.故S △AOB =21ab (ii ) 由已知,直线(i)经过点(2,1).故112=+b a ,就是a +2b =ab ,a =12-b b (∵b ≠1) (iii) ∵a >0, b >0, ∴a >1. 将(iii)代入(ii),得S =12-b b =1112-+-b b =b +1+11-b =(b -1)+11-b +2.当b >1时 S ≥211)1(-⋅-b b +2=4. 等号当且仅当 b -1=11-b 即b =2时成立.代入(iii)得a =4. ∴所求的直线方程为24yx +=1,即x②解一:a +b =2b b -1+b =2(b -1)+2b -1+b = = 2b -1+b -1+当b >1时 , a +b ≥2(2b -1)(b -1)等号当且仅当 b -1=2b -1, 即解二:a +b =(a +b )×1=(a +b )(2a +1b )=3等号当且仅当2b a =a b ,即a 2=2b 2③由于直线l 绕点M 运动,故可选∠OAB 2θsin M y =1sin θ, |MB |=θcos M x =2cos θ,|MA |·|MB |=1sin θ×2cos θ=4s in2θ,∴当sin2θ=1时,|MA |·|MB |有最小值4, 此时tan θ=1,所求直线l 的方程为x +y -3=0.(2)已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点.①求y -22x -2的最大值、最小值;②求x -2y的最大值、最小值.解:(1)令k =y -2x -1,则k 表示经过P 点和A (1,2)两点的直线的斜率,故当k 取最大值或最小值时,直线P A :kx -y +2-k =0和圆相切,此时d =|-2k +2-k |1+k 2=1,解得k =3±34,所以y -22x -2的最大值为3+38,最小值为3-38;(2)方法一:令x -2y =t ,可视为一组平行线系,由题意,直线应与圆C 有公共点,且当t 取最大值或最小值时,直线x -2y -t =0和圆相切,则d =|-2-t |5=1,解得t =-2±5,所以x -2y 的最大值为-2+5,最小值为-2-5;方法二:因为P (x ,y )为圆C :(x +2)2+y 2=1上的点,令x =-2+cos θ,y =sin θ,θ∈[0,2π),所以x -2y =-2+cos θ-2 sin θ=-2+5cos(θ+φ)( φ=arctan2),当θ+φ=2π,即θ=2π-arctan2时,cos(θ+φ)=1,x -2y 取到最大值为-2+5,当θ+φ=π,即θ=π-arctan2时,cos(θ+φ)=-1,x -2y 取到最大值为-2+5;例2.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2,所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.思考:求在满足条件①、②的所有圆中,圆心到直线l :x -2y =0的距离最小的圆的方程.解法一:设圆的圆心为P (a ,b ),半径为r ,则点P 到x 轴,y 轴的距离分别为│b │, │a │. 由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截X 轴所得的弦长为r 2,故r 2=2b 2, 又圆P 截y 轴所得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又点P (a ,b )到直线x -2y =0的距离为52b a d -=,所以5d 2=│a -2b │2 =a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值. 由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于r 2=2b 2知2=r .于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2. 解法二:同解法一,得52b a d -=∴d b a 52±=-得2225544d bd b a +±= ①将a 2=2b 2-1代入①式,整理得01554222=++±d db b②把它看作b 的二次方程,由于方程有实根,故判别式非负,即△=8(5d 2-1)≥0,得 5d 2≥1.∴5d 2有最小值1,从而d 有最小值55. 将其代入②式得2b 2±4b +2=0.解得b =±1.将b =±1代入r 2=2b 2,得r 2=2.由r 2=a 2+1得a =±1. 综上a =±1,b =±1,r 2=2. 由b a 2-=1知a ,b 同号. 于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2.例3.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值X 围.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u OA AB OA AB v u AB 即则由得 },3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u AB OA OB v u v u 因为或 所以v -3>0,得v =8,故AB ={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a aa a a ax a x x x a a x x ax x x x yy y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点.4.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果|AB |=423,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或, 所以直线AB 方程是;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x说明:适时应用平面几何知识,这是快速解答本题的要害所在。
高中数学《单调性、奇偶性函数问题》专题复习高分冲刺技巧例解及考点能力强化训练(A)篇高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样特别是两性质的应用更加突出本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一复合函数的奇偶性、单调性问题的解决关键在于既把握复合过程,又掌握基本函数(2)加强逆向思维、数形统一正反结合解决基本应用题目(3)运用奇偶性和单调性去解决有关函数的综合性题目此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力(4)应用问题在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决特别是往往利用函数的单调性求实际应用题中的最值问题典型题例示范讲解例1已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤5},求函数g(x)=-3x2+3x-4(x∈B)的最大值命题意图本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力知识依托 主要依据函数的性质去解决问题错解分析 题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域技巧与方法 借助奇偶性脱去“f ”号,转化为x 的不等式,利用数形结合进行集合运算和求最值 解 由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6},∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知g (x )在B 上为减函数, ∴g (x )max =g (1)=-4例2已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由命题意图 本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力知识依托 主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题错解分析 考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法 技巧与方法 主要运用等价转化的思想和分类讨论的思想来解决问题 解 ∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数 于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正 ∴当2m <0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ⇒4-22<m <4+22, ∴4-22<m ≤2 当2m >1,即m >2时,g (1)=m -1>0⇒m >1 ∴m >2综上,符合题目要求的m 的值存在,其取值范围是m >4-另法(仅限当m 能够解出的情况) cos 2θ-m cos θ+2m -2>0对于θ∈[0,2π]恒成立,等价于m >(2-cos 2θ)/(2-cos θ) 对于θ∈[0,2π]恒成立∵当θ∈[0,2π]时,(2-cos 2θ)/(2-cos θ) ≤4-22,∴m >4-例3 已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0 解 ∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2)又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数,∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0∴不等式可化为 log 2(x 2+5x +4)≥2 ①或 log 2(x 2+5x +4)≤-2 ②由①得x 2+5x +4≥4,∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得 2105--≤x <-4或-1<x ≤2105+- ④ 由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 考点能力强化巩固训练 1 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7 5)等于( ) A 0 5 B -0 5 C 1 5 D -1 52 已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( ) A (22,3) B (3,10) C (22,4) D (-2,3)3 若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________4 如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________ 5 已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明6 已知f (x )=x x a 2112+-⋅ (a ∈R )是R 上的奇函数, (1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lg kx +1 7 定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围8 已知函数y =f (x )=cbx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小5值2,其中b∈N且f2(1)试求函数f(x)的解析式;(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由参考答案: 1 解析 f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5 答案 B2 解析 ∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0∴f (a -3)<f (a 2-9)∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3) 答案 A3 解析 由题意可知 xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3) 答案(-3,0)∪(0,3)4 解析 ∵f (x )为R 上的奇函数∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1), 又f (x )在(-1,0)上是增函数且-31>-32>-1 ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1) 答案f (31)<f (32)<f (1) 5 解 函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数6 解 (1)a =1(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1) (3)由log 2xx -+11>log 2k x +1⇒log 2(1-x )<log 2k , ∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1} 7解222sin 44sin 7cos 474sin sin 147sin cos 4m x m x x m x x m x x ⎧⎪-≤-≤⎧⎪+≤⎨≥-++⎪⎩⎪-≥+⎪⎩即, 对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或 ∴m ∈[23,3]∪{21} 8 解 (1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a , 当且仅当x =a 1时等号成立,于是22ba =2,∴a =b 2, 由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x x1 (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称(B )篇高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性 同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一 复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数 (2)加强逆向思维、数形统一 正反结合解决基本应用题目 (3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力 (4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解 例1已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyy x ++1),试证明 (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减命题意图 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力知识依托 奇偶性及单调性定义及判定、赋值法及转化思想错解分析 本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得技巧与方法 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点 证明(1)由f (x )+f (y )=f (xyy x ++1), 令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x x x --)=f (0)=0 ∴f (x )=-f (-x ) ∴f (x )为奇函数(2)先证f (x )在(0,1)上单调递减 令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --) ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0, 又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0, 即f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0∴f (x )在(-1,1)上为减函数例2设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1) 求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间命题意图 本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法知识依托 逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题 错解分析 逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱技巧与方法 本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法 解 设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增,∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1),∴f (x 2)<f (x 1) ∴f (x )在(0,+∞)内单调递减.032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又 由f (2a 2+a +1)<f (3a 2-2a +1)得 2a 2+a +1>3a 2-2a +1 解之,得0<a <3又a 2-3a +1=(a -23)245 ∴函数y =(21)132+-a a 的单调减区间是[23,+∞] 结合0<a <3,得函数y =(12)132+-a a 的单调递减区间为[23,3) 例3设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明 f (x )在(0,+∞)上是增函数 (1)解 依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x 整理,得(a -a 1)(e x -x e 1)=0 因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一(定义法) 设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x x x x x x x ee e e e e e 21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二(导数法) 由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1) 当x ∈(0,+∞)时,e -x >0,e 2x -1>0此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数考点能力强化巩固训练1 下列函数中的奇函数是( )A f (x )=(x -1)xx -+11B f (x )=2|2|)1lg(22---x xC f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD f (x )=xx xx sin cos 1cos sin 1++-+2 函数f (x )=111122+++-++x x x x 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x =1对称3 函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是____4 若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________5 已知函数f (x )=a x +12+-x x (a >1) (1)证明 函数f (x )在(-1,+∞)上为增函数 (2)用反证法证明方程f (x )=0没有负数根6 求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数7 设函数f (x )的定义域关于原点对称且满足(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1 求证 (1)f (x )是奇函数(2)f (x )是周期函数,且有一个周期是4a8 已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0 (1)求证 f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证参考答案:1 解析 f (-x )=2222(0)() (0)(0)() (0)x x x x x x x x x x x x ⎧⎧->-+<⎪⎪=⎨⎨--<--+>⎪⎪⎩⎩ =-f (x ), 故f (x )为奇函数 答案 C2 解析 f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称 答案 C3 解析 令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减答案(-∞,-1]4 解析 ∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0 f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0 答案(-∞,0)5 证明 (1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数(2)证法一 设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1, 即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根 证法二 设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾, 若x 0<-1,则1200+-x x >0, 0x a >0, ∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根6 证明 ∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数(本题也可用求导方法解决)7 证明 (1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x )∴f (x )是奇函数(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a )∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数8 (1)证明 设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0,∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0,∴f (x )是单调递增函数(2)解 f (x )=2x +1 验证过程略。
一、知识点 1.正弦函数、余弦函数、正切函数的图像与性质 2.图像变换 3. 正弦函数、余弦函数、正切函数的图像与性质的应用 二、典型例题 1.已知函数()sincosfxAxBx(其中A、B、是实常数,且0)的最小正周期为2,且当13x时,()fx取得最大值2. (1)求函数()fx的表达式; (2)在闭区间2123[,]44上是否存在()fx的对称轴?如果存在,求出其对称轴方程;如果不存在,说明理由.
2.已知函数2()2cos2sincos1(,0)fxxxxxR的最小正周期是2.
(1)求的值; (2)求函数()fx的最大值,并且求使()fx取得最大值的x的集合. 3.若方程2cossin0xxa在02x内有实根,求a的取值范围. 4已知函数2()2sin()3cos2,[,].442fxxxx (1)求()fx的最大值和最小值; (2)若不等式()2fxm在[,]42x上恒成立,求实数m的取值范围.
三课后练习 1. 函数()sin3cos([,0]fxxxx)的单调递增区间是( ) A. 5[,]6 B. 5[,]66 C. [,0]3 D. [,0]6 2. 设函数()sin2fxx,若()fxt是偶函数,则t的一个可能值是( ) A. B. 2 C. 3 D. 4 3. 在52sin(4)23yx的图象与x轴的交点中,离原点距离最近的一点是( ) A. (,0)6 B. (,0)12 C. (,0)6 D. (,0)12 4. 将2cos()36xy的图象按向量(,2)4a平移,则平移后所得图象的解析式为 A. 2cos()234xy B.
2cos()234xy C. 2cos()2312xy D. 2cos()2312xy 5. 将函数sin3cosyxx的图象沿x轴向右平移a个单位(0)a,所得图象关于y轴对称,则a的最小值为( ) A. 76 B. 2 C. 6 D. 3 6. 函数sinyxx在[,]2上的最大值是( )
高考数学总复习专题
讲座12_借助直角三角形求抛物线的焦点弦
高考数学,求抛物线的焦点弦,借助直角三角形是这类题的最优解法。
题目内容:
已知过抛物线y^2=4x的焦点F的直线交该抛物线于A 、B两点,如果|AF|=3,那么|BF|=。
考查内容:
1、抛物线定义的应用;
2、借助直角三角形的知识进行简便方法计算。
分析:
直线AB经过焦点F,明显要借助抛物线的定义来分析,所以要做出如下辅助线。
由AA =3可以求出A点的坐标,由A和F两点的坐标,可以求出直线AB的斜率,之后即可借助直角三角形的知识求出BF的长。
根据题意画图如下,同时求出焦点和准线。
解,如图:
作AA1⊥准线,BB1⊥准线。