半导体二极管及其应用电路
- 格式:ppt
- 大小:937.50 KB
- 文档页数:60
发光二极管电路发光二极管(LED)是一种半导体器件,具有高效、节能、寿命长等优点,因此在现代电子技术中得到了广泛应用。
本文将介绍发光二极管电路的基本原理、常见电路和应用。
一、基本原理发光二极管是一种具有单向导电性的半导体器件,其结构类似于普通二极管,但在PN结上加入了特殊的材料,使其能够发出光。
当LED正向偏置时,电子从N区向P区流动,与空穴复合时会释放出能量,这些能量以光的形式发射出来,形成发光现象。
二、常见电路1.单个LED电路单个LED电路是最简单的LED电路,只需要将LED连接到电源上即可。
但是,由于LED的电压和电流都比较低,需要使用限流电阻来保护LED,防止过流过压损坏LED。
2.串联LED电路串联LED电路是将多个LED连接在一起,形成串联电路。
由于LED的电压是固定的,因此需要根据串联LED的数量来选择合适的电源电压。
同时,为了保护每个LED,需要在每个LED之间加上限流电阻,以保证电流均匀分配。
3.并联LED电路并联LED电路是将多个LED连接在一起,形成并联电路。
由于LED的电流是固定的,因此需要根据并联LED的数量来选择合适的电源电流。
同时,为了保护每个LED,需要在每个LED之间加上限压电阻,以保证电压均匀分配。
三、应用1.照明LED照明是目前最为广泛的LED应用之一。
由于LED具有高效、节能、寿命长等优点,因此被广泛应用于室内照明、路灯、汽车照明等领域。
2.显示LED显示是另一个重要的LED应用领域。
由于LED具有高亮度、高对比度、高刷新率等优点,因此被广泛应用于数码管、点阵屏、大屏幕等显示设备中。
3.信号指示LED信号指示是LED应用的另一个重要领域。
由于LED具有高亮度、寿命长等优点,因此被广泛应用于电子产品中的指示灯、警示灯等。
发光二极管电路是现代电子技术中不可或缺的一部分,其应用范围广泛,未来还将有更多的应用领域。
第1章 半导体二极管及其应用试确定图(a )、(b )所示电路中二极管D 是处于正偏还是反偏状态,并计算A 、B 、C 、D 各点的电位。
设二极管的正向导通压降V D(on) =。
解:如图E1.1所示,断开二极管,利用电位计算的方法,计算二极管开始工作前的外加电压,将电路中的二极管用恒压降模型等效,有(a )V D1'=(12-0)V =12V >0.7V ,D 1正偏导通,)7.02.22.28.17.012(A +⨯+-=VV B =V A -V D(on))V =6. 215V(b )V D2'=(0-12)V =-12V <0.7V ,D 2反偏截止,有V C =12V ,V D =0V二极管电路如图所示,设二极管的正向导通压降V D(on) =,试确定各电路中二极管D 的工作状态,并计算电路的输出电压V O 。
解:如图E1.2所示,将电路中连接的二极管开路,计算二极管的端电压,有 (a )V D1'=[-9-(-12)]V =3V >0.7V ,D 1正偏导通V O1(b )V D2'=[-3-(-29)]V =1.5V >0.7V ,D 2正偏导通V O2图E1.2(c)V D3'=9V>0.7V,V D4'=[9-(-6)]V=15V>0.7V,V D4'>V D3',D4首先导通。
D4导通后,V D3''=(0.7-6)V=-5.3V<,D3反偏截止,V O3。
二极管电路如图所示,设二极管是理想的,输入信号v i=10sinωt V,试画出输出信号v O的波形。
图E1.3解:如图E1.3所示电路,二极管的工作状态取决于电路中的输入信号v i的变化。
(a)当v i<0时,D1反偏截止,v O1=0;当v i>0时,D1正偏导通,v O1=v i。
(b)当v i<0时,D2反偏截止,v O2=v i;当v i>0时,D2正偏导通,v O2=0。
(c)当v i<0时,D3正偏导通,v O3=v i;当v i>0时,D3反偏截止,v O3=0。
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
发光二极管电路发光二极管是一种半导体器件,具有单向导电性和较高的光电转换效率。
在电路中,发光二极管常用于指示灯、数字显示、光电传感器等领域。
本文将介绍发光二极管电路的基本原理、常见接线方式和应用场景。
一、基本原理发光二极管的基本结构是由两种半导体材料P型和N型半导体材料组成。
在这种结构中,P型半导体中的空穴与N型半导体中的自由电子结合,形成PN结。
当PN结被正向偏置时,电流流过发光二极管,电子和空穴在PN结中复合,释放出能量,产生光辐射;反向偏置时,电流很小,不会产生光辐射。
二、常见接线方式单个发光二极管电路是最简单的电路,可以用于实现指示灯等基本功能。
如图所示,通过正向偏置PN结,使电流流过发光二极管,产生光辐射。
在电路中,发光二极管的正极连接电源的正极,负极连接电源的负极。
2.串联发光二极管电路串联发光二极管电路将多个发光二极管依次连接起来,形成电路。
如图所示,多个发光二极管的正极依次连接起来,负极也依次连接起来。
在电路中,发光二极管的电流相同,但电压会被分配到每个发光二极管上。
3.并联发光二极管电路并联发光二极管电路将多个发光二极管并联起来,形成电路。
如图所示,多个发光二极管的正极连接在一起,负极也连接在一起。
在电路中,发光二极管的电压相同,但电流会分配到每个发光二极管上。
三、应用场景发光二极管广泛应用于指示灯、数字显示、光电传感器等领域。
其中,指示灯是最常见的应用场景。
例如,电子产品中的电源指示灯、充电指示灯、信号指示灯等都是使用发光二极管实现的。
数字显示也是发光二极管的典型应用之一,例如计算器、时钟等。
此外,发光二极管还可以作为光电传感器使用,可以检测光线强度、测量距离等。
发光二极管电路是一种基本的电路,具有简单、可靠、高效的特点,广泛应用于电子产品、自动化设备等领域。
在实际应用中,需要根据具体情况选择合适的发光二极管类型和接线方式,以达到最佳的效果。
二极管工作原理及应用一、引言二极管是一种最基本的电子元件,广泛应用于电子电路中。
本文将详细介绍二极管的工作原理及其在电子领域的应用。
二、二极管的工作原理二极管是一种半导体器件,由P型半导体和N型半导体组成。
P型半导体中的杂质含有三价元素,如硼;N型半导体中的杂质含有五价元素,如磷。
当P型半导体和N型半导体通过PN结连接在一起时,形成了二极管。
二极管的工作原理基于PN结的特性。
PN结中,P型半导体中的空穴和N型半导体中的自由电子会发生扩散运动,形成一个电子云。
在扩散过程中,P型半导体中的空穴会向N型半导体扩散,而N型半导体中的自由电子会向P型半导体扩散。
这样,在PN结附近形成了一个空间电荷区域,称为耗尽层。
当二极管处于正向偏置时,即正极连接到P型半导体,负极连接到N型半导体,空穴和自由电子会继续扩散,耗尽层会变窄。
在这种情况下,二极管呈现出低电阻的特性,电流可以流过。
当二极管处于反向偏置时,即正极连接到N型半导体,负极连接到P型半导体,耗尽层会变宽。
在这种情况下,二极管呈现出高电阻的特性,电流无法流过。
这种特性使得二极管可以用作电路中的开关。
三、二极管的应用1. 整流器二极管的最常见应用之一是作为整流器。
在交流电路中,使用二极管将交流信号转换为直流信号。
当交流电压为正向偏置时,二极管导通,电流可以流过;当交流电压为反向偏置时,二极管截止,电流无法流过。
通过这种方式,可以将交流电信号转换为只有正半周或负半周的直流电信号。
2. 信号调制和解调二极管还可以用于信号调制和解调。
在调制过程中,二极管可以将音频信号或视频信号转换为调制信号,以便在无线电通信中传输。
在解调过程中,二极管可以将调制信号还原为原始信号。
3. 电压稳定器二极管可以用作电压稳定器,通过将二极管与电阻和电容器组合在一起,可以稳定输出电压。
这种电路被称为稳压二极管电路,可以用于保护其他电子元件免受电压波动的影响。
4. 光电二极管光电二极管是一种特殊的二极管,可以将光信号转换为电信号。
二极管的原理与应用1. 二极管的基本原理•二极管是一种最简单的半导体器件,它由一个正偏导电的P型半导体材料和一个负偏导电的N型半导体材料组成。
•P型半导体材料中的空穴是主要载流子,N型半导体材料中的电子是主要载流子。
•当P端施加正电压,N端施加负电压时,形成正向偏置,二极管呈现导通状态,电流通过。
•当P端施加负电压,N端施加正电压时,形成反向偏置,二极管呈现截止状态,电流不通过。
2. 二极管的常见应用1.整流器•在电路中,二极管可以作为整流器使用,将交流电转换为直流电。
•顺向偏置时,二极管处于导通状态,只有正半周通过,负半周被截断,实现了电流的单向传输。
•这种特性使得二极管常用于电源电路和电子设备中,用于转换电源的交流电为所需的直流电。
2.信号检测器•二极管的非线性特性使其可用于信号检测器,用于检测和修正模拟或数字信号。
•当信号的幅度超过二极管的正向电压时,二极管将充当一个开关,使得信号通过。
•这种检测特性使得二极管在无线电接收器、调制解调器和通信系统中得到广泛应用。
3.发光二极管(LED)•发光二极管是一种能够将电能转换为可见光的电子器件,通过电压施加到PN结上,使得电子与空穴复合并发射光子。
•LED可以用于指示灯、数码显示、照明等方面,具有低功耗、高亮度、长寿命的优点。
•随着发光材料和封装技术的不断发展,LED的应用范围不断扩大,已广泛用于电子产品、户外显示屏和照明领域。
4.齐纳二极管•齐纳二极管是一种具有特殊材料的二极管,可以在反向偏置时发生电流穿越现象,被用于高频电路和微波电路中。
•齐纳二极管的特殊材料在反向偏置时形成了一个很小的空穴层,使得电流能够以非常低的电压通过。
•这使得齐纳二极管被广泛应用于射频识别(RFID)、毫米波通信和雷达系统等领域。
3. 小结•二极管是一种基本的半导体器件,根据正向或反向偏置的不同状态,可以实现电流的导通或截止。
•二极管的原理可以应用于整流、信号检测、LED发光和齐纳效应等领域。
电路基础原理二极管的特性与应用场景电路基础原理:二极管的特性与应用场景电子技术的发展,离不开电路基础原理的研究与应用。
而在电路中,二极管是一种重要的电子元件。
本文将介绍二极管的特性与应用场景。
一、二极管的特性二极管是一种由P型半导体和N型半导体组成的电子元件。
它具有导通和截断两种状态,其中导通状态下正向电流流过二极管,而截断状态下二极管不导电。
其特性之一是整流作用。
当外部施加的电压为正向电压时,即P端电压高于N端电压,二极管会处于导通状态,电流可以通过。
而当施加的电压为反向电压时,即P端电压低于N端电压,二极管会处于截断状态,不导电。
这种整流性质使得二极管在电路中被广泛应用于将交流信号转为直流信号的整流电路。
二极管的第二个特性是电压降。
在导通状态下,二极管会有一个固定的正向电压降,通常为0.6V至0.7V。
这个电压降是由于PN结处的能量差引起的。
因此,当我们在电路中使用二极管时,需要考虑到这个电压降,以确保电路工作正常。
此外,二极管还具有快速响应的特性。
当施加的电压发生变化时,二极管能够在极短的时间内响应,并改变导通状态。
这种快速开关的特性使二极管在高频电路中被广泛使用。
二、二极管的应用场景1.整流电路如上所述,二极管具有整流作用,可以将交流信号转换为直流信号。
这在电子设备中应用广泛,例如电视机、电脑电源等。
通过使用二极管与其他元件组成的整流电路,可以将交流电源转换为稳定的直流电源,以供电子设备使用。
2.保护电路二极管还常被用于保护电路,例如过压保护和反向电流保护。
在某些电路中,当电压超过一定范围时,会损坏电子元件或设备。
为了防止这种情况的发生,可以通过将二极管连接在电路中,起到保护的作用。
当电压超过安全范围时,二极管会截断,将过高的电压导向地或其他安全路径,从而保护电路。
3.信号调制电路在通信系统中,二极管也被广泛应用于信号调制电路。
通过使用二极管,可以实现模拟信号的调制与解调,使得信息能够高效地传输。
第一章半导体二极管及其电路【教学要求】本章主要介绍了半导体的基础知识及半导体器件的核心环节—PN结。
PN结具有单向导电特性、击穿特性和电容特性。
介绍了半导体二极管的物理结构、工作原理、特性曲线和主要参数。
理想情况下,二极管相当于开关闭合与断开。
介绍了二极管的简单应用电路,包括整流、限幅电路等。
同时还介绍了稳压二极管、发光二极管、光电二极管、变容二极管。
教学内容、要求和重点见如表1.1。
表1.1 教学内容、要求和重点【例题分析与解答】【例题1-1】二极管电路及其输入波形如图1-1所示,设U im>U R,,二极管为理想,试分析电路输出电压,并画出其波形。
解:求解这类电路的基本思路是确定二极管D在信号作用下所处的状态,即根据理想二极管单向导电的特性及具体构成的电路,可获得输出U o的波形。
本电路具体分析如下:当U i增大至U R时,二极管D导通,输出U o被U R嵌位,U o=U R,其他情况下,U o=U i。
这类电路又称为限幅电路。
图1-1【例题1-2】二极管双向限幅电路如图1-2 (a)所示,若输入电压U i=7sinωt (V),试分析并画出电路输出电压的波形。
(设二极管的U on为0.7V,忽略二极管内阻)。
图1-2解:用恒压降等效模型代替实际二极管,等效电路如图1-2(b)所示,当U i<-3.7V时,D2反偏截止,D1正偏导通,输出电压被钳制在-3.7V;当-3.7V<U i <3.7V时,D1、D2均反偏截止,此时R中无电流,所以U o=U i;当3.7V<U i时,D1反偏截止,D2正偏导通,输出电压被钳制在3.7V。
综合上述分析,可画出的波形如图1-20(c)所示,输出电压的幅度被限制在正负3.7V 之间。
【例题1-3】电路如图1-3(a),二极管为理想,当B点输入幅度为±3V、频率为1kH Z的方波,A点输入幅度为3V、频率为100kH Z的正弦波时,如图1-3(b),试画出Uo点波形。
各种二极管的用途二极管是一种由半导体材料制成的电子器件,由于其特殊的电学特性,被广泛应用于电子电路中。
下面将介绍一些常见的二极管用途。
1.整流:最常见的二极管应用之一是整流。
在交流电源中,二极管可以将来自电源的交流信号转换为单向的直流信号。
这种整流作用通常用于电源适配器、电池充电器等需要直流电源供应的设备中。
2. 保护:二极管可以用作电路中的保护器件,防止反向电压或过大电压对其他器件的损坏。
例如,将二极管连接在继电器、开关等器件的线圈或电磁线圈的两端,可以保护其不受到反电动势(Back EMF)的损坏。
3.发光二极管(LED):发光二极管是一种可以将电能转换为光能的二极管。
由于其高效、低能耗、长寿命和各种颜色的可选择性,LED广泛应用于照明、显示屏、指示灯等各种领域。
4.电压调节器:通过组合多个二极管和电阻器,可以构建电压稳定器电路,用于调整输入电压到所需的输出电压水平。
这种电压调节器可以用于电源、电动车电池管理系统等需要稳定电压供应的应用中。
5.开关:二极管的非线性特性使其可以用作开关。
当二极管处于正向偏置时,它可以允许电流通过;而在反向偏置时,它将堵塞电流。
这种开关特性可以用于时序电路、电子开关等应用中。
6.频率调谐器:二极管的电容特性可以用于构建频率调谐电路。
在正向电压下,二极管的电容值较大,电路共振频率较低;而在反向电压下,电容值较小,共振频率较高。
这种特性可以在收音机、电视等通信设备中用于调谐频率。
7.压限器:二极管的压限器功能可以将电路中的电压限制在一定范围之内,防止过电压损坏其他电子器件。
在过电压情况下,二极管将进入击穿状态,形成导通通路,将过高的电压引导到地或其他安全路径上。
8.电流定向器:二极管的电流只允许单向流动,因此可以将其用作电流定向器。
通过与其他元件结合,可以构建整流电路、保护电路、检波电路等。
9.脉冲波形修整器:当二极管处于反向偏置状态时,其电压变化响应较慢,可以用于修整脉冲波形,去除波峰和波谷之间的噪声。
二极管工作原理及应用一、工作原理二极管是一种电子器件,由P型半导体和N型半导体组成。
P型半导体中的杂质含有三价原子,N型半导体中的杂质含有五价原子。
当这两种半导体材料通过特殊的工艺制作成二极管时,P型半导体的三价原子会与N型半导体的五价原子结合,形成PN结。
在PN结的两侧会形成电场,这个电场将阻止电子从N型区域流向P型区域,但允许电子从P型区域流向N型区域。
当二极管处于正向偏置时,即P型区域连接正电源,N型区域连接负电源,电子能够克服电场的阻力,从P型区域流向N型区域。
这时,二极管呈现出低电阻状态,电流可以流过二极管。
而当二极管处于反向偏置时,即P型区域连接负电源,N型区域连接正电源,电子受到电场的阻力,无法从P型区域流向N型区域。
这时,二极管呈现出高电阻状态,电流无法流过二极管。
二、应用领域1.整流器:二极管的最主要应用是作为整流器。
在交流电源中,二极管可以将交流信号转换为直流信号。
当交流电源的正半周时,二极管处于正向偏置,电流可以通过;而当交流电源的负半周时,二极管处于反向偏置,电流无法通过。
通过这种方式,二极管可以将交流信号的负半周去除,从而获得稳定的直流电。
2.信号检测:二极管还可以用于信号检测。
当二极管连接到一个交流信号源上时,只有当信号的幅值超过二极管的正向压降时,才能通过二极管。
这样,可以将信号的峰值进行检测,用于后续的放大、滤波等处理。
3.电压调节:二极管可以用于电压调节。
通过将二极管连接到一个电路中,可以根据二极管的正向压降来稳定电路的工作电压。
例如,Zener二极管可以在反向击穿时提供稳定的电压输出,用于电源稳压电路。
4.光电器件:二极管还可以用于光电器件。
在光电二极管中,当光照射到二极管上时,会产生电流。
这种特性可以用于光电传感器、光电开关等应用。
5.电子显示:LED(Light Emitting Diode)是一种特殊的二极管,当电流通过时,会发出可见光。
LED广泛应用于指示灯、数码管、显示屏等电子显示领域。
1.半导体二极管及其电路分析【重点】半导体特性、杂质半导体、PN结及其单向导电特性。
【难点】PN结形成及其单向导电特性。
1.1 半导体的基本知识1.1.1 半导体的基本知识(1)导电能力对温度的反应非常灵敏。
(2)导电能力受光照非常敏感。
(3)在纯净的半导体中掺入微量的杂质(指其他元素),它的导电能力会大大增强。
1.1.2 本征半导体纯净的半导体称为本征半导体,常用的本征半导体是硅和锗二晶体。
半导体有两种载流子,自由电子和空穴,如果从本征半导体引出两个电极并接上电源,此时带负电的自由电子指向电源正极作定向运动,形成电子电流,带正电的空穴将向电源负极作定向运动,形成空穴电流,而在外电路中的电流为电子电流和空穴电流之和。
1.1.3 杂质半导体1.N型半导体在硅晶体中掺入微量5价元素,如磷(或者砷、锑等),如图所示。
这种半导体导电主要靠电子,所以称为电子型半导体,简称N型半导本。
在N型半导体中,自由电子是多数载流子,而空穴2.P型半导体如果在硅晶体中,掺入少量的3价元素硼(铟、钾等),如图1-5所示。
这种半导体的导电主要靠空穴,因此称为空穴型半导体,有称P型半导体。
P型半导体的空穴是多数载流子,电子是少数载流子。
结论:N型半导体、P型半导体中的多子都是掺入杂质而造成的,尽管杂质含量很微,但它们对半导体的导电能力却有很大影响。
而它们的少数载流子是热运动产生的,尽管数量很少,但对温度非常敏感,对半导体的性能有很大影响。
1.1.4 PN结及其单向导电特性1.PN结的形成结论:在无外电场或其它因素激发时,PN结处于平衡状态,没有电流通过,空间电荷区是恒定的。
另外,在这个区域内,多子已扩散到对方并复合掉了,好像耗尽了一样,因此,空间电荷区又叫做耗尽层。
2.PN结单向导电性(1)正向特性当PN结外加正向电压(简称正偏),电源正极接P,负极接N,PN结处于导通状态,导电时电阻很小。
(2)反向特性当外加反向电压(简称反偏),电源正极接N,负极接P,PN结处于截止状态结论:PN结正偏时电路中有较大电流流过,呈现低电阻,PN结导通;PN结反偏时电路中电流很小,呈现高电阻,PN结截止,可见PN结具有单向导电性。
一、二极管的电容效应二极管具有电容效应。
它的电容包括势垒电容C B和扩散电容C D。
1.势垒电容C B(C r)前面已经讲过,PN结内缺少导电的载流子,其电导率很低,相当于介质;而PN结两侧的P区、N区的电导率高,相当于金属导体。
从这一结构来看,PN结等效于一个电容器。
事实上,当PN结两端加正向电压时,PN结变窄,结中空间电荷量减少,相当于电容"放电",当PN结两端加反向电压时,PN结变宽,结中空间电荷量增多,相当于电容"充电"。
这种现象可以用一个电容来模拟,称为势垒电容。
势垒电容与普通电容不同之处,在于它的电容量并非常数,而是与外加电压有关。
当外加反向电压增大时,势垒电容减小;反向电压减小时,势垒电容增大。
目前广泛应用的变容二极管,就是利用PN结电容随外加电压变化的特性制成的。
2.扩散电容C DPN结正向偏置时,N区的电子向P区扩散,在P区形成一定的非平衡载流子的浓度分布,即靠近PN结一侧浓度高,远离PN结的一侧浓度低。
显然,在P区积累了电子,即存贮了一定数量的负电荷;同样,在N区也积累了空穴,即存贮了一定数即正电荷。
当正向电压加大时,扩散增强,这时由N区扩散到P区的电子数和由P区扩散到N区的空穴数将增多,致使在两个区域内形成了电荷堆积,相当于电容器的充电。
相反,当正向电压减小时,扩散减弱,即由N区扩散到P区的电子数和由P区扩散到N区的空穴数减少,造成两个区域内电荷的减少,、这相当于电容器放电。
因此,可以用一个电容来模拟,称为扩散电容。
总之,二极管呈现出两种电容,它的总电容C j相当于两者的并联,即C j=C B + C D。
二极管正向偏置时,扩散电容远大于势垒电容C j≈C D;而反向偏置时,扩散电容可以忽略,势垒电容起主要作用,C j≈C B。
二、二极管的等效电路二极管是一个非线性器件,对于非线性电路的分析与计算是比较复杂的。
为了使电路的分析简化,可以用线性元件组成的电路来模拟二极管。
二极管的特性与应用几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。
二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,发光二极管正向管压降为随不同发光颜色而不同。
二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。
二极管的应用利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。
2、开关元件二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。
利用二极管的开关特性,可以组成各种逻辑电路。
3、限幅元件这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。
4、继流二极管在开关电源的电感中和继电器等感性负载中起继流作用。
5、检波二极管在收音机中起检波作用。
使用于电视机的高频头中。
7、显示元件用于VCD、DVD、计算器等显示器上。
二极管的工作原理晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。
当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
二极管的类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si又可分为点接触型二极管、面接触型二极管及平面型二极管。
点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。