求函数近似解的一种计算方法
- 格式:doc
- 大小:165.00 KB
- 文档页数:8
4.5.2 用二分法求方程的近似解一、二分法1、二分法的定义:对于区间[],a b 上图象连续不断且()()0⋅<f a f b 的函数()f x ,通过不断把它的零点所在区间一分为二,使所得区间的两个端点逐渐逼近零点,进而得到近似值的方法。
2、注意点:(1)二分法的求解原理是函数零点存在定理;(2)函数图象在零点附近连续不断;(3)用二分法只能求变号零点,即零点在左右两侧的函数值的符号相反,比如2=y x ,该函数有零点0,但不能用二分法求解。
二、用二分法求函数零点1、给定精确度ε,用二分法求函数()=y f x 零点0x 的近似值的步骤(1)确定零点0x 的初始区间[],a b ,验证()()0⋅<f a f b ;(2)求区间(),a b 的中点c ;(3)计算()f c ,进一步确定零点所在的区间:①若()0=f c (此时0=x c ),则c 就是函数的零点;②若()()0⋅<f a f c (此时()0,∈x a c ),则令=b c ;③若()()0⋅<f c f b (此时()0,∈x c b ),则令=a c .(4)判断是否达到精确度ε:若-<a b ε,则得到零点近似值a (或b );否则重复(2)~(4)【注意】初始区间的确定要包含函数的变号零点;2、关于精确度(1)“精确度”与“精确到”不是一回事,这里的“精确度”是指区间的长度达到某个确定的数值ε,即-<a b ε; “精确到”是指某讴歌数的数位达到某个规定的数位,如计算2-,精确到0.01,即0.3313(2)精确度ε表示当区间的长度小于ε时停止二分;此时除可用区间的端点代替近似值外,还可选用该区间内的任意一个数值作零点近似值。
题型一二分法的概念理解【例1】下列关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只有求函数零点时才用二分法【答案】B【解析】根据二分法的概念可知,只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,才可以用二分法求函数的零点的近似值,故A错;用二分法求方程的近似解时,可以精确到小数点后的任一位,故B正确;二分法有规律可循,可以通过计算机来进行,故C 错;求方程的近似解也可以用二分法,故D 错.故选:B.【变式1-1】用二分法求函数()lg 2f x x x =+-的零点,可以取的初始区间是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】B【解析】因为,lg y x y x ==是单调增函数,故()f x 是单调增函数,其零点至多有一个;又()()11,2lg20f f =-=>,故用二分法求其零点,可以取得初始区间是()1,2.故选:B.【变式1-2】观察下列函数的图象,判断能用二分法求其零点的是( ) A . B . C .D .【答案】A【解析】由图象可知,BD 选项中函数无零点,AC 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.故选:A【变式1-3】下列函数图象中,不能用二分法求零点的是( )A .B .C .D .【答案】B【解析】观察图象与x 轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B 不能用二分法求零点.故选:B.【变式1-4】下列函数中不能用二分法求零点的是( )A .()43f x x =-B .()ln 28f x x x =+-C .()sin 1f x x =+D .()231=-+f x x x【答案】C【解析】选项C sin 10y x =+≥恒成立,不存在区间(),a b 使()()0f a f b ⋅<,所以sin 1y x =+不能用二分法求零点.故选:C题型二 用二分法求方程的近似解【例2】方程322360x x x -+-=在区间[]2,4-上的根必定在( )A .[]2,1-上B .5,42⎡⎤⎢⎥⎣⎦上C .71,4⎡⎤⎢⎥⎣⎦上D .75,42⎡⎤⎢⎥⎣⎦上 【答案】D【解析】设32()236f x x x x =-+-, 则(2)8866280f -=----=-<,(4)6432126380f =-+-=>,因为2412且(1)123640f =-+-=-<,所以函数()f x 在[]1,4上必有零点. 又因为14522+=且5125251537()6028228f =-+-=>,所以函数()f x 在51,2⎡⎤⎢⎥⎣⎦上必有零点.又因为517224+=且32777797()()2()360444464f =-⨯+⨯-=-<,所以函数()f x 在75,42⎡⎤⎢⎥⎣⎦上必有零点. 即方程的根必在75,42⎡⎤⎢⎥⎣⎦上.故选:D【变式2-1】若函数()31f x xx =--在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算,列表如下: x 1 1.5 1.25 1.375 1.3125 f (x ) -1 0.875 -0.2969 0.2246 -0.05151310x x --=的一个近似根(精确度为0.1)可以为( )A .1.3B .1.32C .1.4375D .1.25【答案】B【解析】由()1.31250f <,()1.3750f >,且()f x 为连续函数,由零点存在性定理知:区间()1.3125,1.375内存在零点,故方程310x x --=的一个近似根可以为1.32,B 选项正确,其他选项均不可.故选:B【变式2-2】若函数32()22f x x x x =+--的一个正零点附近的函数值用二分法计算,其参考数据如下: (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =- (1.4375)0.162f = (1.40625)0.054f =-那么方程32220x x x +--=的一个近似根(精确度0.1)为( ).A .1.2B .1.4C .1.3D .1.5【答案】B【解析】因为(1)0,(1.5)0f f <>,所以(1)(1.5)0f f <,所以函数在(1,1.5)内有零点,因为1.510.50.1-=>,所以不满足精确度0.1;因为(1.25)0f <,所以(1.25)(1.5)0f f <,所以函数在(1.25,1.5)内有零点,因为1.5 1.250.250.1-=>,所以不满足精确度0.1;因为(1.375)0f <,所以(1.375)(1.5)0f f <,所以函数在(1.375,1.5)内有零点,因为1.5 1.3750.1250.1-=>,所以不满足精确度0.1;因为(1.4375)0f >,所以(1.4375)(1.375)0f f <,所以函数在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程32220x x x +--=的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .【变式2-3】求方程221x x =+的一个近似解(精确度0.1)【答案】2.4375【解析】设2()21f x x x =--.因为(2)10,(3)20f f =-<=>()f x 在区间()2,3内单调递增,所以在区间()2,3内,方程2210x x --=有唯一的实数根为0x 取2与3的平均数2.5因为(2.5)0.250f =>,所以02 2.5x <<,再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<,所以02.25 2.5x <<;如此继续下去,有(2.375)0,(2.5)0f f <>,所以()0 2.375,2.5x ∈;(2.375)0,(2.4375)0f f <>,所以()0 2.375,2.4375x ∈;因为|2.375 2.4375|0.06250.1-=<,所以方程221x x =+的一个精确度为0.1的近似解可取为2.4375题型三 用二分法求函数的零点【例3】用二分法研究函数()5381f x x x =+-的零点时,第一次经过计算得()00f <,()0.50f >,则其中一个零点所在区间和第二次应计算的函数值分别为( ) A .()0,0.5,()0.125f B .()0,0.5,()0.375fC .()0.5,1,()0.75fD .()0,0.5,()0.25f【答案】D【解析】因为(0)(0.5)0f f <,由零点存在性知:零点()00,0.5x ∈,根据二分法,第二次应计算00.52f +⎛⎫⎪⎝⎭,即()0.25f ,故选:D.【变式3-1】已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.5【答案】C【解析】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数,2y x 和2log 6y x =+在()0,∞+上都是增函数,当()1,2x ∈时,2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立;当()2,2.5x ∈时,22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立,又22(2.5) 2.5log 2.560f =--<,2(3)9log 360f =-->,根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3.故选:C.【变式3-2】已知函数()329f x x x =+-在()1,2内有一个零点,且求得()f x 的部分函数值数据如下表所示: x 1 2 1.5 1.75 1.7656 1.7578 1.7617()f x -6 3 -2.625 -0.14063 0.035181 -0.05304 -0.0088要使()零点的近似值精确度为,则对区间()的最少等分次数和近似解分别为( )A .6次1.75B .6次1.76C .7次1.75D .7次1.76【答案】D【解析】由表格数据,零点区间变化如下:(1,2)→(1.5,2)→(1.75,2)→(1.75,1.875)→(1.75,1.8125)→(1.75,1.78125)→(1.75,1.7656)→(1.7578,1.7656),此时区间长度小于0.01,在此区间内取近似值,等分了7次,近似解取1.76.故选:D .【变式3-3】用二分法求函数()ln(1)1f x x x =++-在区间[]0,1上的零点,要求精确度为0.01时,所需二分区间的次数最少为( )A .5B .6C .7D .8【答案】C【解析】开区间()0,1的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确度为0.01,10.012n∴≤,解得7n ≥,故选:C.【变式3-4】用二分法求函数()f x 的一个正实数零点时,经计算,()0.540f <,()0.720f >,()0.680f <,则函数的一个精确到0.1的正实数零点的近似值为( ) A .0.68 B .0.72 C .0.7 D .0.6【答案】C【解析】由题意根据函数零点的判定定理可得,函数零点所在的区间为()0.68,0.72,则函数的一个精确度为0.1的正实数零点的近似值可以为0.7,故选:C .。
2.4.2求函数零点近似解的一种方法——二分法教学设计辽宁省鞍山一中周兴奎一、教学目标知识与技能:1、了解二分法是求函数零点近似解的常用方法.2、理解二分法求函数零点的适用范围,并能借助计算器或计算机用二分法求函数零点近似值.过程与方法:采用问题探究式的教学方法,从实例入手,引领学生理解“二分法”求方程近似解的过程和步骤,并得到相应结论.情感态度价值观:培养学生的数学思想。
包括数形结合和数学逼近思想,同时培养学生的数学文化,增强数学认同感,提高学习兴趣.二、教学重难点重点:用二分法求方程的近似解,体会函数与方程的思想.难点:正确理解二分法求函数零点的原理和思想;在利用二分法求方程的近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难;用二分法求方程的近似解时,初始区间的选择.三、学情分析和教学内容分析学情分析:知识上学生通过函数性质和上节课函数零点的学习,已经有了初步的函数思想,已有了函数与方程相联系的认知。
意识上学生对解方程非常熟悉,可以从解方程入手来进一步学习函数的零点.教材内容分析:本节课位于人教B版教材第二章2.4.2,本章的最后一节新课,本节内容是新教材为了体现注重思想和联系的宗旨,特别设计的一节探究课。
目的是通过教师引导、学生自主学习探究后增加对数学学习的兴趣,同时通过对数学文化的渗透和计算机可以来处理复杂数学计算问题等,让学生在数学修养上在上一个台阶.四、教学过程1. 数学史的引入和数学问题情境的创设由上节课学习的函数的零点入手,回顾函数零点和方程的关系。
得到求方程的根的问题就是求函数的零点,求函数与x轴交点横坐标的问题,进而过渡到事实上求方程的根的问题是19世纪之前数学研究的主要课题,进而教师给出一些重要的时间段,以及对应的方程的根的求解进展情况。
并让学生发现一元五次和五次以上的方程没有求根公式。
进而引出问题:一个一般的五次方程的根我们是没有办法求出去具体值的,那么我们能不能求这类方程的近似解呢?如:求方程x5+2x2-x-1=0的根2. 求函数近似零点下面进一步引导学生来求上述函数的一个零点,不妨求[0,1]上的零点,能否借助函数图像,找到一种方法可以使函数的零点和零点近似值之间可以任意接近?可以选择的给出一个具体实例:在一个风雨交加的夜里,某防洪指挥部的电话线路发生故障,线路长达10Km,问维修工人应该如何迅速找到故障所在?并采用动画的形式展示维修工人的操作过程,这就是二分法的思想,这是一个探究的环节。
定积分的近似计算方法定积分是微积分中的重要概念,它代表了曲线与坐标轴之间的有限面积。
在实际问题中,有时候我们需要计算一些函数在一定范围内的定积分,以获得其中一种物理量或求解其中一种问题的解析解。
然而,有些函数的原函数较复杂甚至难以找到,这时候我们就需要使用定积分的近似计算方法。
下面将介绍几种常用的定积分近似计算方法:1.矩形法:矩形法是最简单的一种近似计算方法。
它的思想是将积分区间等分成若干个小区间,然后在每个小区间上选择一个代表点,通过函数在这些代表点处的函数值与小区间长度的乘积来近似计算定积分。
具体计算公式为:∫[a,b]f(x)dx ≈ Δx * (f(x₁) + f(x₂) + ... + f(xₙ))其中,Δx=(b-a)/n,n为小区间个数,x₁、x₂等为代表点。
当n越大时,近似结果越接近真实结果。
2.梯形法:梯形法是将积分区间分成若干个小区间,然后在每个小区间上构造一个梯形,通过计算梯形的面积来近似计算定积分。
具体计算公式为:∫[a,b]f(x)dx ≈ Δx * (f(x₁) + f(x₂))/2 + Δx * (f(x₂) +f(x₃))/2 + ... + Δx * (f(xₙ-1) + f(xₙ))/2其中,Δx=(b-a)/n,n为小区间个数,x₁、x₂等为小区间的端点。
3.辛普森法:辛普森法是一种比矩形法和梯形法更精确的近似计算方法。
它的思想是将积分区间分成若干个小区间,然后在每个小区间上构造一个二次多项式,通过计算这些二次多项式的面积来近似计算定积分。
具体计算公式为:∫[a,b]f(x)dx ≈ Δx * (f(x₀)+4f(x₁)+f(x₂))/3 + Δx *(f(x₂)+4f(x₃)+f(x₄))/3 + ... + Δx * (f(xₙ-2)+4f(xₙ-1)+f(xₙ))/3其中,Δx=(b-a)/n,n为小区间个数,x₀、x₁、x₂等为小区间的端点。
4.蒙特卡洛法:蒙特卡洛法是通过随机抽取点的方法来近似计算定积分。
高一数学之:二分法求方程的近似解一:知识点精析1、二分法定义:对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(注意如下两点:①二分法的基本思想:逼近思想;②用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用。
)2、给定精确度ε,用二分法求方程的近似解的步骤:第一步:确定闭区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间(a,b)的中点c;第三步:计算f(c);(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c(此时零点x。
∈(a,c));(3)若f(c)·f(b)<0,则令a=c(此时零点x。
∈ (c,b))。
第四步:判断是否达到精确度ε:即若|a-b|<c,则得到零点近似值a(或b),否则重复第二步至第四步。
二:典例讲解题型一:用二分法判断方程根所在区间问题例1、用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x。
=2.5,那么下一个有根的区间是_____________________。
题型二:用二分法求函数零点问题例2 求函数发f(x)=x3+2x2-3x-6的一个为正数的零点(精确度o.01).题型三:用二分法求方程近似解问题例3、利用计算器求下列方程的近似解(精确度0.1).(1)x2-2x-1=0 (2)2x3+3x-3=0题型四:用二分法解决实际应用问题例6 如果在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障,这是一条10 km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多,每查一个点就要爬一次电线杆,10 km长大约有200多根电线杆呢! 想一想,维修线路的工人师傅怎样工作最合理?例7、如图,有一块边长为15 cm的正方形铁皮,将其四个角各截去一个边长为J cm的小正方形,然后折成一个无盖的盒子.(1)求出盒子的体积y以z为自变量的函数解析式,并讨论这个函数的定义域;(2)如果要做一个容积是150 cm3的无盖盒子,那么截去的小正方形的边长工是多少(精确到o.1 cm)?三:素质测试1、下列图象与z轴均有交点,其中不能用二分法求函数零点的是( )2、下列关于二分法叙述正确的是( )A、用二分法可求所有函数零点的近似值B、用二分法求方程的近似解时,可以精确到小数点后的任一位C、二分法无规律可循,无法在计算机上完成D、只有在求函数零点时才用二分法3、下列函数不能用二分法求零点的是( )A、f(x)=2x+3B、f (x)=lnx+2x-6C、f(x)=x2-2x+1D、f(x)=2x-14 、函数f(x)=5-x2的负数零点的近似值(精确到o.1)是( )A-2. B-2.1 C.-2.2 D.-2.35、用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0.可使其中一个零点x∈____________,第二次应计算____________以上横线应填的内容为( )A、(0,0.5) f(0.25)B、(0,1) f(0.25)C、(0.5,1) f(0.75)D、(0,0.5) f(0.125)27、f(x)是定义在区间[-c,c]上的奇函数,其图象如图所示.令g(x)=af(x)+b,则下列关于函数g(x)的叙述正确的是( )A若a<0,则函数g(X)的图象关于原点对称B若a=1,0<b<2,则方程g(x)=0有大于2的实根C若a=-2,b=0,则函数g(x)的图象关于y轴对称d若a≠0,b=2,则方程g(x)=0有三个实根xA(-1,0) B(0,1) C (1,2) D(2,3)9、某方程有一无理根在区间D=(1,2)内,若用二分法求此根的近似值,则将D至少等分___________次后,所得近似值可精确到0.01.=0在(-∞,o)内是否存在实数根?并说明理由.10、方程x2-1x。
求函数零点近似解的一种计算方法——二分法一、教学目标:1.知识与技能:通过实例的探究,使学生能理解二分法的概念,能够运用二分法求简单函数零点近似解. 2.过程与方法:⑴体验并理解函数的零点与方程的解相互转化的数学思想⑵学生能够初步了解近似逼近思想,培养学生能够探究问题的能力、严谨的科学态度和创新能力。
(3)了解二分法程序化思想。
3.用二分法解方程的近似解是新课程中新增内容。
为了帮助学生认识函数与方程的关系,分三个层面来展现:第一层面,从简单的一元二次方程和二次函数入手,建立起方程的解和函数的零点的联系。
第二层面,通过二分法求方程近似解,体现函数与方程的关系。
第三层面,通过建立函数模型以及运用模型解决问题,进一步体现函数与方程的关系。
二、教学重点与难点:教学重点:对二分法的理论的理解与应用;教学难点:对二分法的理论的理解与应用。
三、教学过程引入:有12个大小相同的小球,其中有11个小球质量相等,另有一个小球稍重,用天平称至少称几次就一定可以找出这个稍重的球?在现实生活中有很多这样的类似情况需要我们寻找到某些特殊时刻,相应地,数学中研究各种量的变化时也会非常关注某些特殊时刻,比如我们现在学习的函数,寻求函数y=f(x)的零点(也就是方程f(x)=0的解)也是一个重要的课题。
我们知道,求一次函数或二次函数的零点,我们可以用熟知的公式解法。
对于三次函数和四次函数,虽然有求根公式不过很复杂,所以对于高次的多项式函数及其他的一些函数怎样找到他们的零点呢?--下面我们一起来探索一种能找到函数的零点的可操作的办法。
(例题探究)例一:一次函数f(x)=(k—1)x+2在区间(1,2)上有零点,求系数k的范围。
分析一次函数有且只有一个零点,要使一次函数f(x)=(k-1)x+1在区间(1,2)上有零点只需要f (1)。
f(2)异号。
解出k的范围是-1<k<0例二:图象不间断的函数f(x)的部分对应值如下表:试判断函数f(x)在哪几个区间内一定有零点?函数f(x)在(2,3)、(3,4),(6,7)、(8,9)内一定有零点.提问:Array在这些区间里零点个数一定只有一个吗?在其他区间一定没有零点吗?对于图像不间断的函数如果在区间[a,b]端点的函数值异号,那么在这个区间一定存在着至少一个零点。
4.5.2用二分法求方程的近似解(基础知识+基本题型)知识点一 二分法的概念对于在区间[]a b ,上连续不断且f (a )•f (b )﹤0 的函数y=f(x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 提示(1)逐步逼近的思想:采用二分法,使区间逐步缩小,使函数的零点所在的范围逐步缩小,也就是逐渐逼近函数的零点,当区间长度小到一定程度时,即a b —﹤ε(ε为精确度),就得到近似解.(2)可行性:从其操作过程看,方法是可行的,是可以解决待求问题的,更可以借助科学工具完成求解. (3)二分法的理论依据:如果函数y= f(x )是连续不断的,且f(a )及f(b )的符号相反(a <b ),那么方程f(x )=0在a 与b 之间至少存在一个跟.知识点二 二分法的步骤给定精确度ε,用二分法求函数f(x )零点近似值的步骤如下: (1)确定区间[]a b ,,验证f (a )•f (b )﹤0,给定精确度ε; (2)求区间(a ,b )的中点c; (3)计算f (c );①若f (c )=0,则c 就是函数的零点;②若f (a )•f (c )﹤0,则令b=c (此时零点0x ∈(a ,c )); ③若f (c )•f (b )﹤0,则令a=c (此时零点0x ∈(c ,b )).(4)判断是否达到精确度ε,即若|a-b ︱﹤ε,则得到零点近似值a (或b );否则重复(2)—(4).考点一 用二分法判断根的存在区间例1方程322360x x x -+-=在区间[]2,4-上的根必定在( )A .[]2,1-上B .5,42⎡⎤⎢⎥⎣⎦上C .71,4⎡⎤⎢⎥⎣⎦上D .75,42⎡⎤⎢⎥⎣⎦上解析:设32()236f x x x x =-+-, 则(2)88660,(4)64321260f f -=----<=-+->,因为2412-+=且(1)12360f =-+-<,所以函数()f x 在[]1,4上必有零点。
第3章函数近似方法(习题及答案)§3.1插值法【3.1.1】已知sin()x 在030,45,60的值分别为1/2,分别用一次插值和二次插值求0sin(50)近似值。
【3.1.2】误差函数的数据表:x 0.460.470.480.49…f(x)0.48465550.49374520.50274980.5116683…利用二次插值计算:(1)(0.472)f ;(2)()0.5,?f x x ==【3.1.3】【3.1.4】已知列表函数x -101y-15-5-3给出二次插值函数【解】0(0)(1)1()(1)(10)(11)2x x l x x x --==-----;1(1)(1)()(1)(1)(01)(01)x x l x x x +-==--++-2(1)(0)1()(1)(11)(10)2x x l x x x +-==++-2153()(1)5(1)(1)(1)22L x x x x x x x =--+-+--【3.1.5】已知,3)9(,2)4(==f f 用线性插值计算)5(f ,并估计误差。
【解】取插值节点014, 9x x ==,两个插值基函数分别为)9(51)(1010--=--=x x x x x x l )4(51)(0101-=--=x x x x x x l 故有565)4(53)9(52)()()(11001+=-+--=+=x x x y x l y x l x L 2.25655)5()5(1=+=»L f 误差为)(2)95)(45(!2)()5(2x x f f R ¢¢-=--¢¢=【3.1.6】已知(1)2,(1)1,(2)1f f f -===,求()f x 的二次拉格郎日插值多项式【解】22(1)(2)(1)(2)(1)(1)()21(11)(12)(11)(12)(21)(21)1(38)6x x x x x x L x x x --+-+-=++----+-+-=-+【3.1.7】求经过(0,1),(1,2),(2,3)A B C 三点的二次拉格郎日插值多项式【解】22(1)(2)(0)(2)(0)(1)()123(01)(02)(10)(12)(20)(21)1(343)2x x x x x x L x x x ------=++------=-+【3.1.8】编写拉格朗日三点插值程序,绘出)cos(x y =在[p ,0]区间的插值曲线,将[p ,0]区间8等份(9个插值点),由插值函数取25个点绘出插值曲线。
方程的近似解方程是数学中最基本的概念之一,它们用于描述一种非常复杂的关系。
d复杂的关系,往往很难精确地表达,这时,我们就需要寻求方程的近似解。
近似解是指可以精确拟合一个方程的数值解,但它可以通过求取一些近似值来获得更好的逼近精度,这也是近似解的重要意义所在。
近似解的计算可以用三种不同的方法:(1)有理函数法有理函数法是指用一个多项式表示方程的变量,这样可以通过多项式来计算方程的近似解。
例如,用如下有理函数表示y=f(x):y=ax^2+bx+c可以使用拟合的参数a,b,c求出方程的近似解。
(2)分段函数法分段函数法是指在每一段函数内,我们用不同的多项式表达式来描述函数。
这样,便可以用拟合参数a,b,c等来计算函数的近似解。
例如:y=f(x),其中x的取值范围为[0,1]。
我们可以分段,计算方程的近似解:当x取值为[0,0.3]时,可以用多项式y=a*x^2+b*x+c来表示,得出参数a,b,c。
当x取值为[0.3,1]时,可以用多项式y=d*x^3+e*x^2+fx+g来表示,得出参数d,e,f,g。
(3)样条函数法样条函数法指在一段有限范围内,使用多项式表示函数,但对不同段使用不同的多项式表达式。
例如:y=f(x),其中x的取值范围为[0,1],我们可以分段,利用拟合的参数a,b,c求出方程的近似解:当x取值为[0,0.3]时,可以用多项式y=a*x^2+b*x+c来表示,得出参数a,b,c。
当x取值为[0.3,0.7]时,可以用样条函数表示,得出参数d,e,f。
当x取值为[0.7,1]时,可以用多项式y=g*x^3+h*x^2+ix+j来表示,得出参数g,h,i,j。
总的来说,方程的近似解是一种简单、实用的计算方法,它能够得到精确的解决方案,从而节省大量的时间和精力。
由于它的实用性,把它作为一种积极的解决方案在实际应用中受到广泛的认可和应用,从而发挥出它的重要作用。
以上就是关于方程的近似解的介绍,此外,方程的近似解还可以用于计算复杂方程的精确解,这一点也得到了大量的应用。
§2.4.2 求函数的零点近似解的一种计算方法——二分法
教学目标:
知识与技能:通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法:能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.
情感、态度、价值观:体会数学逼近过程,感受精确与近似的相对统一.
教学重点、难点:
重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
教学程序与环节设计:
由二分查找及高次多项式方程的求问题引入.
体会函数零点的意义,明确二分法的适用范围.
初步应用二分法解
.二分法为什么可以逼近零点的再分析;
.追寻阿贝尔和伽罗瓦.。