(1)求证数列{an+1}是等比数列;
(2)求 a n 的表达式。
课堂练习:已知数列{an}为等比数列,若 m,
n,p 成等差数列,求证 am,an,ap成等比数列 .
课后作业见学案:
课堂小结:
利用定义法证明等比数列。
谢谢观看!
,则有
探究:利用定义法证明等比数列。
例1、若{an}是等比数列,且an=3n,判断数列{2an}是 否为等比数列?
变式:若{an}是等比数列,c是不等于0的常数, 且an=3n,判断数列{can}是否为等比数列? 例2、若{an}{bn}是项数相同的等比数列,且 an=3n, bn=2n,判断数列{anbn}是否为等比数列?
等比数列第三课时
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!