电工学半导体二极管及其应用电路
- 格式:ppt
- 大小:1.08 MB
- 文档页数:21
二极管电路及其应用实验报告二极管是一种常见的电子元件,具有只允许电流单向流动的特性。
它是由半导体材料构成的,通常由硅(Si)或者硒化物(GaAs)制成。
二极管的应用非常广泛,可以用于整流、放大、开关等电路中。
本文将以二极管电路及其应用为主题,介绍二极管的工作原理、实验步骤以及相关应用。
一、二极管的工作原理二极管是由P型半导体和N型半导体组成的。
P型半导体中的杂质掺入使其具有正电荷,称为P区;N型半导体中的杂质掺入使其具有负电荷,称为N区。
当将P区和N区连接在一起时,形成了一个PN结。
在PN结中,由于P区和N区的杂质浓度不同,使得在结附近形成了电场。
当外加电压为正向偏置时,即P区接在正电压上,N区接在负电压上,电场将阻止电子从N区向P区移动。
而当外加电压为反向偏置时,即P区接在负电压上,N区接在正电压上,电子可以从N区向P区移动。
因此,二极管只允许电流在正向偏置下单向流动。
二、二极管实验步骤1. 准备实验所需材料:二极管、直流电源、电阻、导线等。
2. 搭建二极管电路:将二极管连接在电路中,注意极性,即将P极连接在正电压端,N极连接在负电压端。
可以使用导线连接电源和电阻,形成一个简单的电路。
3. 调整电压:根据二极管的额定电压和电流,调整电源的输出电压,使得二极管正常工作。
4. 测量电流和电压:使用万用表等测量仪器,测量二极管两端的电压和电流值。
5. 观察实验现象:根据测量结果,观察二极管的导通和截止情况,以及电流和电压的关系。
三、二极管的应用1. 整流器:二极管具有只允许电流单向流动的特性,因此可以用于将交流信号转换为直流信号的整流电路中。
在整流电路中,二极管起到了只允许正半周或负半周通过的作用,实现了信号的单向传输。
2. 信号检波器:二极管的正向偏置电压范围内,电流与电压之间呈线性关系。
利用这一特性,可以将高频信号转换为直流信号,实现信号的检波功能。
3. 放大器:在放大电路中,二极管可以作为信号放大器的关键元件之一。
半导体二极管及其应用电路1.半导体的特性自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。
半导体导电能力介于导体和绝缘体之间。
它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。
利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。
2.半导体的共价键结构在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。
每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。
这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。
当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。
在本征半导体中,电子与空穴的数量总是相等的。
我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。
由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。
为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。
由此可见, 本征半导体中存在两种载流子:电子和空穴。
而金属导体中只有一种载流子——电子。
本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。