第七节 实际晶体中的位错
- 格式:ppt
- 大小:7.26 MB
- 文档页数:42
§5 晶体缺陷晶体中原子(或分子、离子)在三维空间中的周期性规则排列仅仅是一种理想情况,实际晶体中的情况则不尽然。
由于晶体的生长条件、原子的热运动以及材料加工过程中各种因素的影响,使原子排列不可能那样规则和完善,往往存在着偏离理想结构的区域,从而形成晶体缺陷。
研究表明,形成晶体缺陷的这些区域,其中的某些原子虽然失去了与周围原子之间的正常的相邻关系,但仍然受到原子键合力的约束,其排列并不是杂乱无章的。
因此,晶体是以一定的形态存在,按一定的规律产生、发展和运动,并对晶体的物理和化学性能产生重要影响。
根据晶体中缺陷的几何特征,可分为:点缺陷(0维):空间尺寸很小,相当于原子数量级,如空位、间隙原子等;线缺陷(一维):在两个方向上小但在另一个方向上尺寸大,如各种位错;面缺陷(二维):在一个方向上小但在另两个方向上尺寸大,如晶界、相界等。
5.1 点缺陷晶体缺陷的尺寸在三维方向上均处于原子数量级,为点缺陷。
点缺陷产生原因:原子热振动、高温淬火、冷加工、辐照等。
点缺陷类型结构:空位、间隙原子、置换原子肖脱基(Schottky)空位:脱离平衡位置的原子移动到晶体表面;弗兰克尔(Frankel)空位:脱离平衡位置的原子移动到晶体点阵的间隙中。
图2.13 点缺陷示意图a) 空位;b) 间隙原子;c) 异质间隙原子;d) 异质置换原子(原子半径小);e) 异质置换原子(原子半径大)图2.14 空位聚集成为空位片a) 孤立的空位;b) 聚集成片的空位片图2.15 化合物离子晶体中两种常见的点缺陷点缺陷形成能:由于空位或者间隙原子的存在而使点阵产生畸变,晶体内能升高,增加的能量称为点缺陷形成能。
常见金属中,间隙原子形成能比空位形成能大几倍。
点缺陷平衡浓度:热力学分析表明,在绝对零度以上的任何温度,晶体中含有一定数量的点缺陷在热力学上是稳定的(这也表明理想晶体在热力学上是不稳定的),并可以计算该温度下的点缺陷平衡浓度。