磷酸烯醇式丙酮酸羧化酶(PEPCase)提取液
- 格式:pdf
- 大小:255.85 KB
- 文档页数:2
试述玉米碳同化过程用于小麦的条件与原因
小麦属于C3植物,玉米属于C4植物。
二者光合作用的碳循环过程不一样,决定了两者碳同化效率不一样。
小麦仅有叶肉细胞含有叶绿体,整个光合作用过程都是在叶肉细胞里进行,光合作用产物亦只是积累在叶肉细胞中,维管束薄壁细胞不积存光合产物。
CO2固定途径仅有C3途径;而玉米属于C4植物,在固定CO2时,首先由叶肉细胞完成C4途径,然后维管束鞘薄壁细胞完成C3途径。
光合作用产物的形成只有C3途径,故光合产物只积累在维管束鞘薄壁细胞中。
详细来说:小麦在进行光合作用时,CO2的固定主要取决于1,5-二磷酸核酮糖羧化霉(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。
它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸。
玉米是从C3植物进化而来的一种高光效种类。
与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。
玉米固定CO2的酶为磷酸烯醇式丙酮酸羧化(PEPCase),与小麦中RuBPCase相比,PEPCase对CO2的亲和力高。
玉米的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环。
这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制RuBPCase的加氧活性,降低了光呼吸,从而使玉米保持高的光合效率。
根系吸水途径:质外体途径跨膜途径共质体途径根系吸水的两种动力:根压和蒸腾拉力植物散失水分的方式有两种:以液体状态跑出体外-----吐水现象2、以气体状态跑出体外-----蒸腾作用花而不实:油菜缺硼小叶病:果树缺锌细胞对溶质跨膜吸收的方式:扩散、离子通道、载体、离子泵、和胞饮叶绿体中光系统分为:光系统1和光系统2CO2羧化的C3途径第一阶段的产物:甘油酸—3—磷酸影响光合作用的因素:光照CO2 温度矿质元素水分光合速率的日常化提高光能利用率的途径:延长光合时间增加光合面积提高光合效率光受体系统三种光受体:A光敏色素感受红光以及远红光区域的光B隐花色素和向光素感受蓝光和近紫外区域的光C:UVB受体感受紫外光B区域的光光敏色素2中类型:红光吸收型远红外吸收型水势(ψ):每偏摩尔体积水的化学势差。
符号:ψw。
w渗透作用: 水分从水势高的系统通过半透膜向水势低的系统移动的现象。
内聚力学说:又称蒸腾流-内聚力-张力学说。
即以水分的内聚力解释水分沿导管上升原因的学说。
合理施肥的生理基础:结合作物的需肥规律,适时适量的施肥,做到少肥高效诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。
如硝酸还原酶可为NO3-所诱导。
离子通道:是cell膜中由通道蛋白构成的孔道,控制离子通过细胞膜,水合离子的体积和所带电荷通过的离子种类,一种通道往往只限一种或有限的离子种类通过。
必需元素有17种大量元素(占植物干重的0.1%)9种: C、H、O、N、P、K、Ca、Mg、S,微量元素(占植物干重的0.01%下)8种:Fe、Mn、B、Zn、Cu、Mo、Cl、Ni 必需的矿质元素有14种。
必需元素的生理作用总的来讲,有四个方面:1、细胞结构物质的组成成分。
2、生命活动的调节者,参与酶的活动。
3、起电化学作用及渗透调节。
4、与体内其他物质结合成脂化物,参与物质代谢和运输。
植物进行正常的生命活动需要哪些矿质元素?如何用实验方法证明植物生长需要这些元素?答:必需的矿质元素有14种。
第5章 植物的光合作用自测题:一、名词解释:1.光合色素 2.原初反应 3.红降现象 4.爱默生效应 5.光合链 6.光合作用单位 7.作用中心色素 8.聚光色素 9.希尔反应 10.光合磷酸化 11.光呼吸 12.光补偿点 13.CO2 补偿点 14.光饱和点 15.光能利用率 16.光合速率 17.叶面积系数 18. 压力流动学说 19.细胞质泵动学说 20.代谢源与代谢库 21.比集转运速率 22 .P-蛋白 23.有机物质装载 24.有机物质卸出 25 收缩蛋白学说 26. 磷酸运转器27.转移细胞 28.生长中心 29.库-源单位 30.供应能力 31.竞争能力 32.运输能力二、缩写符号翻译:1.Fe-S2.Mal3.0AA4.BSC5.CF l _ Fo6.NAR7.PC8. CAM9.NADP 10.Fd 11.PEPCase 12.RuBPO 13.P680 14.PQ 15.PEP 16.PGA 17.Pn 18.Pheo 19.PSP 20.RuBP 21.RubisC(RuBPC)22.Rubisco(RuBPCO) 23.LSP 24. LCP 25. DCMU 26.FNR 27. LHC 28. TP 29. PSI 30. PSII 31.SMTR 32. SMT 33. SE-CC 34.SC三、填空题:1.光合生物所含的光合色素可分为四类, 即 、 、 、。
2. 合成叶绿素分子中吡咯环的起始物质是 。
光在形成叶绿素时的作用是使 还原成 。
3.根据需光与否,笼统地把光合作用分为两个反应: 和 。
前者是在叶绿体的 上进行的,后者在叶绿体的 中进行的,由若干酶所催化的化学反应。
4.P700的原初电子供体是 ,原初电子受体是 。
P680的原初电子供体是 , 原初电子受体是 。
5.在光合电子传递中最终电子供体是 ,最终电子受体是 。
6.水的光解是由 于1937年发现的。
植物生理学第三章植物的光合作用第三章植物的光合作用一、名词解释1. C3途径2. C4途径3. 光系统4. 反应中心5. 原初反应6. 荧光现象7. 红降现象8. 量子产额9. 爱默生效应10. PQ循环11. 光合色素12. 光合作用13. 光合单位14. 反应中心色素15. 聚光色素16. 解偶联剂17. 光合磷酸化18. 光呼吸19. 光补偿点20. CO2补偿点21. 光饱和点22. 光能利用率23. 光合速率二、缩写符号翻译1. Fe-S2. PSI3. PSII4. OAA5. CAM6. NADP+7. Fd 8. PEPCase 9. RuBPO10. P680、P700 11. PQ 12. PEP13. PGA 14. Pheo 15. RuBP16. RubisC(RuBPC) 17. Rubisco(RuBPCO) 18.TP三、填空题1. 光合作用的碳反应是在中进行的,光反应是在中进行的。
2. 在光合电子传送中最终电子供体是,最终电子受体是。
3. 在光合作用过程中,当形成后,光能便转化成了活跃的化学能;当形成后,光能便转化成了稳定的化学能。
4. 叶绿体色素提取掖液在反射光下观察呈色,在透射光下观察呈色。
5. P700的原初电子供体是,原初电子受体是。
6. 光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。
7. 光合作用中释放的氧气来自于。
8. 与水光解有关的矿质元素为。
9. 和两种物质被称为同化能力。
10. 光的波长越长,光子所持有的能量越。
11. 叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。
12. 光合磷酸化有三种类型:、、。
13. 根据C4化合物和催化脱羧反应的酶不同,可将C4途径分为三种类型:、、。
14. 一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为;叶黄素和胡萝卜素的分子比例为。
15. 光合作用中,淀粉的形成是在中,蔗糖的形成是在中。
16. C4植物的C3途径是在中进行的;C3植物的卡尔文循环是在中进行的。
第五章 植物的光合作用 教学要求和思考题一、教学基本要求(一)掌握光合作用的概念及其意义;(二)掌握叶绿体色素和光合速率的测定方法;(三)了解光合色素的种类和理化性质;(四)了解光合作用的基本过程和光合碳同化的生化途径;(重点和难点)(五)理解光呼吸的含义、基本生化途径和生理意义;(六)掌握影响光合作用的内部因素和外部因素;(重点)(七)理解光合作用与作物产量的关系,掌握提高光能利用率的途径与措施。
二、复习思考题(一)名词解释1. 光饱和点 (light saturation point)2. 光补偿点 (light compensation point)3. 光合同化力 (assimilatory power)4. 反应中心色素 (reaction center pigment)5. 光合磷酸化 (photophosphorylation)6. C 4植物 (C 4 plant )7. C 3 途径 (C 3 pathway )8. C 4途径 (C 4 pathway )9. 光呼吸 (photorespiration)10. C 3植物 (C 3 plant )11. 光能利用率 (efficiency for solar energy utilization)12. 光合链 (photosynthetic chain)13. 红降现象 (red drop)14. 双光增益效应 (enhancement effect)参考答案:1. 光饱和点:植物在很低的光照速率下就可以进行光合作用,但这时的光合速率很低,随着光照的增强,光合速率也增强,达到一定光强时,光合速率达到最大值。
以后,即使继续增加光强,光合速率也不再增加,称为光饱和现象,开始出现光饱和现象的光照强度,叫做光饱和点。
2. 光补偿点:在光饱和点以下,光合速率随光照强度的减少而降低,到某一光强时,光合过程中吸收的CO 2量和呼吸过程中放出CO 2量达到动态平衡,这时的光照强度,就称为光补偿点。
植物生理学期末复习第一章植物的水分代谢一、名词解释渗透势:由于溶液中溶质颗粒的存在而引起的水势降低值,亦称溶质势( ).渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
质外体途径:指水分通过细胞壁、细胞间隙等没有细胞质的部分移动,阻力小、速度快。
共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速率慢。
根压: 植物根部的生理活动使液流从根部上升的压力。
二、缩写符号翻译Mpa:兆帕斯卡 WUE:水分利用效率;ψw:细胞水势ψp:压力势;ψs:溶质势三、填空题1、一个典型细胞的水势等于ψs+ψp+ψm+ψg ;具有液泡的细胞的水势等于ψs+ψp ;干种子细胞的水势等于ψm 。
2、形成液泡后,细胞主要靠渗透性吸水。
风干种子的萌发吸水主要靠吸胀作用。
3、在细胞初始质壁分离时,细胞的水势等于渗透势,压力势等于0 。
4、相邻两细胞间水分的移动方向,决定于两细胞间的水势差异。
5、证明根压存在的证据有吐水和伤流。
6、叶片的蒸腾作用有两种方式:角质蒸腾和气孔蒸腾。
7、常用的蒸腾作用的指标有蒸腾速率、蒸腾比率和水分利用率。
四、选择题1、一般而言,进入冬季越冬作物组织内自由水/束缚水的比值:( B )。
A、升高;B、降低;C、不变;D、无规律。
2、有一个充分为水饱和的细胞,将其放入比细胞液浓度低10倍的溶液中,则细胞体积:( B )A、变大;B、变小;C、不变;D、可能变小,也可能不变。
3、已形成液泡的植物细胞吸水靠(B)。
A、吸涨作用;B、渗透作用;C、代谢作用;D、扩散作用。
4、已形成液泡的细胞,其衬质势通常省略不计,其原因是:( C )。
A、初质势很低;B、衬质势不存在;C、衬质势很高,绝对值很小;D、衬质势很低,绝对值很小。
5、将一个细胞放入与其渗透势相等的外界溶液中,则细胞( D )。
A、吸水;B、失水;C、既不吸水也不失水;D、既可能失水也可能保持平衡。
磷酸烯醇式丙酮酸羧化酶(PEPC)提取液
简介:
磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC)是C4植物和CAM 植物固定CO 2的关键酶,为催化磷酸烯醇式丙酮酸与二氧化碳反应生成草酰乙酸呈不可逆反应的酶,在植物和细菌中广泛存在,在动物及丝状霉菌中缺乏此酶。
大肠杆菌中的酶分子量约36万的四聚体,可受很多因素的影响,例如可为乙酰辅酶A 活化,可受天门冬氨酸抑制。
此酶是变构酶,主要功能为供给三羧酸循环以草酰乙酸,另外也与C4植物光合二氧化碳固定反应(C4二羧酸循环)及景天科植物的苹果酸形成(景天酸代谢)等有关。
Leagene 磷酸烯醇式丙酮酸羧化酶(PEPC)提取液主要用于裂解植物组织,提取样品中的磷酸烯醇式丙酮酸羧化酶。
该试剂仅用于科研领域,不宜用于临床诊断或其他用途。
组成:
自备材料:
1、蒸馏水
2、离心管或试管
3、匀浆器或研钵
4、低温离心机
操作步骤(仅供参考):
1、取植物组织清洗干净,切碎。
2、加入预冷的磷酸烯醇式丙酮酸羧化酶提取液,冰浴情况下充分匀浆或研磨。
3、经纱布或滤纸过滤,留取滤液待用。
3、离心,留取上清液。
4、冻存,用于磷酸烯醇式丙酮酸羧化酶的检测或其他用途。
计算:
组织或植物粗酶液获得率(ml)=上清液体积(ml)/组织或植物质量×100%
注意事项:编号
名称CS0421
Storage 磷酸烯醇式丙酮酸羧化酶提取液
500ml 4℃使用说明书1份
1、待测样品中不能含有磷酸酶抑制剂,同时需避免反复冻融。
2、所测样本的值高于标准曲线的上限,应用磷酸烯醇式丙酮酸羧化酶提取液稀释样品后
重新测定。
3、为了您的安全和健康,请穿实验服并戴一次性手套操作。
有效期:6个月有效。
相关:
编号名称
CC0007磷酸缓冲盐溶液(10×PBS,无钙镁)
CS0001ACK红细胞裂解液(ACK Lysis Buffer)
DC0032Masson三色染色液
DF0135多聚甲醛溶液(4%PFA)
NR0001DEPC处理水(0.1%)
PS0013RIPA裂解液(强)
TC1167尿素(Urea)检测试剂盒(脲酶波氏比色法)。