当前位置:文档之家› 均值定理专题归纳与训练

均值定理专题归纳与训练

均值定理专题归纳与训练
均值定理专题归纳与训练

均值不等式的应用

一.均值不等式

1.(1)若R b a ∈,,则ab b a 22

2

+ (2)若R b a ∈,,则2

2

2b a ab +≤

(当且仅当b a =时取“=”) 2. (1)若*

,R b a ∈,则

ab b a ≥+2

(2)若*

,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”

) (3)若*

,R b a ∈,则2

2?

?

? ??+≤b a ab (当且仅当b a =时取“=”

) 3.若0x >,则12x x +

≥ (当且仅当1x =时取“=”

);若0x <,则1

2x x

+≤- (当且仅当1x =-时取“=”) ; 若0x

≠,则11122-2x x x x

x

x

+≥+≥+≤即或 (当且仅当b a =时取“=”

) 4.若0>ab ,则

2≥+a

b b a (当且仅当b a =时取“=”

)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2

)2(2

22b a b a +≤

+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所

谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.

应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1

x 技巧一:凑项 例2:已知5

4x <,求函数14245

y x x =-+-的最大值.

技巧二:凑系数 例3. 当时,求(82)y x x =-的最大值.

变式:设2

3

0<

技巧三: 分离 例4. 求2710

(1)1

x x y x x ++=

>-+的值域. 技巧四:换元 求2710

(1)1

x x y x x ++=

>-+的值域. 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a

f x x x

=+

的单调性。例5:求函数22

54

x y x +=

+的值域.

练习.1.求下列函数的最小值,并求取得最小值时,x 的值.

(1)231

,(0)x x y x x ++=

> (2)12,33

y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数(1)y x x =-的最大值.;3.2

03

x <<,求函数(23)y x x =-的最大值.

条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 .

变式:若44log log 2x y +=,求11

x y

+的最小值.并求x,y 的值

技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

2:已知0,0x y >>,且19

1x y

+=,求x y +的最小值。

变式:(1)若+

∈R y x ,且12=+y x ,求y

x

11+的最小值

( 2 ) 已知+

∈R y x b a ,,,且1=+y

b x a ,求y x +的最小值

技巧七、已知x ,y 为正实数,且x 2

+y 2

2

=1,求x 1+y 2 的最大值.

技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab 的最小值.

变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。 技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.

变式: 求函数152152()2

2

y x x x =-+-<<的最大值。

应用二:利用均值不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2

2

2

2. 正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

例6:已知a 、b 、c R +∈,且1a b c ++=。求证:1111118a b c ??????

---≥ ???????????

应用三:均值不等式与恒成立问题

例7:已知0,0x y >>且19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

应用四:均值定理在比较大小中的应用:

例8:若)2

l g (),lg (lg 21,lg lg ,1b

a R

b a Q b a P b a +=+=?=>>,

则R Q P ,,的大小关系是 .

均值不等式的应用

一.均值不等式

1.(1)若R b a ∈,,则ab b a 22

2

≥+ (2)若R b a ∈,,则2

2

2b a ab +≤(当且仅当b a =时取“=”)

2. (1)若*,R b a ∈,则ab b a ≥+2

(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)

(3)若*

,R b a ∈,则2

2??

?

??+≤b a ab (当且仅当b a =时取“=”

) 3.若0x >,则12x x +

≥ (当且仅当1x =时取“=”

);若0x <,则1

2x x

+≤- (当且仅当1x =-时取“=”) ; 若0x ≠,则11122-2x x x x

x

x

+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a

b b

a (当且仅当

b a =时取“=”)

若0ab ≠,则

22-2a b a b a b

b a b a b a

+≥+≥+≤即或 (当且仅当b a =时取“=”

) 5.若R b a ∈,,则2

)2(2

22b a b a +≤

+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,

可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值

例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1

x

解:(1)y =3x 2+12x 2 ≥23x 2·

1

2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x ≥2x ·1x =2;当x <0时, y =x +1x = -(- x -1

x )

≤-2x ·1

x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项

例2:已知5

4x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45

x x -- 不是常数,所以对42x -要进行

拆、凑项, 5,5404

x x <∴-> ,11425434554y x x x x ?

?∴=-+

=--++ ?--??

231≤-+= 当且仅当1

5454x x

-=

-,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

例3. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设2

3

0<

解:∵230<-x ∴2922322)23(22)23(42

=??

? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即??

?

??∈=

23,043x 时等号成立。 技巧三: 分离 例4. 求2710

(1)1

x x y x x ++=

>-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

21)591

y x x ≥+?

+=+((当且仅当x =1时取“=”号)。 技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t=时,4

259y t t

≥?+=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利

用不等式求最值。即化为()(0,0)()

A

y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运

用均值不等式来求最值。

技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a

f x x x =+

的单调性。例5:求函数22

54

x y x +=

+的值域。

解:令2

4(2)x t t +=≥,则2254

x y x +=

+221

1

4(2)4x t t t x =++

=+≥+

因10,1t t t >?=,但1

t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故5

2y ≥。

所以,所求函数的值域为5,2??

+∞????

练习.求下列函数的最小值,并求取得最小值时,x 的值.

(1)231

,(0)x x y x x ++=

> (2)12,33

y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x =-的最大值.;3.2

03

x <<,求函数(23)y x x =-的最大值. 条件求最值

1.若实数满足2=+b a ,则b a 33+的最小值是 .

分析:“和”到“积”是一个缩小的过程,而且b a 33?定值,因此考虑利用均值定理求最小值, 解: b a 33和都是正数,b a 33+≥632332==?+b a b a

当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6. 变式:若44log log 2x y +=,求

11

x y

+的最小值.并求x,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

2:已知0,0x y >>,且19

1x y

+=,求x y +的最小值。

错解..

: 0,0x y >>,且191x y +=,∴()199

2212x y x y xy x y xy ??+=++≥= ???

故 ()min 12x y += 。 错因:解法中两次连用均值不等式,在2x y xy +≥等号成立条件是x y =,在1992x

y

xy

+≥等号成立

条件是

19

x y

=即9y x =,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:190,0,1x y x

y

>>+= ,()1991061016y x x y x y x y x y

??

∴+=++=++≥+= ???

当且仅当

9y x

x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

变式:(1)若+

∈R y x ,且12=+y x ,求y

x

11+的最小值

( 2 ) 已知+

∈R y x b a ,,,且1=+y

b x a ,求y x +的最小值

技巧七、已知x ,y 为正实数,且x 2

+y 2

2

=1,求x 1+y 2 的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 2

2 。

同时还应化简1+y 2 中y 2前面的系数为 1

2 , x 1+y 2 =x 2·1+y 2

2 = 2

x ·

12 +y 2

2 下面将x ,

12 +y 2

2 分别看成两个因式:

x ·

12 +y 2

2

≤x 2

+(

12 +y 22 )22 =x 2+y 2

2 +12 2 =3

4

即x 1+y 2 = 2 ·x

12 +y 22 ≤ 3

4

2 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab 的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15

令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t ≥2t ·

16

t =8 ∴ ab ≤18 ∴ y ≥ 1

18 当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab 令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2 ∴ab ≤3 2 ,ab ≤18,∴y ≥1

18

点评:①本题考查不等式

ab

b

a ≥+2

)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的

关系,由此想到不等式

ab

b

a ≥+2

)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.

变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。 技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.

解法一:若利用算术平均与平方平均之间的不等关系,a +b 2 ≤a 2+b 2

2

,本题很简单

3x +2y ≤ 2

(3x )2+(2y )2 = 2

3x +2y =2 5

解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形

式,再向“和为定值”条件靠拢。

W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20 ∴ W ≤20 =2 5

变式: 求函数152152()2

2

y x x x =-+-<<的最大值。

解析:注意到21x -与52x -的和为定值。

22(2152)42(21)(52)4(21)(52)8y x x x x x x =-+-=+--≤+-+-=

又0y >,所以022y <≤当且仅当21x -=52x -,即3

2

x =时取等号。 故max 22y =。

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。 应用二:利用均值不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2

2

2

2. 正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

例6:已知a 、b 、c R +∈,且1a b c ++=。求证:1111118a b c ??????

---≥ ???????????

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又1121a b c bc a a a a

-+-==≥,可由此变形入手。 解: a 、b 、c R +

∈,1a b c ++=。∴

1121a b c bc a a a a -+-==≥

。同理121ac b b -≥,121ab

c c

-≥。上述三个不等式两边均为正,分别相乘,得

1112221118bc ac ab a b c a b c ??????---≥= ?????

??????

。当且仅当13a b c ===时取等号。 应用三:均值不等式与恒成立问题

例7:已知0,0x y >>且19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

解:令,0,0,

x y k x y +

=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞ 应用四:均值定理在比较大小中的应用:

例8:若)2

l g (),lg (lg 21,lg lg ,1b

a R

b a Q b a P b a +=+=?=>>,

则R Q P ,,的大小关系是 . 分析:∵1>>b a ∴0lg ,0lg >>b a 2

1

=Q (p b a b a =?>+lg lg )lg lg

Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R>Q>P 。

勾股定理专项练习题

150° 20m 30m 勾股定理专项练习 知识梳理: 1、勾股定理适用前提:直角三角形 2、勾股定理内容:a 2+b 2=c 2 (字母C 并不必然代表斜边) 3、勾股定理作用:已知直角三角形两边求第三边 数学思想: 1、数形结合思想 2、方程思想 一.填空题: 1. 已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为_______. 2.在Rt △ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则BC=_________. 3.已知:如图,在Rt △ABC 中,∠B=90°,D 、E 分别是 边AB 、AC 的中点,DE=4,AC=10,则AB=____________. 4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是_____m 。 5.已知两条线段的长为9cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形. 6.如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的 长为_______. 7.如图,所有的四边 形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形 的边和长为7cm,则正 方形A ,B ,C ,D 的面积之和为__ _cm 2 。 8.在一棵树的10米高 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 。 9.有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢 飞到另一棵树的树梢,至少飞了 米. 10.四边形ABCD 中,AD ⊥DC ,AD=8,DC=6,CB=24,AB=26.则四边形ABCD 的面积为____________. 11.如图是一个三级台阶, 它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是________. 二.选择题: 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2,c=3 B 、a=7,b=24,c=25 C 、a=6,b=8,c=10 D 、a=3,b=4,c=5 3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶169 4.如果Rt △的两直角边长分别为n 2 -1,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、n 2 +1 5.已知Rt △ABC 中,∠C=90°,a+b=14,c=10,则Rt △ABC 的面积是( ) A 、24 B 、36 C 、48 D 、60 6.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 7.三角形的三边长满足(a+b )2=c 2 +2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 8.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草 皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元 9.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△AB E 的面积为( ) A 、6cm 2 A B E D C A E D B C A B C D 7cm A B C D 20 3 2A B A B E F D C 第9题图

数学中如何证明向量共面

数学中如何证明向量共面 共面向量定理是数学学科的基本定理之一,那它该怎么被证明呢?证明的过程是怎样的呢?下面就是给大家的证明向量共面内容,希望大家喜欢。 已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线 但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=? 写详细点怎么做谢谢了~明白后加分!!! 我假定你的O-A表示向量OA。 由O的任意性,取一个不在ABCD所在平面的O,这时若 OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。 (证明:设O在该平面上的投影为P,那么对平面上任何一点X,OX=OP+PX,然后取X=A、B、C、D代你给的关系式并比较OP分量即可。) 你给的右端向量都反向,所以2x+3y+4z=-1。 充分不必要条件。 如果有三点共线,则第四点一定与这三点共面,因为线和直线 外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。 而有四点共面,不一定就其中三点共线,比如四边形的四个顶 点共面,但这四个顶点中没有三个是共线的。 “三点共线”可以推出“四点共面”,但“四点共面”不能推 出“三点共线”。因此是充分不必要条件

任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积 (AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。 已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线 ,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=? 写详细点怎么做谢谢了我假定你的O-A表示向量OA。 由O的任意性,取一个不在ABCD所在平面的O,这时若 OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。 (证明:设O在该平面上的投影为P,那么对平面上任何一点X,OX=OP+PX,然后取X=A、B、C、D代你给的关系式并比较OP分量即可。) 你给的右端向量都反向,所以2x+3y+4z=-1。 4Xa-Yb+Yb-Zc+Zc-Xa=0 ∴Xa-Yb=-(Yb-Zc)-(Zc-Xa) 由共面判定定理知它们共面。 简单的说一个向量能够用另外两个向量表示,它们就共面。 1.若向量e1、e2、e3共面, (i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是 λe1+μe2-e3=0.

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

(完整版)勾股定理应用题专项练习(经典)

勾股定理应用题 1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架 2.5米长的 梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A.0.6米 B.0.7米 C.0.8米 D.0.9米 2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2 C.290米2 D.300米 2 3.有一个长为40cm ,宽为30cm 的长方形洞口,环卫工人想用一个圆盖盖住此洞口,那么 圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm 4.下列条件不能判断三角形是直角三角形的是 ( ) A.三个内角的比为3:4:5 B.三个内角的比为1:2:3 C.三边的比为3:4:5 D.三边的比为7:24:25 5.若三角形三边的平方比是下列各组数,则不是直角三角形的是( ) A. 1:1:2 B. 1:3:4 C. 9:16:25 D. 16:25:40 6.若三角形三边的长分别为6,8,10,则最短边上的高是( ) A.6 B.7 C.8 D.10 7.如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米 8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米, 其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长 是____米. 9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距 12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少 要飞_____米. 10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍. 11.若△ABC 的三边长分别是2,2,2===c b a ,则∠A =____,∠B =____,∠C =____. 12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长 是______,面积是_____. 13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB . C B 图1 B C 图4 A C 图3

(物理)物理动能与动能定理练习题20篇

(物理)物理动能与动能定理练习题20篇 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

勾股定理提高经典练习

勾股定理专题复习 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 举一反三 【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在中,,,.求:BC的长. 举一反三【变式1】如图,已知:,,于P.求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 【变式】在数轴上表示的点。

6、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。 举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形. 【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。请问FE与DE是否垂直?请说明。 类型一:勾股定理及其逆定理的基本用法 1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。 【变式1】等边三角形的边长为2,求它的面积。

动能和动能定理复习_专题训练

动能定理专题 题型1:弄清求变力做功的几种方法 等值法 1.如图所示,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。

微元法(不推荐,但希望同学们知道这种方法) 2.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为 ( ) A、 0J B、20πJ C 、10J D、20J. 平均力法 3.一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少? 动能定理求变力做功法 4.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长 L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

机械能守恒定律求变力做功法 5.如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。 题型2:弄清滑轮系统拉力做功的计算方法 图8 F1 F2 6.如图所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是( ) A.100J B.150J C.200J D.条件不足,无法确定 V0 S0 α P 图11 题型3:应用动能定理简解多过程题型。 7.如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P 为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

勾股定理及其逆定理专题练习

勾股定理及其逆定理专题练习 (一)几何法证明勾股定理. 1、如图所示, 90=∠=∠BCE ADE ,a CE AD ==,b BC DE ==,c BE AE ==,利用面积法证明勾股定理. (二)勾股定理的应用. 一、勾股定理的简单计算: 1、直角三角形的三边长为连续偶数,则这三个数分别为__________. 2、已知一个直角三角形的两边长分别为3和4,则第三边长是__________. 3、直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4、在△ABC 中,∠C=90°,AB =5,则2AB +2AC +2BC =_______. 二、勾股定理与实际问题: 1、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米. 2、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________m . 3、如图,从电线杆离地面6m 处向地面拉一条长10m 的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有__________m . b c c a a b D C A E B

4、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需___________米. 5、将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图).设筷子露在杯子外面的长为hcm ,则h 的取值范围是___________. 三、勾股定理与图形变换: 1、如图,已知ABC ?中, 5.22=∠B ,AB 的垂直平分线交BC 于D ,26=BD ,BC AE ⊥于E ,求AE 的长. 2、如图,将长方形ABCD 沿直线AB 折叠,使点C 落在点F 处,BF 交AD 于E ,48==AB AD ,,求BED ?的面积.

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

勾股定理专题训练

勾股定理专题训练 一、填空题 1.填空: (1)一个直角三角形的三边从小到大依次为x ,16,20,则x =_______; (2)在△ABC 中∠C =90°,AB =10,AC =6,则另一边BC =________,面积为______,? AB 边上的高为________; (3)若一个矩形的长为5和12,则它的对角线长为_______. 2.三角形三边长分别为6、8、10,那么它最短边上的高为______. 3.已知一直角三角形两边长分别为3和4,则第三边的长为______. 4.若等腰直角三角形斜边长为2,则它的直角边长为_______. 5.测得一个三角形花坛的三边长分别为5c m ,12c m ,?13c m ,?则这个花坛的面积是________. 6.矩形纸片ABCD 中,AD =4c m ,AB =10c m ,按如图18-1方式折叠,使点B 与点D 重合,折痕为EF ,则DE =_______c m . 7.如图18-2,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_________. 8.一轮船以16海里/时的速度从A 港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里. 9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当他把绳子的下端拉开5m ?后,发现下端刚好接触地面,你能帮助他把旗杆的高度求出来是__________. 10.如图18-3,△ABC 中,CD ⊥AB 于D ,若AD =2BD ,AC =6,BC =3,则BD 的长为( ) A .3 B . 1 2 C .1 D .4 11.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______. 12.△ABC 中,∠C =90°,c =10,a :b =3:4,则a =______,b =_______. 13.等腰三角形的腰长为5,底边长为8,则它底边上的高为_____,面积为____. D B C A D https://www.doczj.com/doc/b25437491.html, 图18-3

高考物理专题复习 动能 动能定理练习题

2008高考物理专题复习 动能 动能定理练习题 考点:动能.做功与动能改变的关系(能力级别:Ⅰ) 1.动能 (1)定义:物体由于运动而具有的能量叫做动能. (2)计算公式:221mv E k = .国际单位:焦耳(J). (3)说明: ①动能只有大小,没有方向,是个标量.计算公式中v 是物体具有的速率.动能恒为正值. ②动能是状态量,动能的变化(增量)是过程量. ③动能具有相对性,其值与参考系的选取有关.一般取地面为参考系. 【例题】位于我国新疆境内的塔克拉玛干沙漠,气候干燥,风力强劲,是利用风力发电的绝世佳境.设该地强风的风速v =20m/s,空气密度ρ=1.3kg/m 3,如果把通过横截面积为s=20m 2的风的动能全部转化为电能,则电功率的大小为多少?(取一位有效数字). 〖解析〗时间t 内吹到风力发电机上的风的质量为 vts m ρ= 这些风的动能为 22 1mv E k = 由于风的动能全部转化为电能,所以发电机的发电功率为 W s v t E P k 531012 1?≈== ρ 2.做功与动能改变的关系 动能定理 (1)内容:外力对物体做的总功等于物体动能的变化.即:合外力做的功等于物体动能的变化. (2)表达式: 12k k E E W -=合 或k E W ?=合 (3)对动能定理的理解: ①合W 是所有外力对物体做的总功,等于所有外力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+…….特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功. ②因动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关,一般以地球为参考系. ③不论做什么运动形式,受力如何,动能定理总是适用的. ④做功的过程是能量转化的过程,动能定理中的等号“=”的意义是一种因果联系的数值上相等的符号, 它并不意谓着“功就是动能的增量”,也不意谓着“功转变成动能”,而意谓着“合外力的功是物体动能变化的原因,合外力对物体做多少功物体的动能就变化多少”. ⑤合W >0时,E k2>E k1,物体的动能增加; 合W <0时,E k2

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n ΛΛ 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n Λ=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r Λ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴L L 0213n-1 n n n n C +C +=C +C +=2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

勾股定理精华专题训练

D C A 勾股定理专题训练 专题一、勾股定理的应用 1、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______. 2、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有__米. (2)题 (3)题 (4)题 3、如图,90,4,3,12C ABD AC BC BD ?∠=∠====,则AD= ; 4、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的 距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 5、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 . 专题二、分类讨论思想 1、三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是 2、若ΔABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( )

S 3S 2 S 1 C B A 第19题图 第3题图 A :14 B :4 C :14或4 D :以上都不对 专题三、等积法 1、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ; 2、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是 专题四、平移思想 如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上 铺地毯,已知地毯每平方米18元,铺完这个楼道至少需要 元钱 专题五、整体思想 1、如图所示,以Rt △ABC 的三边向外作正方形, 其面积分别为123,,S S S ,且1234,8,S S S ===则 ; 2、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____ 3.如图,Rt △ABC 的面积为20cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . 专题六、转化思想(立体图形转化成平面展开图)最短路径问题 1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,?A 和B 是这 个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是 ; 2、一只蚂蚁从长为4cm 、宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿 纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。 专题七、.方程思想 1、.如图,一棵树高4.5米,被大风刮断,树尖着地点B 距树底部C 为1.5米,求折断点A 离地高度多少米? 5m 13m A B C

《共面向量定理》教案设计

(1) B C (2) 课 题:共面向量定理 江苏省泰州中学 宋健 教学目标: 知识与技能:了解共面向量的含义,理解共面向量定理; 利用共面向量定理证明有关线面平行和点共面的简单问题; 过程与方法:运用类比的方法,自主探究向量共面的条件,并能灵活运用; 情感态度与价值观:体会类比,化归的思想方法;领悟数学研究方法的模式化特点,感受理 性思维的力量。 教学重点:共面向量的含义,理解共面向量定理 教学难点:利用共面向量定理证明有关线面平行和点共面的简单问题 教学过程: 一。问题情景 1、关于空间向量线性运算的理解 问题:如图(1),MN 可以由哪些向量相加得到?图(2)中呢? 平面向量加法的三角形法则可以推广到空间向量,只要图形封闭,其中的一个向量即可以用其它向量线性表示。 从平面到空间,类比是常用的推理方法。 二、建构数学 师生共同活动 如图:在长方体中,由相等向量的定义可知a AB,b AD,p AC ===,而AB AC AD 、、在同一平面内,此时我们称a b p 、、是共面向量。 1.共面向量的定义 一般地,能平移到同一个平面内的向量叫共面向量(coplanar vector ); 类比1:共面向量与共线向量的定义在形式上有何相同之处? 都是将向量问题转化为直线与直线或直线与平面之间的位置关系来研究. 探究1:(1)我们已经知道空间中任意两个向量一定可以共面,那么空间中任意三个向量一定 是共面向量吗?请举例说明. a b p

结论:空间中的任意三个向量不一定是共面向量. 例如:对于四面体ABCD ,AB 、AC 、AD 这三个向量就不是共面向量. (2)空间三个向量p ,b a ,具备怎样的条件时才是共面向量呢? 2.共面向量的判定 联想:在平面向量中,向量与非零向量共线的充要条件是 λ=,类比到空间向量,探究得到 共面向量定理 如果两个向量,不共线,那么向量与向量,共面的充要条件是存在有 序实数组),(y x ,使得p xa yb =+ 这就是说,向量可以由不共线的两个向量b a , 分析定理 类比2:空间共线向量定理和平面共线定理是相同的,那么,空间共面向量定理是否和平面向量的某个定理相联系呢? 空间向量中的共面定理与平面向量基本定理不仅在形式上是相同的,而且在本质上也是一致的.这是因为任意两个空间向量b a ,都可以平移到同一个平面,当b a ,不共线时,可以作为基向量,向量与它们共面,也就是向量可以平移到这个平面,所以就能用b a ,线性表示. 三、数学运用 问题:如图,已知两堵矩形墙壁ABCD 和ADEF 所在平面垂直于地面,有两只蚂蚁分别从D 、E 两点沿对角线BD,AE 向上爬,当它们都爬到对角线的1 3 处时,它们惊奇的发现它们距离地面CDE 的高度一样,你能告诉它们这是为什么吗? 分析:即要证MN//平面CDE ,只要证明向量MN 可以用平面CDE 内的两个不共线的向量CD 和DE 线性表示. 证明:因为M 在BD 上,且BM= 13 BD 所以111MB DB DA AB 333 ==+ 同理11AN AD DE 33 = + N N F E D A M C B

专题训练(一)利用勾股定理解决问题

专题训练(一)利用勾股定理解决问 题 ?类型一利用勾股定理解决平面图形问题 1.如图1-ZT-1,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,则CD=________. 图1-ZT-1 2.如图1-ZT-2,在等腰直角三角形ABC中,AB=AC,D是斜边BC上的中点,E,F分别为AB,AC上的点,且DE⊥DF. (1)若设BE=a,CF=b,且a-12+|b-5|=m-2+2-m,求BE及CF的长; (2)求证:BE2+CF2=EF2. 图1-ZT-2 ?类型二利用勾股定理解决立体图形问题 3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何.”题意是:如图1-ZT-3所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则葛藤的最短长度是________尺. 图1-ZT-3图1-ZT-4 4.2019·南宁期末如图1-ZT-4,一只蚂蚁从棱长为4 cm的正方体纸箱的A点沿纸箱表面爬到B点,那么它爬行的最短路线的长是

________cm. ?类型三利用勾股定理解决折叠问题 5.如图1-ZT-5,在Rt△ABC中,∠ABC=90°,AB=3,AC =5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________. 图1-ZT-5 6.[2019·重庆]如图1-ZT-6,把三角形纸片折叠,使点B,点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE =EG=2 3厘米,则△ABC的边BC的长为________厘米. 图1-ZT-6 ?类型四利用勾股定理解决实际问题 7.如图1-ZT-7,A市气象站测得台风中心在A市正东方向300千米的B处,以10 7千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的 区域. (1)A市是否会受到台风的影响?请说明理由; (2)如果A市会受到这次台风的影响,那么受台风影响的时间有多长? 图1-ZT-7 教师详解详析 1.3[解析] 如图,过点D作DE⊥AB于点E. ∵∠C=90°,AC=6,BC=8,

高考物理动能定理的综合应用技巧小结及练习题及解析

高考物理动能定理的综合应用技巧小结及练习题及解析 一、高中物理精讲专题测试动能定理的综合应用 1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求: (1)滑雪运动员沿山坡下滑时的加速度大小a; (2)滑雪运动员沿山坡下滑过程中受到的阻力大小f; (3)滑雪运动员在全过程中克服阻力做的功W f. 【答案】(1)4m/s2(2)f = 70N (3)1.75×104J 【解析】 【分析】 (1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度. (2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功. 【详解】 (1)根据匀变速直线运动规律得:x=1 at2 2 解得:a=4m/s2 (2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma 解得:f=70N (3)全程应用动能定理,得:mgxsinθ-W f =0 解得:W f =1.75×104J 【点睛】 解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功. 2.如图所示,AC为光滑的水平桌面,轻弹簧的一端固定在A端的竖直墙壁上.质量 的小物块将弹簧的另一端压缩到B点,之后由静止释放,离开弹簧后从C点水平1 m kg

相关主题
文本预览
相关文档 最新文档