2010-2019高考数学文科真题分类训练---第五讲函数与方程(1)
- 格式:doc
- 大小:509.00 KB
- 文档页数:6
2010-2019高考数学文科真题分类训练专题九 解析几何 第二十四讲 直线与圆答案部分 2019年1.解析 由题意和题图可知,当P 为优弧»AB 的中点时,阴影部分的面积取最大值,如图所示,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-. 此时阴影部分面积211222222AOP BOP AOB S S S S β=++=⨯⨯+⨯⨯⨯△△扇形()sin 44sin βββπ-=+.故选B.2.解析 24y x =的焦点为()1,0,准线为1x =-,故符合条件的圆为()2214x y -+=.3.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.3.解析:解法一:如图,由圆心与切点的连线与切线垂直,得1122m +=-,解得2m =-. 所以圆心为(0,-2),则半径22(20)(12)5r =--+-+=. 解法二:由22034(1)41m r m ⨯-+==+++,得2m =-,所以55r == 4.解析 (1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥uuu r uuu r ,故可得2224(2)a a +=+,解得=0a 或=4a .故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥uuu r uuu r ,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .2010-2018年1.A 【解析】圆心(2,0)到直线的距离222d ==所以点P 到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB =所以ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A .2.C 【解析】圆心坐标为(1,0)-,由点到直线的距离公式可知d ==,故选C.3.B 【解析】由2220x y ay +-=(0a >)得()222x y a a +-=(0a >),所以圆M 的圆心为()0,a ,半径为1r a =,因为圆M 截直线0x y +=所得线段的长度是,所=2a =,圆N 的圆心为()1,1,半径为21r =,所以MN ==123r r +=,121r r -=,因为1212r r r r -<MN <+,所以圆M 与圆N 相交,故选B .4.A 【解析】由题意知圆心为(1,4),1=,解得43a =-,故选A .5.D 【解析】由题意可得圆的半径为r =()()22112x y -+-=.6.D 【解析】圆的标准方程为22(1)(1)1x y -+-=,圆心(1,1)到直线34x y b +=的距离|7|15b -=,所以2b =或12b =. 7.B 【解析】由题意可得,2AB BC AC ===,∴ΔABC 为等边三角形,故ΔABC 的外接圆圆心时ΔABC 的中心,又等边ΔABC ,故中心为,故ΔABC3=. 8.A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN ∠=o,所以01x =符合题意,排除B 、D ;当点M 的坐标为时,OM =M 作圆O 的一条切线MN ',连接ON ',则在Rt OMN '∆中,sin 32OMN '∠=<, 则45OMN '∠<o,故此时在圆O 上不存在点N ,使得°45OMN ∠=,即0x =C ,故选A .9.D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=. 10.B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B .11.C 【解析】由题意得12(0,0),(3,4)C C ,121,r r ==1212||15C C r r =+==,所以9m =.12.D 【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.13.B 【解析】圆的标准方程为22(1)(1)2x y a ++-=-,则圆心(1,1)C -,半径r 满足22r a =-,则圆心C 到直线20x y ++=的距离d ==2422r a =+=-,故4a =-14.B 【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB +=∠+∠)4PAB π=∠+∈.故选B .15.A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点0到直线240x y +-=的距离,此时2r =,得r =,圆C 的面积的最小值为245S r ππ==. 16.A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是–2,只有选项A 中直线的斜率为–2. 17.A 【解析】 圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值. 又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=, 故选A .18.C 【解析】圆心(1,2),圆心到直线的距离=1d =,半径r =,所以最后弦长为4=.19.B 【解析】(1)当y ax b =+过()1,0A -与BC 的中点D 时,符合要求,此13b =, (2)当y ax b =+位于②位置时1,0b A a ⎛⎫-⎪⎝⎭,11,11b a b D a a -+⎛⎫⎪++⎝⎭, 令1112A BD S ∆=得212b a b =-,∵0a >,∴12b < (3) 当y ax b =+位于③位置时21,11b b a A a a --⎛⎫⎪--⎝⎭,21,11b a b D a a -+⎛⎫⎪++⎝⎭,令2212A CD S ∆=,即()111112112b b b a a --⎛⎫--= ⎪+-⎝⎭,化简得22241a b b -=-+,∵0a >, ∴22410b b -+<,解得1122b -<<+综上:112b -<<,选B20.B 【解析】点M(a , b )在圆.112222>+⇒=+b a y x 外111)00(.22<+==+ba d by ax O 距离到直线,圆=圆的半径,故直线与圆相交.所以选B .21.C 【解析】设直线斜率为k ,则直线方程为2(2)y k x -=-,即220kx y k -+-=,圆心(1,0)==12k =-。
第九讲 三角函数的概念、诱导公式与三角恒等变换2019年1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠ 是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β2.(全国Ⅱ文11)已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A .15B 5C 3D 253.(2019江苏13)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 .2010-2018年一、选择题1.(2018全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos 23α=,则a b -= A .15B 5C 25D .12.(2018全国卷Ⅲ)若1sin 3α=,则cos2α= A .89B .79C .79-D .89-3.(2018北京)在平面坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .»AB B .»CDC .»EFD .¼GH4.(2017新课标Ⅲ)已知4sin cos 3αα-=,则sin 2α= A .79- B .29- C .29 D .795.(2017山东)已知3cos 4x =,则cos2x =A .14-B .14C .18-D .186.(2016年全国III 卷)若1tan 3θ=-,则cos2θ=A .45-B .15-C .15D .457.(2015重庆)若1tan 3α=,1tan()2αβ+=,则tan β= A .17 B .16 C .57 D .568.(2015福建)若5sin 13α=-,且α为第四象限角,则tan α的值等于A .125B .125-C .512D .512-9.(2014新课标1)若0tan >α,则A .0sin >αB .0cos >αC .02sin >αD .02cos >α 10.(2014新课标1)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=11.(2014江西)在ABC ∆中,内角A ,B ,C 所对应的边分别为,,,c b a 若32a b =,则2222sin sin sin B AA-的值为A .19- B .13 C .1 D .7212.(2013新课标2)已知2sin 23α=,则2cos ()4πα+=A .16B .13C .12D .2313.(2013浙江)已知210cos 2sin ,=+∈αααR ,则=α2tan A .34 B .43 C .43- D .34-14.(2012山东)若⎥⎦⎤⎢⎣⎡∈2,4ππθ,8732sin =θ,则=θsin A .53 B .54 C .47 D .4315.(2012江西)若sin cos 1sin cos 2αααα+=-,则tan2α=A .−34B .34C .−43D .4316.(2011新课标)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .4517.(2011浙江)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则 cos()2βα+=A.3 B.3- C.9 D.9- 18.(2010新课标)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- A .12-B .12C .2D .-2二、填空题19.(2017新课标Ⅰ)已知(0,)2πα∈,tan 2α=,则cos()4πα- =__________.20.(2017北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=_________. 21.(2017江苏)若1tan()46πα-=,则tan α= .22.(2016年全国Ⅰ卷)已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 23.(2015四川)已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是________. 24.(2015江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 25.(2014新课标2)函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_______. 26.(2013新课标2)设θ为第二象限角,若1tan 42πθ⎛⎫+= ⎪⎝⎭ ,则sin cos θθ+=_____. 27.(2013四川)设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是____________.28.(2012江苏)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 .三、解答题29.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --. (1)求sin()απ+的值; (2)若角β满足5sin()13αβ+=,求cos β的值.30.(2018江苏)已知,αβ为锐角,4tan 3α=,cos()5αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. 31.(2015广东)已知tan 2α=.(Ⅰ)求tan()4πα+的值;(Ⅱ)求2sin 2sin sin cos cos 21ααααα+--的值.32.(2014江苏)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值. 33.(2014江西)已知函数()()()θ++=x x a x f 2cos cos 22为奇函数,且04=⎪⎭⎫⎝⎛πf ,其中()πθ,,0∈∈R a . (1)求θ,a 的值;(2)若⎪⎭⎫ ⎝⎛∈-=⎪⎭⎫⎝⎛ππαα,,2524f ,求⎪⎭⎫ ⎝⎛+3sin πα的值.34.(2013广东)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.35.(2013北京)已知函数21()(2cos 1)sin 2cos 42f x x x x =-+(1)求()f x 的最小正周期及最大值.(2)若(,)2παπ∈,且()2f α=,求α的值. 36.(2012广东)已知函数()2cos()6f x x πω=+,(其中0ω>,x R ∈)的最小正周期为10π. (1)求ω的值; (2)设,[0,]2παβ∈,56(5)35f απ+=-,516(5)617f βπ-=,求cos()αβ+的值.专题四 三角函数与解三角形第九讲 三角函数的概念、诱导公式与三角恒等变换答案部分 2019年1.解析 由题意和题图可知,当P 为优弧»AB 的中点时,阴影部分的面积取最大值,如图所示,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-. 此时阴影部分面积211222222AOP BOP AOB S S S S β=++=⨯⨯+⨯⨯⨯△△扇形()sin 44sin βββπ-=+.故选B.2.解析 由2sin 2cos21αα=+,得24sin cos 2cos ααα=. 因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos 2sin αα=. 由22cos 2sin sin cos 1αααα=⎧⎨+=⎩,得sin α=.故选B. 3.解析 由tan 23tan()4αα=-π+,得tan 23tan tan 41tan tan4ααα=-π+π-, 所以tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-.当tan 2α=时,22tan 4sin21tan 5ααα==+,221tan 3cos21tan 5ααα-==-+,43sin(2)sin2cos cos2sin 44455αααπππ+=+==当1tan 3α=-时,22tan 3sin21tan 5ααα==-+,221tan 4cos21tan 5ααα-==+,所以34sin(2)sin2cos cos2sin 444525210αααπππ+=+=-⨯+⨯=.综上,sin(2)4απ+. 2010-2018年1.B 【解析】由题意知cos 0α>,因为22cos 22cos13αα=-=,所以cos α=,sin α=|tan |α=,由题意知|||tan |12a b α-=-,所以||5a b -=.故选B .2.B 【解析】2217cos 212cos12()39αα=-=-⨯=.故选B . 3.C 【解析】设点P 的坐标为(,)x y ,利用三角函数可得yx y x<<,所以0x <,0y >.所以P 所在的圆弧是»EF,故选C . 4.A 【解析】由4sin cos 3αα-=,两边平方得161sin 29α-=,所以7sin 29α=-,选A . 5.D 【解析】由3cos 4x =得2231cos22cos 12()148x x =-=⨯-=,故选D .6.D 【解析】由1tan 3θ=-,得sin θ=cos θ=sin θ=cos θ=,所以224cos2cos sin 5θθθ=-=,故选D . 7.A 【解析】71312113121tan )tan(1tan )tan(])tan[(tan =⨯+-=++-+=-+=ab a a b a a b a b . 8.D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=-,故选D .9.C 【解析】tan 0α>知α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 22sin cos 0ααα=>,选C . 10.B 【解析】由条件得sin 1sin cos cos αβαβ+=,即sin cos cos (1sin )αβαβ=+, 得sin()cos sin()2παβαα-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,所以22παβ-=.11.D 【解析】2222sin sin sin B A A -=22sin 2()12()1sin B b A a -=-,∵32a b=,∴上式=72. 12.A 【解析】因为21cos 2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===, 所以2211sin 213cos ()4226παα--+===,选A. 13.C 【解析】由22(sin 2cos )2αα+=,可得2222sin 4cos 4sin cos 10sin cos 4αααααα++=+,进一步整理可得23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,于是22tan 3tan 21tan 4ααα==--. 14.D 【解析】由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D 。
专题复数历年高考真题汇编1.【2019年新课标1文科01】设z,则|z|=()A.2 B.C.D.1【解答】解:由z,得|z|=||.故选:C.2.【2018年新课标1文科02】设z2i,则|z|=()A.0 B.C.1 D.【解答】解:z2i2i=﹣i+2i=i,则|z|=1.故选:C.3.【2017年新课标1文科03】下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.4.【2016年新课标1文科02】设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.5.【2015年新课标1文科03】已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【解答】解:由(z﹣1)i=1+i,得z﹣1,∴z=2﹣i.故选:C.6.【2014年新课标1文科03】设z i,则|z|=()A.B.C.D.2【解答】解:z i i.故|z|.故选:B.7.【2013年新课标1文科02】()A.﹣1i B.﹣1i C.1i D.1i【解答】解: 1i.故选:B.8.【2012年新课标1文科02】复数z的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【解答】解:复数z1+i.所以复数的共轭复数为:﹣1﹣i.故选:D.9.【2011年新课标1文科02】复数()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【解答】解: 2+i故选:C.10.【2010年新课标1文科03】已知复数Z,则|z|=()A.B.C.1 D.2【解答】解:化简得Z•••,故|z|,故选:B.考题分析与复习建议本专题考查的知识点为:复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算,与向量结合考查复数及其加法、减法的几何意义等,历年考题主要以选择题题型出现,重点考查的知识点为复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算等,预测明年本考点题目会比较稳定,备考方向以知识点复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算为重点较佳.最新高考模拟试题1.复数52iz =-在复平面上的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】,在复平面上的对应点为()2,1,位于第一象限. 故选A.2.设i z a b =+(a ,b ∈R ,i 是虚数单位),且22i z =-,则有( ) A .1a b +=- B .1a b -=- C .0a b -= D .0a b +=【答案】D 【解析】 因为,所以220a b -=,22ab =-, 解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,所以0a b +=,故选D.3.若复数1i1ia z +=+为纯虚数,则实数a 的值为( ) A .1 B .1-C .0D .2【答案】B 【解析】故,解1a =-故选:B4.复数i (1+i )的虚部为( ) A .2 B .1C .0D .1-【答案】B 【解析】∵i (1+i )=-1+i , ∴i (1+i )的虚部为1.故选:B .5.已知复数11z i =-+,复数2z 满足122z z =-,则2z = ( ) A .2 B .2C .10D .10【答案】B 【解析】 由题得,所以.故选:B6.已知复数312i z i=+,则复数z 的实部为( )A .25-B .25i -C .15-D .15i -【答案】A 【解析】 解:∵,∴复数z 的实部为25-. 故选A . 7.复数122ii-=+( ) A .1i - B .i -C .iD .1i +【答案】B 【解析】.故选B8.已知i 为虚数单位,复数z 满足:,则在复平面上复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 因为,所以复平面上复数z 对应的点为13(,)22-,位于第四象限, 故选D .9.设复数z a i =+,z 是其共轭复数,若3455z i z =+,则实数a =( ) A .4 B .3C .2D .1【答案】C 【解析】 解:z a i =+z a i ∴=-10.已知i 是虚数单位,复数z 满足,则z =( )A .2B .2C .1D .5【答案】A 【解析】,所以,故本题选A.11.复数,其中i 为虚数单位,则z 的实部是( ) A .-1 B .1C .2D .3【答案】D 【解析】解:∴,∴z的实部是3故选:D.12.已知复数,则复数z=()A.2i+B.2i-C.i D.i-【答案】C【解析】由题意,复数,则,故选C. 13.已知i为虚数单位,若,则b a=()A.1 B.2C .2D.2 【答案】C【解析】i为虚数单位,若,根据复数相等得到1212 ab⎧=⎪⎪⎨⎪=⎪⎩.故答案为:C.14.已知复数z满足,则||z=()A.2B.5 C.52D.8【答案】C【解析】∵,∴,∴.故选C .15.已知i 是虚数单位,则复数11i i -+在复平面上所对应的点的坐标为( ) A .()0,1 B .()1,0-C .()1,0D .()0,1-【答案】A 【解析】 ∵,∴该复数在复平面上对应的点的坐标为()0,1.故选A.16.若复数z 满足,则在复平面内z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 由题得,所以1z i =+,所以在复平面内z 的共轭复数对应的点为(1,1),在第一象限. 故选:A17.已知复数z 满足12iz i =+,则z 的虚部是( ) A .1- B .i -C .2D .2i【答案】A 【解析】 因为12iz i =+所以所以虚部为1-所以选A18.已知31i zi-=-(其中i为虚数单位),则z的虚部为( )A.i-B.1-C.1D.2【答案】B【解析】因为,所以2z i=-,故z的虚部为1-,故选B.19.复数的虚部为()A.1-B.3-C.1 D.2【答案】B【解析】所以z的虚部为3-故选B项.20.已知复数,212z i=+(i为虚数单位),若12zz为纯虚数,则a=()A.2-B.2 C.12-D.12【答案】C【解析】∵,∴,∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选:C . 21.设复数z 满足2ii z+=,则z =( ) A .1 B .5C .3D .5【答案】B 【解析】2ii z+=,,,故选B.22.已知复数1i z i=-,则2z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 ∵,∴,∴2z +在复平面内对应的点的坐标为211,2⎛⎫- ⎪ ⎪⎝⎭,位于第一象限. 故选:A .23.复数z 满足(1)2z i i -=,则复数z =( )A .1i -B .12iC .1i +D .1i --【答案】D【解析】由题意得: 1z i ∴=--本题正确选项:D24.若复数是纯虚数,其中m 是实数,则1z =( ) A .i B .i - C .2i D .2i -【答案】B【解析】复数z =m (m +1)+(m +1)i 是纯虚数,故m (m +1)=0且(m +1)≠0,解得m =0,故z =i ,故i .故选:B .25.设i 为虚数单位,则复数22iz i -=+的共扼复数z =( )A .3455i + B .3455i -C .3455i -+D .3455i --【答案】A【解析】解:,故选:A .26.已知复数1z 、2z 在复平面内对应的点关于虚轴对称,113z i =+,则12z z =( )A .2B .3C .2D .1【答案】D【解析】由题意,复数1z 、2z 在复平面内对应的点关于虚轴对称,113z i =+, 则,所以,故选 D. 27.已知复数z 1=1+2i ,z 2=l ﹣i ,则12z z =( ) A .13i 22-- B .13i 22-+ C .13i 22- D .13i 22+ 【答案】B【解析】∵,∴.故选:B . 28.在复平面内,复数(2i)z -对应的点位于第二象限,则复数z 可取( )A .2B .-1C .iD .2i +【答案】B【解析】不妨设,则, 结合题意可知:,逐一考查所给的选项: 对于选项A :,不合题意; 对于选项B :,符合题意; 对于选项C :,不合题意; 对于选项D :,不合题意; 故选:B .29.已知i 为虚数单位,则复数3(1)i z i i +=-的虚部为( )A .1B .2C .1-D .2-【答案】C【解析】因为,所以z 的虚部为1-.30.已知复数(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为() A .0 B .1- C .1 D .13-【答案】D【解析】因为,对应的点为(1,1)a a +-,因为点在直线2y x =上,所以,解得13a =-. 故选D.。
专题16 函数与导数(2)函数与导数大题:10年10考,每年1题.函数的载体上:对数函数很受“器重”,指数函数也较多出现,两种函数也会同时出现(2015年).第2小题:2019年不等式恒成立问题,2018年证明不等式,2017年不等式恒成立问题,2016年函数的零点问题,2015年证明不等式,2014年不等式有解问题(存在性),2013年单调性与极值,2012年不等式恒成立问题,2011年证明不等式,2010年不等式恒成立问题.1.(2019年)已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.2.(2018年)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;3.(2017年)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.4.(2016年)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.5.(2015年)设函数f(x)=e2x﹣alnx.(1)讨论f(x)的导函数f′(x)零点的个数;(1)求b;7.(2013年)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.8.(2012年)设函数f(x)=e x﹣ax﹣2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.(1)求a、b的值;10.(2010年)设函数f(x)=x(e x﹣1)﹣ax2.(2)若当x≥0时f(x)≥0,求a的取值范围.。
导数与定积分1.(2019·全国2·T文T10)曲线y=2sin x+cos x在点(π,-1)处的切线方程为( )A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=0【答案】C【解析】当x=π时,y=2sin π+cos π=-1,即点(π,-1)在曲线y=2sin x+cos x上.∵y'=2cos x-sin x,∴y'|x=π=2cos π-sin π=-2.∴曲线y=2sin x+cos x在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.故选C.2.(2019·全国3·T理T6文T7)已知曲线y=ae x+xln x在点(1,ae)处的切线方程为y=2x+b,则 ( )A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,b=-1【答案】D【解析】∵y'=ae x+ln x+1,∴k=y'|x=1=ae+1=2,∴ae=1,a=e-1.将点(1,1)代入y=2x+b,得2+b=1,∴b=-1.3.(2018·全国1·理T5文T6)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x【答案】D【解析】因为f(x)为奇函数,所以f(-x)=-f(x),即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax,解得a=1,则f(x)=x3+x.由f'(x)=3x2+1,得曲线y=f(x)在(0,0)处的切线斜率k=f'(0)=1.故切线方程为y=x.4.(2017·全国2·理T11)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为( )A.-1B.-2e-3C.5e-3D.1【答案】A【解析】由题意可得,f'(x)=(2x+a)e x-1+(x2+ax-1)e x-1=[x2+(a+2)x+a-1]e x-1.因为x=-2是函数f(x)的极值点,所以f'(-2)=0.所以a=-1.所以f(x)=(x2-x-1)e x-1.所以f'(x)=(x2+x-2)e x-1.令f'(x)=0,解得x1=-2,x2=1.当x变化时,f'(x),f(x)的变化情况如下表:选A.5.(2017·浙江·T7)函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是 ( )【答案】D【解析】设导函数y=f'(x)的三个零点分别为x1,x2,x3,且x1<0<x2<x3.所以在区间(-∞,x1)和(x2,x3)上,f'(x)<0,f(x)是减函数,在区间(x1,x2)和(x3,+∞)上,f'(x)>0,f(x)是增函数,所以函数y=f(x)的图象可能为D,故选D.6.(2016·山东·理T10)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )A.y=sin xB.y=ln xC.y=e xD.y=x3【答案】A【解析】当y=sin x时,y'=cos x,因为cos 0·cos π=-1,所以在函数y=sin x图象存在两点x=0,x=π使条件成立,故A正确;函数y=ln x,y=e x,y=x3的导数值均非负,不符合题意,故选A.7.(2016·全国1·文T12)若函数f(x)=x-1sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( )A.[-1,1]B.[-1,1]C.[-13,13] D.[-1,-13]【答案】C【解析】因为f(x)在R 上单调递增,所以f'(x)=-43cos 2x+acos x+53≥0在R 上恒成立. 由题意可得,当cos x=1时,f'(x)≥0, 当cos x=-1时,f'(x)≥0, 即{-43+a +53≥0,-43-a +53≥0,解得-13≤a≤13. 8.(2016·四川·理T9)设直线l 1,l 2分别是函数f(x)={-lnx ,0<x <1,lnx ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P,且l 1,l 2分别与y 轴相交于点A,B,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2)C.(0,+∞)D.(1,+∞) 【答案】A【解析】设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1.所以x 2=1x 1.所以切线l 1的方程分别为y-ln x 1=1x 1(x-x 1),切线l 2的方程为y+ln x 2=-1x 2(x-x 2), 即y-ln x 1=-x 1(x -1x 1).分别令x=0得A(0,-1+ln x 1),B(0,1+ln x 1). 又l 1与l 2的交点为P (2x11+x 12,lnx 1+1-x 121+x 12). ∵x 1>1,∴S △PAB =12|y A -y B |·|x P |=2x11+x 12<1+x 121+x 12=1. ∴0<S △PAB <1,故选A.9.(2015·全国2·理T12)设函数f'(x)是奇函数f(x)(x ∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) 【答案】A【解析】当x>0时,令F(x)=f (x )x ,则F'(x)=xf '(x )-f (x )x 2<0,∴当x>0时,F(x)=f (x )x为减函数. ∵f(x)为奇函数,且由f(-1)=0,得f(1)=0,故F(1)=0. 在区间(0,1)上,F(x)>0;在(1,+∞)上,F(x)<0,即当0<x<1时,f(x)>0; 当x>1时,f(x)<0. 又f(x)为奇函数,∴当x ∈(-∞,-1)时,f(x)>0;当x ∈(-1,0)时,f(x)<0. 综上可知,f(x)>0的解集为(-∞,-1)∪(0,1).故选A.10.(2015·全国1·理T12)设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x 0使得f(x 0)<0,则a 的取值范围是( ) A.[-3,1) B.[-3,3) C.[32e ,34) D.[32e,1)【答案】D【解析】由已知函数关系式,先找到满足f(x 0)<0的整数x 0,由x 0的唯一性列不等式组求解. ∵f(0)=-1+a<0,∴x 0=0.又∵x 0=0是唯一的使f(x 0)<0的整数,11.(2014·全国1·理T11文T12)已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1) 【答案】C【解析】当a=0时,显然f(x)有2个零点,不符合题意;当a>0时,f'(x)=3ax 2-6x=3x(ax-2),易知函数f(x)在(-∞,0)上单调递增. 又f(0)=1,当x →-∞时,f(x)=x 2(ax-3)+1→-∞,故不适合题意;当a<0时,f(x)在(-∞,2a )上单调递减,在(2a ,0)上单调递增,在(0,+∞)上单调递减,只需f (2a )>0就满足题意. 由f (2a )>0,得8a 2−12a 2+1>0,解得a<-2或a>2(舍去).故a<-2. ∴{f (-1)≥0,f (1)≥0,即{e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a≥3.又∵a<1,∴32e ≤a<1,经检验a=34,符合题意,故选D. 12.(2014·江西,理8)若f(x)=x 2+2∫10f(x)dx,则∫1f(x)dx=( )A.-1B.-13C.13D.1【答案】B 【解析】∵∫1f(x)dx=∫1x 2dx+∫1[2∫f 10(x )dx]dx=13x 3|01+[2∫f 10(x )dx]x |01=13+2∫10f(x)dx, ∴∫10f(x)dx=-13.故选B.13.(2014·全国2·理T8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ) A.0 B.1 C.2 D.3 【答案】D【解析】∵y=ax-ln(x+1),∴y'=a-1x+1. ∴y'|x=0=a-1=2,得a=3.14.(2014·全国2·文T11)若函数f(x)=kx-ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞) 【答案】D【解析】由f'(x)=k-1x ,又f(x)在(1,+∞)上单调递增, 则f'(x)≥0在x ∈(1,+∞)上恒成立, 即k≥1x在x ∈(1,+∞)上恒成立.又当x ∈(1,+∞)时,0<1x <1,故k≥1.故选D.15.(2014·全国2·理T12)设函数f(x)=√3sin πx.若存在f(x)的极值点x 0满足x 02+[f(x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞) 【答案】C【解析】∵x 0是f(x)的极值点, ∴f'(x 0)=0,即πm ·√3·cos πx0m =0, 得πm x 0=k π+π2,k ∈Z,即x 0=mk+12m,k ∈Z.∴x 02+[f(x 0)]2<m 2可转化为(mk +12m)2+[√3sin πm (mk +12m)]2<m 2,k ∈Z,即(k +1)2m 2+3<m 2,k ∈Z,即(k +1)2<1-32,k ∈Z.要使原问题成立,只需存在k ∈Z,使1-3m2>(k +12)2成立即可.又(k +12)2的最小值为14, ∴1-3m 2>14,解得m<-2或m>2.故选C.16.(2014·湖北·理T6)若函数f(x),g(x)满足∫1-1f(x)g(x)dx=0,则称f(x),g(x)为区间[-1,1]上的一组正交函数.给出三组函数: ①f(x)=sin 12x,g(x)=cos 12x; ②f(x)=x+1,g(x)=x-1; ③f(x)=x,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0 B.1 C.2 D.3 【答案】C【解析】对于①,∫1-1(sin 12x ·cos 12x)dx=∫1-112sin xdx=12∫1-1sin xdx=12(-cos x)|-11=12{-cos1-[-cos(-1)]}=12(-cos 1+cos 1)=0. 故①为一组正交函数; 对于②,∫1-1(x+1)(x-1)dx=∫1-1(x 2-1)dx=(13x 3-x)|-11=13-1-(-13+1)=23-2=-43≠0,故②不是一组正交函数;对于③,∫1-1x ·x 2dx=∫1-1x 3dx=(1x 4)|-11=0.故③为一组正交函数,故选C.17.(2014·山东,理6)直线y=4x 与曲线y=x 3在第一象限内围成的封闭图形的面积为( ) A.2√2 B.4√2 C.2 D.4【答案】D【解析】由{y =4x ,y =x 3,解得x=-2或x=0或x=2,所以直线y=4x 与曲线y=x 3在第一象限内围成的封闭图形面积应为S=∫2(4x-x 3)dx=(2x 2-14x 4)|02=(2×22-14×24)-0=4.18.(2013·北京,理7)直线l 过抛物线C:x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43 B.2C.83D.16√23【答案】C【解析】由题意可知,l 的方程为y=1. 如图,B 点坐标为(2,1), ∴所求面积S=4-2∫2x 24dx=4-2(x 312)|02=83,故选C.19.(2013·全国2·理T10文T11)已知函数f(x)=x 3+ax 2+bx+c,下列结论中错误的是( ) A.∃x 0∈R,f(x 0)=0B.函数y=f(x)的图象是中心对称图形C.若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D.若x 0是f(x)的极值点,则f'(x 0)=0 【答案】C【解析】∵x 0是f(x)的极小值点,则y=f(x)的图象大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.20.(2013·湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+251+t (t 的单位:s,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln 5B.8+25ln 113 C.4+25ln 5 D.4+50ln 2【答案】C【解析】由于v(t)=7-3t+251+t ,且汽车停止时速度为0,因此由v(t)=0可解得t=4,即汽车从刹车到停止共用4 s.该汽车在此期间所行驶的距离s=∫40(7-3t +251+t )dt=[7t -3t 22+25ln (t +1)]|04=4+25ln 5(m).21.(2012·湖北·理T3)已知二次函数y=f(x)的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 C.32D.π2【答案】B【解析】由图象可得二次函数的【解析】式为f(x)=-x 2+1,则与x 轴所围图形的面积S=∫1-1(-x2+1)dx=(-x 33+x)|-11=43.22.(2011·全国,理9)由曲线y=√x ,直线y=x-2及y 轴所围成的图形的面积为( ) A.103 B.4C.163D.6【答案】C【解析】由题意知,所围成的面积∫4[√x -(x-2)]dx=(23x 32-12x2+2x)| 04=23×432−12×42+2×4=163.23.(2010·全国,理3)曲线y=x在点(-1,-1)处的切线方程为( ) A.y=2x+1B.y=2x-1C.y=-2x-3D.y=-2x-2 【答案】A 【解析】∵y'=x+2-x (x+2)2=2(x+2)2,∴在点(-1,-1)处的切线方程的斜率为2(-1+2)2=2.∴切线方程为y+1=2(x+1),即y=2x+1.24.(2010·全国·文T4)曲线y=x 3-2x+1在点(1,0)处的切线方程为( ) A.y=x-1 B.y=-x+1 C.y=2x-2D.y=-2x+2【答案】A【解析】y'|x=1=(3x 2-2)|x=1=1,因此曲线在(1,0)处的切线方程为y=x-1. 25.(2019·全国1·T13)曲线y=3(x 2+x)e x在点(0,0)处的切线方程为 . 【答案】y=3x【解析】由题意可知y'=3(2x+1)e x+3(x 2+x)e x=3(x 2+3x+1)e x, ∴k=y'|x=0=3.∴曲线y=3(x 2+x)e x在点(0,0)处的切线方程为y=3x.26.(2019·天津·文T11)曲线y=cos x-x 在点(0,1)处的切线方程为 . 【答案】x+2y-2=0 【解析】y'=-sin x-12,y'|x=0=k=-12.切线方程为y-1=-1x,即x+2y-2=0.27.(2019·江苏,11)在平面直角坐标系xOy 中,点A 在曲线y=ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是 . 【答案】(e,1)【解析】设点A(x 0,y 0),则y 0=ln x 0,又y'=1x,当x=x 0时,y'=1x 0,点A 在曲线y=ln x 上的切线为y-y 0=1x 0(x-x 0),即y-ln x 0=x x 0-1,代入点(-e,-1),得-1-ln x 0=-e x 0-1,即x 0ln x 0=e,得x 0=e,y 0=1,故点A(e,1).28.(2018·天津·文T10)已知函数f(x)=e xln x,f'(x)为f(x)的导函数,则f'(1)的值为 . 【答案】e【解析】∵f'(x)=e xln x+e x x,∴f'(1)=eln 1+e 1=e.29.(2018·全国2·理T13 )曲线y=2ln(x+1)在点(0,0)处的切线方程为 . 【答案】y=2x【解析】∵y'=2,∴当x=0时,y'=2, ∴曲线在(0,0)处的切线方程为y=2x.30.(2018·全国2·文T13)曲线y=2ln x 在点(1,0)处的切线方程为 .【答案】y=2x-2【解析】∵y'=(2ln x)'=2x ,∴当x=1时,y'=2.∴切线方程为y=2(x-1),即y=2x-2. 31.(2018·全国3,理14)直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a= . 【答案】-3【解析】设f(x)=(ax+1)e x,∵f'(x)=a ·e x+(ax+1)e x=(ax+a+1)e x,∴f(x)=(ax+1)e x 在(0,1)处的切线斜率k=f'(0)=a+1=-2,∴a=-3.32.(2018·江苏·T11)若函数f(x)=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为 . 【答案】-3【解析】由f'(x)=6x 2-2ax=0,得x=0或x=a3.因为函数f(x)在(0,+∞)内有且只有一个零点,且f(0)=1,所以a 3>0,f (a3)=0,因此2(a 3)3-a (a 3)2+1=0,解得a=3.从而函数f(x)在[-1,0]上单调递增,在[0,1]上单调递减,所以f(x)max =f(0)=1,f(x)min =f(-1)=-4.故f(x)max +f(x)min =1-4=-3.33.(2017·全国1,文14)曲线y=x 2+ 在点(1,2)处的切线方程为 . 【答案】y=x+1【解析】设y=f(x),则f'(x)=2x-1x2,所以f'(1)=2-1=1.所以曲线y=x 2+1x在点(1,2)处的切线方程为y-2=1×(x-1),即y=x+1.34.(2017·天津,文10)已知a ∈R,设函数f(x)=ax-ln x 的图象在点(1,f(1))处的切线为l,则l 在y 轴上的截距为 . 【答案】1【解析】∵f(x)=ax-ln x,∴f'(x)=a-1x,f'(1)=a-1,f(1)=a,则切线l 方程为y-a=(a-1)(x-1),即y=(a-1)x+1,则l 在y 轴上的截距为1.35.(2017·山东·理T15)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①f(x)=2-x②f(x)=3-x③f(x)=x 3④f(x)=x 2+2 【答案】①④【解析】对①,设g(x)=e x·2-x, 则g'(x)=e x(2-x +2-x ln 12)=e x ·2-x·(1+ln 12)>0,∴g(x)在R 上单调递增,具有M 性质; 对②,设g(x)=e x·3-x, 则g'(x)=e x(3-x +3-x ln 13)=e x ·3-x(1+ln 13)<0,∴g(x)在R 上单调递减,不具有M 性质;对③,设g(x)=e x·x 3,则g'(x)=e x·x 2(x+3),令g'(x)=0,得x 1=-3,x 2=0, ∴g(x)在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,不具有M 性质; 对④,设g(x)=e x(x 2+2),则g'(x)=e x(x 2+2x+2),∵x 2+2x+2=(x+1)2+1>0, ∴g'(x)>0,∴g(x)在R 上单调递增,具有M 性质.故填①④.36.(2017·江苏·T11)已知函数f(x)=x 3-2x+e x-1ex ,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实数a 的取值范围是 . 【答案】[-1,12] 【解析】因为f(-x)=(-x)3-2(-x)+e -x-1e -x=-f(x),所以f(x)为奇函数.因为f'(x)=3x 2-2+e x+e -x≥3x 2-2+2√e x ·e -x ≥0(当且仅当x=0时等号成立),所以f(x)在R 上单调递增,因为f(a-1)+f(2a 2)≤0可化为f(2a 2)≤-f(a-1),即f(2a 2)≤f(1-a),所以2a 2≤1-a,2a 2+a-1≤0,解得-1≤a≤12,故实数a 的取值范围是[-1,12].37.(2016·全国2·理T16)若直线y=kx+b 是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= . 【答案】1-ln 2【解析】设直线y=kx+b 与曲线y=ln x+2和y=ln(x+1)的切点分别为(x 1,kx 1+b),(x 2,kx 2+b),由导数的几何意义,可得k=1x 1=1x 2+1,得x 1=x 2+1.又切点也在各自曲线上,所以{kx 1+b =lnx 1+2,kx 2+b =ln (x 2+1),所以{ k =2,x 1=1,x 2=-12. 从而由kx 1+b=ln x 1+2,代入解得b=1-ln 2.38.(2015·全国1·文T14)已知函数f(x)=ax 3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= .【答案】1【解析】∵f'(x)=3ax 2+1,∴f'(1)=3a+1, 即切线斜率k=3a+1.又f(1)=a+2,∴已知点为(1,a+2). 而由过(1,a+2),(2,7)两点的直线的斜率为a+2-71-2=5-a,∴5-a=3a+1,解得a=1.39.(2015·全国2·文T16)已知曲线y=x+ln x 在点(1,1)处的切线与曲线y=ax 2+(a+2)x+1相切,则a= . 【答案】8【解析】∵y'=1+1x,∴k=y'|x=1=2, ∴切线方程为y=2x-1.由y=2x-1与y=ax 2+(a+2)x+1联立,得ax 2+ax+2=0,再由相切知Δ=a 2-8a=0,解得a=0或a=8. ∵当a=0时,y=ax 2+(a+2)x+1并非曲线而是直线,∴a=0舍去,故a=8.40.(2015·陕西·理T15)设曲线y=e x在点(0,1)处的切线与曲线y=1 (x>0)上点P 处的切线垂直,则P 的坐标为 . 【答案】(1,1)【解析】曲线y=e x在点(0,1)处的切线斜率k=y'=e x|x=0=1;由y=1,可得y'=-12,因为曲线y=1(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,故-1x P2=-1,解得x P =1,由y=1x ,得y P =1,故所求点P 的坐标为(1,1). 41.(2015·天津,理11)曲线y=x 2与直线y=x 所围成的封闭图形的面积为______________.【答案】16【解析】函数y=x 2与y=x 的图象所围成的封闭图形如图中阴影所示,设其面积为S.由{y =x 2,y =x ,得{x =0,y =0或{x =1,y =1.故所求面积S=∫1(x-x 2)dx=(12x 2-13x 3)|01=16.42.(2015·陕西·理T16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 . 【答案】1.2 【解析】43.(2012·上海·理T13)已知函数y=f(x)的图象是折线段ABC,其中A(0,0),B (12,5),C(1,0).函数y=xf(x)(0≤x≤1)的图象与x 轴围成的图形的面积为________________. 【答案】54【解析】由题意f(x)={10x ,0≤x ≤12,-10x +10,12<x ≤1,则xf(x)={10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1.∴xf(x)与x 轴围成图形的面积为∫12010x 2dx+∫112(-10x 2+10x)dx=103x 3|012+(5x 2-103x 3)|121=103×18+(5-103)−(54-103×18)=54.44.(2012·全国·文T13)曲线y=x(3ln x+1)在点(1,1)处的切线方程为 . 【答案】4x-y-3=0【解析】因为y'=3ln x+4,故y'|x=1=4,所以曲线在点(1,1)处的切线方程为y-1=4(x-1),化为一般式方程为4x-y-3=0.45.(2012·山东·理T15)设a>0.若曲线y=√x 与直线x=a,y=0所围成封闭图形的面积为a 2,则a=. 【答案】49【解析】由题意可得曲线y=√x 与直线x=a,y=0所围成封闭图形的面积S=∫a0√x dx=23x 32|0a =23a 32=a 2,解得a=49.46.(2019·全国3·文T20)已知函数f(x)=2x 3-ax 2+2. (1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M-m 的取值范围. 【解析】(1)f'(x)=6x 2-2ax=2x(3x-a). 令f'(x)=0,得x=0或x=a3.若a>0,则当x ∈(-∞,0)∪(a ,+∞)时,f'(x)>0; 当x ∈(0,a3)时,f'(x)<0.故f(x)在(-∞,0),(a3,+∞)单调递增,在(0,a3)单调递减;若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x ∈(-∞,a 3)∪(0,+∞)时,f'(x)>0; 当x ∈(a3,0)时,f'(x)<0.故f(x)在(-∞,a3),(0,+∞)单调递增,在(a3,0)单调递减. (2)当0<a<3时,由(1)知,f(x)在(0,a)单调递减,在(a,1)单调递增,所以f(x)在[0,1]的最小值为f (a3)=-a 327+2,最大值为f(0)=2或f(1)=4-a.于是m=-a 327+2,M={4-a ,0<a <2,2,2≤a <3. 所以M-m={2-a +a 327,0<a <2,a327,2≤a <3.当0<a<2时,可知2-a+a 327单调递减, 所以M-m 的取值范围是(827,2). 当2≤a<3时,a 327单调递增,所以M-m 的取值范围是[827,1).综上,M-m 的取值范围是[827,2). 47.(2019·浙江·T22)已知实数a ≠0,设函数f(x)=aln x+√1+x ,x>0. (1)当a=-34时,求函数f(x)的单调区间; (2)对任意x ∈1e 2,+∞均有f(x)≤√x 2a,求a 的取值范围.注:e=2.718 28…为自然对数的底数.【解析】(1)当a=-34时,f(x)=-34ln x+√1+x ,x>0. f'(x)=-34x 2√1+x=√1+x -√1+x+14x √1+x,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤12a ,得0<a≤√24. 当0<a≤√24时,f(x)≤√x 2a 等价于√xa 2−2√1+xa-2ln x≥0. 令t=1,则t≥2√2.设g(t)=t 2√x -2t √1+x -2ln x,t≥2√2,则 g(t)=√x t-√1+1x 2-√x -2ln x.①当x ∈17,+∞时,√1+1x≤2√2,则g(t)≥g(2√2)=8√x -4√2√1+x -2ln x. 记p(x)=4√x -2√2√1+x -ln x,x≥17,则 p'(x)=√x−√2√x+1−1x=√x √x+1-√2x √x+1x √x+1=√x (√2x+2-x √x+1(√x+1)(√x+1+√2x ).故 17,1 1 p17单调递减所以,p(x)≥(1)=0.因此,g(t)≥g(2√2)=2p(x)≥0. ②当x ∈1e 2,17时,g(t)≥g √1+1x=-√xlnx -()2√x.令q(x)=2√x ln x+(x+1),x ∈1e 2,17,则q'(x)=√x+1>0, 故q(x)在1e 2,17上单调递增, 所以q(x)≤q17.由①得,q17=-2√77p17<-2√77p(1)=0.所以,q(x)<0.因此,g(t)≥g√1+1x =-()2√x>0.由①②知对任意x∈1e2,+∞,t∈[2√2,+∞),g(t)≥0,即对任意x∈1e2,+∞,均有f(x)≤√x2a.综上所述,所求a的取值范围是0,√24.48.(2019·全国2,文21,12分,难度)已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.【解析】(1)f(x)的定义域为(0,+∞).f'(x)=x-1+ln x-1=ln x-1.因为y=ln x单调递增,y=1x单调递减,所以f'(x)单调递增.又f'(1)=-1<0,f'(2)=ln 2-12=ln4-12>0,故存在唯一x0∈(1,2),使得f'(x0)=0.又当x<x0时,f'(x)<0,f(x)单调递减;当x>x0时,f'(x)>0,f(x)单调递增.因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在区间(x0,+∞)内存在唯一根x=α.由α>x0>1得1α<1<x0.又f(1α)=(1α-1)ln 1α−1α-1=f(α)α=0,故1α是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.49.(2019·江苏,19,16分,难度)设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f'(x)的零点均在集合{-3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤427.【解析】(1)因为a=b=c,所以f(x)=(x-a)(x-b)(x-c)=(x-a)3. 因为f(4)=8,所以(4-a)3=8,解得a=2. (2)因为b=c,所以f(x)=(x-a)(x-b)2=x 3-(a+2b)x 2+b(2a+b)x-ab 2, 从而f'(x)=3(x-b)(x -2a+b). 令f'(x)=0,得x=b 或x=2a+b. 因为a,b,2a+b3都在集合{-3,1,3}中,且a ≠b, 所以2a+b3=1,a=3,b=-3.此时,f(x)=(x-3)(x+3)2,f'(x)=3(x+3)(x-1). 令f'(x)=0,得x=-3或x=1. 列表如下:所以f(x)的极小值为f(1)=(1-3)(1+3)2=-32. (3)因为a=0,c=1,所以f(x)=x(x-b)(x-1)=x 3-(b+1)x 2+bx,f'(x)=3x 2-2(b+1)x+b. 因为0<b ≤1,所以Δ=4(b+1)2-12b=(2b-1)2+3>0, 则f'(x)有2个不同的零点, 设为x 1,x 2(x 1<x 2). 由f'(x)=0,得x 1=b+1-√b 2-b+13,x 2=b+1+√b 2-b+13.列表如下f(x) ↗极大值↘极小值↗(解法一)M=f(x1)=x13-(b+1)x12+bx1=[3x12-2(b+1)x1+b](x13-b+19)−2(b2-b+1)9x1+b(b+1)9=-2(b 2-b+1)(b+1)27+b(b+1)9+227(√b2-b+1)3=b(b+1)27−2(b-1)2(b+1)27+227(√b(b-1)+1)3≤b(b+1)27+227≤427.因此M≤427.(解法二)因为0<b≤1,所以x1∈(0,1).当x∈(0,1)时,f(x)=x(x-b)(x-1)≤x(x-1)2.令g(x)=x(x-1)2,x∈(0,1),则g'(x)=3(x-13)(x-1).令g'(x)=0,得x=13.列表如下:所以当x=1时,g(x)取得极大值,且是最大值,故g(x)max=g(1)=4. 所以当x∈(0,1)时,f(x)≤g(x)≤4.因此M≤427.50.(2019·全国3·理T20)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.【解析】(1)f'(x)=6x2-2ax=2x(3x-a).令f'(x)=0,得x=0或x=a 3.若a>0,则当x ∈(-∞,0)∪(a3,+∞)时,f'(x)>0; 当x ∈(0,a3)时,f'(x)<0.故f(x)在(-∞,0),(a 3,+∞)单调递增,在(0,a3)单调递减; 若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x ∈(-∞,a3)∪(0,+∞)时,f'(x)>0; 当x ∈(a 3,0)时,f'(x)<0.故f(x)在(-∞,a ),(0,+∞)单调递增,在(a,0)单调递减.(2)满足题设条件的a,b 存在.(ⅰ)当a ≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b 满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.(ⅱ)当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b 满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.(ⅲ)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=-a 327+b,最大值为b 或2-a+b. 若-a 327+b=-1,b=1,则a=3√23,与0<a<3矛盾.若-a 327+b=-1,2-a+b=1,则a=3√3或a=-3√3或a=0,与0<a<3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1. 51.(2019·天津·理T20)设函数f(x)=e xcos x,g(x)为f(x)的导函数. (1)求f(x)的单调区间;(2)当x ∈π4,π2时,证明f(x)+g(x)π2-x ≥0;(3)设x n 为函数u(x)=f(x)-1在区间2n π+π4,2n π+π2内的零点,其中n ∈N,证明2n π+π2-x n <e -2nπsinx 0-cosx 0.【解析】(1)由已知,有f'(x)=e x (cos x-sin x).因此,当x ∈2k π+π4,2k π+5π4(k ∈Z)时,有sin x>cos x,得f'(x)<0,则f(x)单调递减;当x ∈2k π-3π4,2k π+π4(k ∈Z)时,有sin x<cos x,得f'(x)>0,则f(x)单调递增.所以,f(x)的单调递增区间为2k π-3π4,2k π+π4(k ∈Z),f(x)的单调递减区间为2k π+π4,2k π+5π4(k ∈Z).(2)证明记h(x)=f(x)+g(x)π2-x .依题意及(1),有g(x)=e x (cos x-sin x),从而g'(x)=-2e x sin x. 当x ∈π4,π2时,g'(x)<0,故h'(x)=f'(x)+g'(x)π2-x +g(x)(-1)=g'(x)π2-x <0. 因此,h(x)在区间π4,π2上单调递减,进而h(x)≥h π2=f π2=0. 所以,当x ∈π4,π2时,f(x)+g(x)π2-x ≥0.(3)证明依题意,u(x n )=f(x n )-1=0,即e x n cos x n =1.记y n =x n -2n π,则y n ∈π4,π2,且f(y n )=e y n cos y n =e x n -2nπcos (x n -2n π)=e -2n π(n ∈N). 由f(y n )=e-2n π≤1=f(y 0)及(1),得y n ≥y 0.由(2)知,当x ∈π4,π2时,g'(x)<0,所以g(x)在π4,π2上为减函数, 因此g(y n )≤g(y 0)<g π4=0. 又由(2)知,f(y n )+g(y n )π2-y n ≥0, 故π2-y n ≤-f (y n )g (y n )=-e -2nπg (y n )≤-e -2nπg (y 0)=e -2nπe y 0(siny 0-cosy 0)<e -2nπsinx 0-cosx 0.所以,2n π+π2-x n <e -2nπsinx 0-cosx 0.52.(2019·全国1·理T20)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明: (1)f'(x)在区间(-1,π2)存在唯一极大值点; (2)f(x)有且仅有2个零点. 【解析】(1)设g(x)=f'(x), 则g(x)=cos x-11+x ,g'(x)=-sin x+1(1+x )2.当x ∈(-1,π2)时,g'(x)单调递减,而g'(0)>0,g'(π)<0,可得g'(x)在区间(-1,π2)内有唯一零点,设为α. 则当x ∈(-1,α)时,g'(x)>0; 当x ∈(α,π2)时,g'(x)<0.所以g(x)在区间(-1,α)内单调递增,在区间(α,π)内单调递减,故g(x)在区间(-1,π)内存在唯一极大值点,即f'(x)在区间(-1,π2)内存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(ⅰ)当x∈(-1,0]时,由(1)知,f'(x)在区间(-1,0)内单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,从而x=0是f(x)在区间(-1,0]上的唯一零点.(ⅱ)当x∈(0,π2]时,由(1)知,f'(x)在区间(0,α)内单调递增,在区间(α,π2)内单调递减,而f'(0)=0,f'(π2)<0,所以存在β∈(α,π2),使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x∈(β,π2)时,f'(x)<0.故f(x)在区间(0,β)内单调递增,在区间(β,π2)内单调递减.又f(0)=0,f(π2)=1-ln(1+π2)>0,所以当x∈(0,π2]时,f(x)>0.从而,f(x)在区间(0,π2]上没有零点.(ⅲ)当x∈(π2,π]时,f'(x)<0,所以f(x)在区间(π2,π)内单调递减.而f(π2)>0,f(π)<0,所以f(x)在区间(π2,π]上有唯一零点.(ⅳ)当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在区间(π,+∞)内没有零点. 综上,f(x)有且仅有2个零点.53.(2019·全国1·文T20)已知函数f(x)=2sin x-xcos x-x,f'(x)为f(x)的导数.(1)证明:f'(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.【解析】(1)证明设g(x)=f'(x),则g(x)=cos x+xsin x-1,g'(x)=xcos x.当x∈(0,π2)时,g'(x)>0;当x∈(π2,π)时,g'(x)<0,所以g(x)在(0,π2)单调递增,在(π2,π)单调递减.又g(0)=0,g(π)>0,g(π)=-2,故g(x)在(0,π)存在唯一零点. 所以f'(x)在(0,π)存在唯一零点.(2)解由题设知f (π)≥a π,f (π)=0,可得a ≤0.由(1)知,f'(x)在(0,π)只有一个零点,设为x 0,且当x ∈(0,x 0)时,f'(x)>0;当x ∈(x 0,π)时,f'(x)<0,所以f(x)在(0,x 0)单调递增,在(x 0,π)单调递减. 又f(0)=0,f (π)=0,所以,当x ∈[0,π]时,f(x)≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f(x)≥ax. 因此,a 的取值范围是(-∞,0].54.(2019·全国2·理T20)已知函数f(x)=ln x-x+1x -1. (1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x 0是f(x)的一个零点,证明曲线y=ln x 在点A(x 0,ln x 0)处的切线也是曲线y=e x的切线. 【解析】(1) f(x)的定义域为(0,1)∪(1,+∞). 因为f'(x)=1x+2(x -1)2>0,所以f(x)在区间(0,1),(1,+∞)内单调递增. 因为f(e)=1-e+1e -1<0,f(e 2)=2-e 2+1e 2-1=e 2-3e 2-1>0,所以f(x)在区间(1,+∞)内有唯一零点x 1,即f(x 1)=0.又0<1x 1<1,f 1x 1=-ln x 1+x 1+1x 1-1=-f(x 1)=0,故f(x)在区间(0,1)内有唯一零点1x 1.综上,f(x)有且仅有两个零点.(2)证明因为1x 0=e -lnx 0,故点B -ln x 0,1x 0在曲线y=e x 上.由题设知f(x 0)=0,即ln x 0=x 0+1x 0-1,故直线AB 的斜率k=1x 0-lnx 0-lnx 0-x 0=1x 0-x 0+1x 0-1-x 0+1x 0-1-x 0=1x 0. 曲线y=e x 在点B -ln x 0,1x 0处切线的斜率是1x 0,曲线y=ln x 在点A(x 0,ln x 0)处切线的斜率也是1x 0,所以曲线y=ln x 在点A(x 0,ln x 0)处的切线也是曲线y=e x 的切线.55.(2019·天津·文T20)设函数f(x)=ln x-a(x-1)e x,其中a ∈R. (1)若a ≤0,讨论f(x)的单调性; (2)若0<a<1e ,①证明f(x)恰有两个零点;②设x 0为f(x)的极值点,x 1为f(x)的零点,且x 1>x 0,证明3x 0-x 1>2. 【解析】(1)由已知,f(x)的定义域为(0,+∞),且f'(x)=1x -[ae x+a(x-1)e x]=1-ax 2e xx.因此当a≤0时,1-ax 2e x>0,从而f'(x)>0, 所以f(x)在(0,+∞)内单调递增.(2)证明①由(1)知,f'(x)=1-ax 2e x x .令g(x)=1-ax 2e x ,由0<a<1e,可知g(x)在(0,+∞)内单调递减,又g(1)=1-ae>0,且g ln1a=1-a ln1a21a=1-ln1a2<0,故g(x)=0在(0,+∞)内有唯一解,从而f'(x)=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a. 当x ∈(0,x 0)时,f'(x)=g (x )x >g (x 0)x=0, 所以f(x)在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f'(x)=g (x )x<g (x 0)x=0,所以f(x)在(x 0,+∞)内单调递减,因此x 0是f(x)的唯一极值点.令h(x)=ln x-x+1,则当x>1时,h'(x)=1x -1<0,故h(x)在(1,+∞)内单调递减,从而当x>1时,h(x)<h(1)=0,所以x<x-1. 从而f ln1a=ln ln1a-a ln 1a -1e ln 1a =ln ln 1a -ln 1a +1=h ln 1a<0,又因为f(x 0)>f(1)=0,所以f(x)在(x 0,+∞)内有唯一零点.又f(x)在(0,x 0)内有唯一零点1,从而,f(x)在(0,+∞)内恰有两个零点.②由题意,{f '(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,lnx 1=a (x 1-1)e x 1,从而ln x 1=x 1-1x 02e x 1-x 0,即e x 1-x 0=x 02lnx 1x 1-1.因为当x>1时,ln x<x-1,又x 1>x 0>1,故e x 1-x 0<x 02(x 1-1)x 1-1=x 02,两边取对数,得ln e x 1-x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.56.(2018·全国2·理T21)已知函数f(x)=e x -ax 2. (1)若a=1,证明:当x ≥0时,f(x)≥1; (2)若f(x)在(0,+∞)只有一个零点,求a.【解析】(1)当a=1时,f(x)≥1等价于(x 2+1)e -x-1≤0. 设函数g(x)=(x 2+1)e -x-1,则g'(x)=-(x 2-2x+1)e -x=-(x-1)2e -x.当x ≠1时,g'(x)<0,所以g(x)在(0,+∞)单调递减.而g(0)=0,故当x ≥0时,g(x)≤0,即f(x)≥1. (2)设函数h(x)=1-ax 2e -x.f(x)在(0,+∞)只有一个零点当且仅当h(x)在(0,+∞)只有一个零点. (i)当a ≤0时,h(x)>0,h(x)没有零点; (ii)当a>0时,h'(x)=ax(x-2)e -x.当x ∈(0,2)时,h'(x)<0;当x ∈(2,+∞)时,h'(x)>0.所以h(x)在(0,2)单调递减,在(2,+∞)单调递增. 故h(2)=1-4ae 2是h(x)在[0,+∞)的最小值. ①若h(2)>0,即a<e 24,h(x)在(0,+∞)没有零点; ②若h(2)=0,即a=e 24,h(x)在(0,+∞)只有一个零点; ③若h(2)<0,即a>e 24,由于h(0)=1,所以h(x)在(0,2)有一个零点.由(1)知,当x>0时,e x>x 2,所以h(4a)=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0. 故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=e 2.57.(2018·全国2·文T21度)已知函数f(x)=13x 3-a(x 2+x+1). (1)若a=3,求f(x)的单调区间; (2)证明:f(x)只有一个零点.【解析】(1)当a=3时,f(x)=13x 3-3x 2-3x-3,f'(x)=x 2-6x-3. 令f'(x)=0,解得x=3-2√3或x=3+2√3. 当x ∈(-∞,3-2√3)∪(3+2√3,+∞)时,f'(x)>0; 当x ∈(3-2√3,3+2√3)时,f'(x)<0.故f(x)在(-∞,3-2√3),(3+2√3,+∞)单调递增,在(3-2√3,3+2√3)单调递减. (2)由于x 2+x+1>0,所以f(x)=0等价于x 3x 2+x+1-3a=0. 设g(x)=x 3x 2+x+1-3a,则g'(x)=x 2(x 2+2x+3)(x 2+x+1)2≥0,仅当x=0时g'(x)=0,所以g(x)在(-∞,+∞)单调递增,故g(x)至多有一个零点,从而f(x)至多有一个零点. 又f(3a-1)=-6a2+2a-13=-6(a -16)2−16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.58.(2018·天津·理T20)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-xln a 的单调区间;(2)若曲线y=f(x)在点(x 1,f(x 1))处的切线与曲线y=g(x)在点(x 2,g(x 2)) 处的切线平行,证明x 1+g(x 2)=-2lnlnalna ;(3)证明当a≥e 1e 时,存在直线l,使l 是曲线y=f(x)的切线,也是曲线y=g(x)的切线. 【解析】(1)由已知,h(x)=a x-xln a,有h'(x)=a xln a-ln a. 令h'(x)=0,解得x=0.由a>1,可知当x 变化时,h'(x),h(x)的变化情况如下表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)证明由f'(x)=a xln a,可得曲线y=f(x)在点(x 1,f(x 1))处的切线斜率为a x 1ln a.由g'(x)=1xlna,可得曲线y=g(x)在点(x 2,g(x 2))处的切线斜率为1x 2lna .因为这两条切线平行,故有a x 1ln a=1x 2lna ,即x 2a x 1(ln a)2=1.两边取以a 为底的对数,得log a x 2+x 1+2log a ln a=0,所以x 1+g(x 2)=-2lnlnalna. (3)证明曲线y=f(x)在点(x 1,a x 1)处的切线l 1:y-a x 1=a x 1ln a ·(x-x 1).曲线y=g(x)在点(x 2,log a x 2)处的切线l 2:y-log a x 2=1x 2lna(x-x 2). 要证明当a≥e 1e 时,存在直线l,使l 是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥e 1e 时,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使得l 1与l 2重合. 即只需证明当a≥e 1e 时,方程组{a x 1lna =1x 2lna ,①a x 1-x 1a x 1lna =log a x 2-1lna ②有解. 由①得x 2=1a x 1(lna )2,代入②,得a x 1-x 1a x 1ln a+x 1+1lna +2lnlnalna =0.③ 因此,只需证明当a≥e 1e 时,关于x 1的方程③存在实数解.设函数u(x)=a x-xa xln a+x+1lna +2lnlna lna,即要证明当a≥e 1e 时,函数y=u(x)存在零点.u'(x)=1-(ln a)2xa x,可知当x ∈(-∞,0)时,u'(x)>0;当x ∈(0,+∞)时,u'(x)单调递减,又u'(0)=1>0,u'(1(lna )2)=1-a1(lna )2<0,故存在唯一的x 0,且x 0>0,使得u'(x 0)=0,即1-(ln a)2x 0a x 0=0.由此可得u(x)在(-∞,x 0)上单调递增,在(x 0+∞)上单调递减,u(x)在x=x 0处取得极大值u(x 0). 因为a≥e 1e ,故ln ln a≥-1,所以u(x 0)=a x 0-x 0a x 0ln a+x 0+1lna +2lnlna lna =1x 0(lna )2+x 0+2lnlnalna ≥2+2lnlnalna≥0.下面证明存在实数t,使得u(t)<0. 由(1)可得a x≥1+xln a,当x>1lna 时,有u(x)≤(1+xln a)(1-xln a)+x+1lna +2lnlna lna =-(ln a)2x 2+x+1+1lna +2lnlna lna, 所以存在实数t,使得u(t)<0.因此,当a≥e 1e 时,存在x 1∈(-∞,+∞),使得u(x 1)=0.所以,当a≥e 1e 时,存在直线l,使l 是曲线y=f(x)的切线,也是曲线y=g(x)的切线.59.(2018·天津·文T20)设函数f(x)=(x-t 1)(x-t 2)(x-t 3),其中t 1,t 2,t 3∈R,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程; (2)若d=3,求f(x)的极值;(3)若曲线y=f(x)与直线y=-(x-t 2)-6 √3有三个互异的公共点,求d 的取值范围.【解析】(1)由已知,可得f(x)=x(x-1)(x+1)=x 3-x,故f'(x)=3x 2-1.因此f(0)=0,f'(0)=-1.又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f'(0)(x-0),故所求切线方程为x+y=0. (2)由已知可得f(x)=(x-t 2+3)(x-t 2)(x-t 2-3)=(x-t 2)3-9(x-t 2)=x 3-3t 2x 2+(3t 22-9)x-t 23+9t 2.故f'(x)=3x 2-6t 2x+3t 22-9.令f'(x)=0,解得x=t 2-√3,或x=t 2+√3. 当x 变化时,f'(x),f(x)的变化情况如下表:所以函数f(x)的极大值为f(t 2-√3)=(-√3)3-9×(-√3)=6√3;函数f(x)的极小值为f(t 2+√3)=(√3)3-9×√3=-6√3.(3)曲线y=f(x)与直线y=-(x-t 2)-6√3有三个互异的公共点等价于关于x 的方程(x-t 2+d)(x-t 2)(x-t 2-d)+(x-t 2)+6√3=0有三个互异的实数解.令u=x-t 2,可得u 3+(1-d 2)u+6√3=0.设函数g(x)=x 3+(1-d 2)x+6√3,则曲线y=f(x)与直线y=-(x-t 2)-6√3有三个互异的公共点等价于函数y=g(x)有三个零点. g'(x)=3x 2+(1-d 2).当d 2≤1时,g'(x)≥0,这时g(x)在R 上单调递增,不合题意.。
十年高考真题分类汇编(2010—2019)数学专题19不等式选讲1.(2019·全国1·理T23文T23)[选修4—5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国2·理T23文T23)[选修4—5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.3.(2019·全国3·理T23文T23)[选修4—5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.4.(2018·全国1·文T23理T23)[选修4—5:不等式选讲]已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.5.(2018·全国2·文理23)[选修4—5:不等式选讲]设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.6.(2018·全国3·文理23)[选修4—5:不等式选讲]设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图像;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.7.(2017·全国1·理T23文T23)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围. 8.(2017·全国3·理T23文T23)已知函数f(x)=|x+1|-|x-2|. (1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x 2-x+m 的解集非空,求m 的取值范围. 9.(2017·全国2·理T23文T23)已知a>0,b>0,a 3+b 3=2.证明: (1)(a+b)(a 5+b 5)≥4; (2)a+b ≤2.10.(2016·全国1·理T24文T24)已知函数f(x)=|x+1|-|2x-3|. (1)在题图中画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集.11.(2016·全国3·理T24文T24)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围.12.(2016·全国2·理T24文T24)已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (1)求M;(2)证明:当a,b ∈M 时,|a+b|<|1+ab|.13.(2015·全国1·理T24文T24)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 14.(2015·全国2·理T24文T24)设a,b,c,d 均为正数,且a+b=c+d,证明: (1)若ab>cd,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件. 15.(2015·湖南·理T16文T16)设a>0,b>0,且a+b=1a +1b , 证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.16.(2014·全国1·理T24文T24)若a>0,b>0,且1a +1b=√ab.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.17.(2014·全国2·理T24文T24)设函数f(x)=|x+1a|+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.18.(2014·辽宁·理T24文T24)设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(1)求M;(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤14.19.(2013·全国1·理T24文T24)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈[-a2,12)时,f(x)≤g(x),求a的取值范围.20.(2013·全国2·理T24文T24)设a,b,c均为正数,且a+b+c=1,证明: (1)ab+bc+ac≤1;(2)a 2b +b2c+c2a≥1.21.(2012·全国·理T24文T24)已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.22.(2011·全国·理T24文T24)设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.23.(2010·全国·理T24文T24)设函数f(x)=|2x-4|+1.(1)画出函数y=f(x)的图象;(2)若不等式f(x)≤ax的解集非空,求a的取值范围.十年高考真题分类汇编(2010—2019)数学专题19不等式选讲1.(2019·全国1·理T23文T23)[选修4—5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解析】(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc =1a+1b+1c.所以1+1+1≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3√(a+b)3(b+c)3(a+c)33=3(a+b)(b+c)(a+c)≥3×(2√ab)×(2√bc)×(2√ac)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国2·理T23文T23)[选修4—5:不等式选讲] 已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.【解析】(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a 的取值范围是[1,+∞).3.(2019·全国3·理T23文T23)[选修4—5:不等式选讲] 设x,y,z ∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1. 【解析】(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)] ≤3[(x-1)2+(y+1)2+(z+1)2], 故由已知得(x-1)2+(y+1)2+(z+1)2≥43, 当且仅当x=53,y=-13,z=-13时等号成立. 所以(x-1)2+(y+1)2+(z+1)2的最小值为43. (2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)] ≤3[(x-2)2+(y-1)2+(z-a)2], 故由已知得(x-2)2+(y-1)2+(z-a)2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a)2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a≤-3或a≥-1.4.(2018·全国1·文T23理T23)[选修4—5:不等式选讲]已知f(x)=|x+1|-|ax-1|. (1)当a=1时,求不等式f(x)>1的解集;(2)若x ∈(0,1)时不等式f(x)>x 成立,求a 的取值范围. 【解析】(1)当a=1时,f(x)=|x+1|-|x-1|, 即f(x)={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f(x)>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立.若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a≤2. 综上,a 的取值范围为(0,2].5.(2018·全国2·文理23)[选修4—5:不等式选讲]设函数f(x)=5-|x+a|-|x-2|. (1)当a=1时,求不等式f(x)≥0的解集; (2)若f(x)≤1,求a 的取值范围. 【解析】(1)当a=1时, f(x)={2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f(x)≥0的解集为{x|-2≤x ≤3}. (2)f(x)≤1等价于|x+a|+|x-2|≥4.而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.故f(x)≤1等价于|a+2|≥4. 由|a+2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞). 6.(2018·全国3·文理23)[选修4—5:不等式选讲]设函数f(x)=|2x+1|+|x-1|. (1)画出y=f(x)的图像;(2)当x ∈[0,+∞)时,f(x)≤ax+b,求a+b 的最小值.【解析】(1)f(x)={-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.(2)由(1)知,y=f(x)的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f(x)≤ax+b 在[0,+∞)成立,因此a+b 的最小值为5.7.(2017·全国1·理T23文T23)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.【解析】(1)当a=1时,不等式f(x)≥g(x)等价于x 2-x+|x+1|+|x-1|-4≤0.① 当x<-1时,①式化为x 2-3x-4≤0,无解;当-1≤x ≤1时,①式化为x 2-x-2≤0,从而-1≤x ≤1; 当x>1时,①式化为x 2+x-4≤0,从而1<x≤-1+√172. 所以f(x)≥g(x)的解集为{x |-1≤x ≤-1+√172}. (2)当x ∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x ∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].8.(2017·全国3·理T23文T23)已知函数f(x)=|x+1|-|x-2|. (1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x 2-x+m 的解集非空,求m 的取值范围. 【解析】(1)f(x)={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f(x)≥1无解;当-1≤x ≤2时,由f(x)≥1得,2x-1≥1,解得1≤x ≤2;当x>2时,由f(x)≥1解得x>2.所以f(x)≥1的解集为{x|x ≥1}. (2)由f(x)≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x| =-(|x |-3)2+5≤5,且当x=32时,|x+1|-|x-2|-x 2+x=54.故m 的取值范围为(-∞,54]. 9.(2017·全国2·理T23文T23)已知a>0,b>0,a 3+b 3=2.证明: (1)(a+b)(a 5+b 5)≥4;(2)a+b ≤2.【解析】(1)(a+b)(a 5+b 5)=a 6+ab 5+a 5b+b 6=(a 3+b 3)2-2a 3b 3+ab(a 4+b 4) =4+ab(a 2-b 2)2≥4.(2)因为(a+b)3=a 3+3a 2b+3ab 2+b 3=2+3ab(a+b)≤2+3(a+b )2(a+b)=2+3(a+b )34,所以(a+b)3≤8,因此a+b≤2.10.(2016·全国1·理T24文T24)已知函数f(x)=|x+1|-|2x-3|. (1)在题图中画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集.【解析】(1)f(x)={x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时, 可得x=1或x=3;当f(x)=-1时,可得x=13或x=5, 故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x |x <13或x >5}. 所以|f(x)|>1的解集为 {x |x <1或1<x <3或x >5}.11.(2016·全国3·理T24文T24)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围. 【解析】(1)当a=2时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6得-1≤x ≤3. 因此f(x)≤6的解集为{x|-1≤x ≤3}. (2)当x ∈R 时,f(x)+g(x)=|2x-a|+a+|1-2x| ≥|2x-a+1-2x|+a=|1-a|+a,当x=12时等号成立,所以当x ∈R 时,f(x)+g(x)≥3等价于|1-a|+a ≥3.① (分类讨论)当a ≤1时,①等价于1-a+a ≥3,无解. 当a>1时,①等价于a-1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞).12.(2016·全国2·理T24文T24)已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (1)求M;(2)证明:当a,b ∈M 时,|a+b|<|1+ab|. 【解析】(1)f(x)={-2x ,x ≤-12,1,-1<x <1,2x ,x ≥12.当x≤-1时,由f(x)<2得-2x<2,解得x>-1; 当-12<x<12时,f(x)<2;当x≥12时,由f(x)<2得2x<2,解得x<1. 所以f(x)<2的解集M={x|-1<x<1}. (2)由(1)知,当a,b ∈M 时,-1<a<1,-1<b<1, 从而(a+b)2-(1+ab)2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a+b|<|1+ab|.13.(2015·全国1·理T24文T24)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 【解析】(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0. 当x ≤-1时,不等式化为x-4>0,无解; 当-1<x<1时,不等式化为3x-2>0,解得23<x<1; 当x≥1时,不等式化为-x+2>0,解得1≤x<2. 所以f(x)>1的解集为{x |23<x <2}. (2)由题设可得f(x)={x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f(x)的图象与x 轴围成的三角形的三个顶点分别为A (2a -13,0),B(2a+1,0),C(a,a+1),△ABC 的面积为23(a+1)2.由题设得23(a+1)2>6,故a>2.所以a 的取值范围为(2,+∞). 14.(2015·全国2·理T24文T24)设a,b,c,d 均为正数,且a+b=c+d,证明: (1)若ab>cd,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件.【解析】证明(1)因为(√a +√b )2=a+b+2√ab ,(√c +√d )2=c+d+2√cd , 由题设a+b=c+d,ab>cd 得(√a +√b )2>(√c +√d )2. 因此√a +√b >√c +√d .(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd. 因为a+b=c+d,所以ab>cd.由(1)得√a +√b >√c +√d . ②若√a +√b >√c +√d ,则(√a +√b )2>(√c +√d )2, 即a+b+2√ab >c+d+2√cd . 因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|.综上,√a +√b >√c +√d 是|a-b|<|c-d|的充要条件. 15.(2015·湖南·理T16文T16)设a>0,b>0,且a+b=1a +1b , 证明: (1)a+b ≥2;(2)a 2+a<2与b 2+b<2不可能同时成立.【解析】证明由a+b=1a +1b =a+b ab ,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2√ab =2,即a+b ≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a 2+a<2与b 2+b<2不可能同时成立.16.(2014·全国1·理T24文T24)若a>0,b>0,且1a +1b =√ab .(1)求a 3+b 3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.【解析】(1)由√ab =1a +1b ≥√ab ,得ab≥2,且当a=b=√2时等号成立.故a 3+b 3≥2√a 3b 3≥4√2,且当a=b=√2时等号成立.所以a 3+b 3的最小值为4√2.(2)由(1)知,2a+3b≥2√6√ab ≥4√3. 由于4√3>6,从而不存在a,b,使得2a+3b=6.17.(2014·全国2·理T24文T24)设函数f(x)=|x +1a |+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a 的取值范围.【解析】(1)证明由a>0,有f(x)=|x +1|+|x-a|≥|x +1-(x -a )|=1+a≥2.所以f(x)≥2.(2)解f(3)=|3+1a |+|3-a|.当a>3时,f(3)=a+1a ,由f(3)<5,得3<a<5+√21.当0<a≤3时,f(3)=6-a+1a ,由f(3)<5,得1+√52<a≤3.综上,a 的取值范围是(1+√52,5+√212). 18.(2014·辽宁·理T24文T24)设函数f(x)=2|x-1|+x-1,g(x)=16x 2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(1)求M;(2)当x ∈M ∩N 时,证明:x 2f(x)+x[f(x)]2≤14.【解析】(1)解f(x)={3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1),当x≥1时,由f(x)=3x-3≤1得x≤43,故1≤x≤43;当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1.所以f(x)≤1的解集为M={x |0≤x ≤43}.(2)证明由g(x)=16x 2-8x+1≤4,得16(x -14)2≤4,解得-1≤x≤3.因此N={x |-14≤x ≤34}.故M ∩N={x |0≤x ≤34}.当x ∈M ∩N 时,f(x)=1-x,于是x 2f(x)+x ·[f(x)]2=xf(x)[x+f(x)]=x ·f(x)=x(1-x)=14−(x -12)2≤14.19.(2013·全国1·理T24文T24)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x ∈[-a 2,12)时,f(x)≤g(x),求a 的取值范围.【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y={-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x ∈[-a 2,12)时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a -2对x ∈[-a 2,12)都成立.故-a 2≥a -2,即a≤43.从而a 的取值范围是(-1,43].20.(2013·全国2·理T24文T24)设a,b,c 均为正数,且a+b+c=1,证明:(1)ab+bc+ac≤1;(2)a 2b +b 2c +c 2a ≥1.【解析】证明(1)由a 2+b 2≥2ab,b 2+c 2≥2bc,c 2+a 2≥2ca,得a 2+b 2+c 2≥ab+bc+ca.由题设得(a+b+c)2=1,即a 2+b 2+c 2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤13.(2)因为a 2b +b≥2a,b2c +c≥2b,c 2a +a≥2c,故a 2b +b 2c +c 2a +(a+b+c)≥2(a+b+c),即a 2b +b2c +c 2a ≥a+b+c .所以a 2b +b2c +c 2a ≥1.21.(2012·全国·理T24文T24)已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a 的取值范围.【解析】(1)当a=-3时,f(x)={-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f(x)≥3,得-2x+5≥3,解得x ≤1;当2<x<3时,f(x)≥3无解;当x ≥3时,由f(x)≥3,得2x-5≥3,解得x ≥4;所以f(x)≥3的解集为{x|x ≤1}∪{x|x ≥4}.(2)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x ∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a ≤x ≤2-a. 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].22.(2011·全国·理T24文T24)设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x ≤-1},求a 的值.【解析】(1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.由此可得x ≥3或x ≤-1.故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}.(2)由f(x)≤0得|x-a|+3x ≤0.此不等式化为不等式组{x ≥a ,x -a +3x ≤0或{x ≤a ,a -x +3x ≤0,即{x ≥a ,x ≤a 4或{x ≤a ,x ≤-a 2.因为a>0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a=2.23.(2010·全国·理T24文T24)设函数f(x)=|2x-4|+1.(1)画出函数y=f(x)的图象;(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.【解析】(1)由于f(x)={-2x +5,x <2,2x -3,x ≥2,则函数y=f(x)的图象如图所示.(2)(图象应用)由函数y=f(x)与函数y=ax 的图象可知,当且仅当a≥12或a<-2时,函数y=f(x)与函数y=ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞).。
2019-2019高考数学复习函数与方程专项练习题(含答案)用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。
以下是函数与方程专项练习题,请考生及时练习。
一选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.方程x- =0的实数解所在的区间是()A.(-,-1)B.(-2,2)C.(0,1)D.(1,+)解析:令f(x)=x- ,则f(1)=0,f(-1)=0,只有B合适.答案:B2.下列函数图象与x轴均有公共点,其中能用二分法求零点的是()解析:首先排除D,因为f(x)图象不连续,再次排除AB,因为AB不符合f(a)f(b)0.答案:C3.若函数f(x)=ax+b有一个零点2,则方程bx2-ax=0的根是()A.0,2B.0,C.0, -D.2,-解析:由ax+b=0的根为2,得2a+b=0,b=-2a,则方程bx2-ax=0变为2ax2+ax=0.∵a0,2x2+x=0,x1=0,x2=-.答案:C4.(2019合肥模拟)方程x2+ax-2=0在区间[1,5]上有解,则实数a的取值范围是()解析:设f(x)=x2+ax-2,∵f(0)=-20,由x2+ax-2=0在区间[1,5]上有解,只需f(1)0且f(5)0即可,解得- 1.答案:C5.已知函数y=f(x)的图象是连续不断的,有如下的对应值表:x123456y-52812-5-10则函数y=f(x)在x[1,6]上的零点至少有()A.5个B.4个C.3个D.2个解析:满足条件的零点应在(1,2)和(4,5)之间,因此至少有两个零点.答案:D6.(2019浙江)已知x0是函数f(x)=2x+ 的一个零点.若x1(1,x0),x2(x0,+),则()A.f(x1)0,f(x2)0B.f(x1)0,f(x2)0C.f(x1)0,f(x2)0D.f(x1)0,f(x2)0解析:由于函数g(x)= 在(1,+)上单调递增,函数h(x)=2x在(1,+)上单调递增,故函数f(x)=h(x)+g(x)在(1,+)上单调递增,所以函数f(x)在(1,+)上只有惟一的零点x0,且在(1,x0)上f(x)0,在(x0,+)上f(x)0,故选B.答案:B二填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.若函数f(x)=x2+ax+b的两个零点是-2和3,则不等式af(-2x)0的解集是________.解析:由于f(x)=x2+ax+b的两个零点是-2和3,即方程x2+ax+b=0的两个根是-2和3,因此 ,因此f(x)=x2-x-6,所以不等式af(-2x)0即-(4x2+2x-6)0,即2x2+x-30,解集为{x|-答案:{x|-8.(应用题,易)在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量不同),现在只有一台天平,请问:你最多称________次就可以发现这枚假币?答案:49.方程xlg(x+2)=1有________个不同的实数根.解析:由题意知x0,∵xlg(x+2)=1,lg(x+2)= ,画出y=lg(x+2),y= 的图象(图略),两个函数图象的交点个数即为方程根的个数,由图象知在第一象限和第三象限各有一个交点,故方程有2个不等实数根.答案:210.已知函数f(x)=|x|+|2-x|,若函数g(x)=f(x)-a的零点个数不为0,则a的最小值为________.解析:由于f(x)=|x|+|2-x|=所以f(x)的最小值等于2,要使f(x)-a=0有解,应使a2,即a 的最小值为2.答案:2三解答题:(本大题共3小题,1112题13分,13题14分,写出证明过程或推演步骤.)11.已知二次函数f(x)=ax2+bx+c.(1)若ac且f(1)=0,试证明f(x)必有两个零点;(2)若对x1、x2R且x1证明:(1)∵f(1)=0,a+b+c=0.又∵ac,a0,即ac0.又∵=b2-4ac0,方程ax2+bx+c=0有两个不等实根,所以函数f(x)有两个零点.(2)令g(x)=f(x)- [f(x1)+f(x2)],则g(x1)=f(x1)- [f(x1)+f(x2)]∵f(x1)f(x2),g(x1)g(x2)0.g(x)=0在(x1,x2)内必有一实根.评析:可将方程根的问题转化成函数零点的问题,借助函数的图象和性质进行解答.12.若函数f(x)=22x+2xa+a+1有零点,求实数a的取值范围. 解:依题意,方程22x+2xa+a+1=0有实数根.令2x=t(t0),则t2+at+a+1=0,13.(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.解:(1)①f(x)=x2+2mx+3m+4有且仅有一个零点方程f(x)=0有两个相等实根=0,即4m2-4(3m+4)=0,即m2-3m-4=0,m=4或m=-1.②解法一:设f(x)的两个零点分别为x1,x2.则x1+x2=-2m,x1x2=3m+4.由题意,知-5故m的取值范围为(-5,-1).解法二:由题意,知-5m的取值范围为(-5,-1).(2)令f(x)=0,得|4x-x2|+a=0,即|4x-x2|=-a.令g(x)=|4x-x2|,h(x)=-a.作出g(x)、h(x)的图象.由图象可知,当04,即-4故a的取值范围为(-4,0).函数与方程专项练习题及答案的全部内容就是这些,查字典数学网预祝考生可以取得更优异的成绩。
十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8nD.S n =12n 2-2n2.(2019·浙江·T 10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10D.当b=-4时,a 10>103.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10D.124.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 45.(2018·北京·理T4文T 5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23fB.√223fC.√2512fD.√2712f6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.1107.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3C.3D.88.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.979.(2015·浙江·理T13)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(2015·全国2·文T5)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.1111.(2015·全国1·文T7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10= ( )A.172B.192C.10D.1212.(2015·全国2·理T4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.8413.(2015·全国2·文T9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=()A.2B.1C.1D.114.(2014·大纲全国·文T8)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.6415.(2014·全国2·文T5)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)216.(2013·全国2·理T3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-1917.(2013·全国1·文T6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n18.(2013·全国1·理T12)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.620.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5D.-721.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .3.(2019·江苏·T 8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 .4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .9.(2018·上海·T 10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S n a n+1=12,则q=.10.(2018·江苏·T 14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k=____________.12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= .13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 18.(2015·湖南·理T14)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = .19.(2015·福建·文T16)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 20.(2015·江苏·理T11)设数列{a n }满足a 1=1,且a n+1- a n =n+1(n ∈N *).则数列{1a n}前10项的和为____________.21.(2015·全国2·理T16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 22.(2015·广东·理T10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .23.(2015·陕西·文T13)中位数为 1 010的一组数构成等差数列,其末项为 2 015,则该数列的首项为 .24.(2014·江苏·理T7)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 25.(2014·广东·文T13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .26.(2014·安徽·理T12)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 27.(2014·全国2·文T16)数列{a n }满足a n+1=11-a n,a 8=2,则a 1=____________.28.(2014·北京·理T12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 29.(2014·天津·理T11)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为 .30.(2013·全国2·理T16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 31.(2013·辽宁·理T14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= .32.(2013·全国1·理T14)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 33.(2012·全国·文T14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 三、计算题1.(2019·全国2·文T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.2.(2019·全国2·理T19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文T18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).4.(2019·天津·理T19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i=12na i c i (n ∈N *).5.(2019·浙江·T 20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 6.(2019·江苏·T 20)定义首项为1且公比为正数的等比数列为“M - 数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M - 数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n−2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M - 数列”{c n }(n ∈N *),对任意正整数k,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.7.(2018·北京·文T15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意x ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n+1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由; (2)设数列{a n }的前四项为a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m:(3)已知{a n }是公差为d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列. (1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1, √2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).10.(2018·天津·文T18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.11.(2018·天津·理T18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k=1n(T k +b k+2)b k(k+1)(k+2)=2n+2-2(n ∈N *). 12.(2018·全国2·理T17文T17)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.13.(2018·全国1·文T17)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =ann .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国3·理T17文T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m.15.(2017·全国1·文T17)设S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.16.(2017·全国2·文T17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.17.(2017·全国3·文T17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;}的前n项和.(2)求数列{a n2n+118.(2017·天津·理T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(2017·山东·理T19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.20.(2017·山东·文T19)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.1)求数列{a n}的通项公式;}的前n项和T n.(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列{b na n21.(2017·天津·文T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).22.(2016·全国2·理T17)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.23.(2016·全国2·文T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文T17)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.25.(2016·北京·文T15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.26.(2016·山东·理T18文T19)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .27.(2016·天津·理T18)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12−b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)kb k 2,n ∈N *,求证:∑k=1n1T k<12d2.28.(2016·天津·文T18)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1−1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n 2}的前2n 项和.29.(2016·全国1·文T17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.30.(2016·全国3·文T17)已知各项都为正数的数列{a n }满足a 1=1, a n 2-(2a n+1-1)a n -2a n+1=0. (1)求a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国3·理T17)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.32.(2015·北京·文T16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 33.(2015·重庆·文T16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 34.(2015·福建·文T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n,求b 1+b 2+b 3+…+b 10的值.35.(2015·全国1·理T17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.36.(2015·安徽·文T18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n+1S n S n+1,求数列{b n }的前n 项和T n .37.(2015·天津·理T18)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.38.(2015·山东·文T19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .39.(2015·浙江·文T17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n+1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .40.(2015·天津·文T18)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.41.(2015·湖北·文T19)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=a nb n,求数列{c n}的前n项和T n.42.(2014·全国2·理T17)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+…+1a n<32.43.(2014·福建·文T17)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.44.(2014·湖南·文T16)已知数列{a n}的前n项和S n=n 2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(-1)n a n,求数列{b n}的前2n项和.45.(2014·北京·文T14)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.46.(2014·大纲全国·理T18)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.47.(2014·山东·理T19)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.48.(2014·全国1·文T17)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)求数列{an 2n }的前n 项和. 49.(2014·安徽·文T18)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *.(1)证明:数列{a n n }是等差数列;(2)设b n =3n ·√a n ,求数列{b n }的前n 项和S n .50.(2014·山东·文T19)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n . 51.(2014·大纲全国·文T17)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.52.(2014·全国1·理T17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数.(1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国2·文T17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n-2.54.(2013·全国1·文T17)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{12n -12n+1}的前n 项和.55.(2012·湖北·理T18文T20)已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.56.(2011·全国·文T17)已知等比数列{a n }中,a 1=13,公比q=13.(1)S n 为{a n }的前n 项和,证明:S n =1-an 2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理T17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(1)求数列{a n}的通项公式;}的前n项和.(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n58.(2010·全国·理T17)设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.59.(2010·全国·文T17)设等差数列{a n}满足a3=5,a10=-9,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n及使得S n最大的序号n的值.。
2010-2019高考数学文科真题分类训练 专题二 函数概念与基本初等函数Ⅰ 第五讲 函数与方程 2019年 2019年 1.(2019全国Ⅲ文5)函数()2sinsin2fxxx在[0,2π]的零点个数为 A.2 B.3 C.4 D.5
2.(2019天津文8)(8)已知函数2,01,()1,1.xxfxxx剟若关于x的方程1()()4fxxaaR恰有两个互异的实数解,则a的取值范围为
(A)59,44 (B)59,44
(C)59,{1}44U (D)59,{1}
44
U
3.(2019江苏14)设(),()fxgx是定义在R上的两个周期函数,()fx的周期为4,()gx 的周期为2,且()fx是奇函数.当2(]0,x时,2()1(1)fxx, (2),01()1,122kxxgxx
,其中k>0.若在区间(0,9]上,关于x的方程()()fxgx有8
个 不同的实数根,则k的取值范围是 . 2010-2018年 一、选择题 1.(2017新课标Ⅲ)已知函数211()2()xxfxxxaee有唯一零点,则a= A.12 B.13 C.12 D.1 2.(2017山东)设,01()2(1),1xxfxxx≥,若()(1)fafa,则1()fa A.2 B.4 C.6 D.8 3.(2015安徽)下列函数中,既是偶函数又存在零点的是 A.ycosx B.ysinx C.ylnx D.21yx
4.(2015天津)已知函数22||,2()(2),2xxfxxx≤,函数()3(2)gxfx,则函数 y()()fxgx的零点的个数为
A.2 B.3 C.4 D.5 5.(2015陕西)对二次函数2()fxaxbxc(a为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 A.-1是()fx的零点 B.1是()fx的极值点 C.3是()fx的极值 D.点(2,8)在曲线()yfx上 6.(2014山东)已知函数12xxf,kxxg.若方程fxgx有两个不相等的实根,则实数k的取值范围是
(A)),(210 (B)),(121 (C)),(21 (D)),(2
7.(2014北京)已知函数26logfxxx,在下列区间中,包含fx零点的区间是 (A)0,1 (B)1,2 (C)2,4 (D)4,
8.(2014重庆)已知函数13,(1,0]()1,(0,1]xfxxxx,且()()gxfxmxm在 (1,1]内有且仅有两个不同的零点,则实数m的取值范围是
(A)91(,2](0,]42U (B)111(,2](0,]42U (C)92(,2](0,]43U (D)112(,2](0,]43U 9.(2014湖北)已知()fx是定义在R上的奇函数,当0x时,2()=3fxxx.则函数 ()()+3gxfxx的零点的集合为 (A){1,3} (B){3,1,1,3} (C){27,1,3} (D){27,1,3}
10.(2013安徽)已知函数32()fxxaxbxc有两个极值点12,xx,若11()fxx
2x,则关于x的方程23(())2()0fxafxb的不同实根个数为
(A)3 (B) 4 (C)5 (D)6 11.(2013重庆)若abc,则函数fxxaxbxbxcxcxa
的两个零点分别位于区间 (A),ab和,bc内 (B),a和,ab内 (C),bc和,c内 (D),a和,c内 12.(2013湖南)函数2lnfxx的图像与函数245gxxx的图象的交点个数为 (A)3 (B)2 (C)1 (D)0 13.(2013天津)函数0.5()2|log|1xfxx的零点个数为 (A)1 (B)2 (C)3 (D)4
14.(2012北京)函数121()()2xfxx的零点个数为 (A)0 (B)1 (C)2 (D)3 15.(2012湖北)函数2()cosfxxx在区间[0,4]上的零点个数为 (A)4 (B)5 (C)6 (D)7 16.(2012辽宁)设函数()fxxR满足()()fxfx,()(2)fxfx,且当0,1x
时,3()fxx.又函数()|cos()|gxxx,则函数()()()hxgxfx在13[,]22上的零点个数为 (A)5 (B)6 (C)7 (D)8
17.(2011天津)对实数a与b,定义新运算“”:,1,,1.aababbab,设函数 22()2,.fxxxxxR若函数()yfxc的图像与x轴恰有两个公共点,则实数c的取值范围是 (A)3,21,2U (B)3,21,4
U
(C)11,,44
U (D)311,,44U
18.(2011福建)若关于x的方程210xmx有两个不相等的实数根,则实数m的取值范围是 (A)(1,1) (B)(2,2) (C)(∞,2)∪(2,+∞) (D)(∞,1)∪(1,+∞) 19.(2011全国新课标)函数11yx的图像与函数2sin(24)yxx的图像所有交点的横坐标之和等于 (A)2 (B)4 (C)6 (D)8 20. (2011山东)已知()fx是R上最小正周期为2的周期函数,且当02x时, 3()fxxx
,则函数()yfx的图象在区间[0,6]上与x轴的交点的个数为
(A)6 (B)7 (C)8 (D)9
21.(2010年福建)函数223,0()2ln,0xxxfxxx≤,的零点个数为 (A)0 (B)1 (C)2 (D)3 22.(2010天津)函数()23xfxx的零点所在的一个区间是 (A)(2,1) (B)(1,0) (C)(0,1) (D)(1,2) 23.(2010广东)“14m”是“一元二次方程20xxm有实数解”的 (A)充分非必要条件 (B)充分必要条件 (C)必要非充分条件 (D)非充分非必要条件 24.(2010浙江)设函数()4sin(21)fxxx,则在下列区间中函数()fx不.存在零点的
是 (A)4,2 (B)2,0 (C)0,2 (D)2,4 二、填空题 25.(2018江苏)若函数32()21()fxxaxaR在(0,)内有且只有一个零点,则()fx在[1,1]上的最大值与最小值的和为 .
26.(2018浙江)已知R,函数24,()43,xxfxxxx≥,当2时,不等式()0fx的解集是______.若函数()fx恰有2个零点,则的取值范围是____. 27.(2017江苏)设()fx是定义在R且周期为1的函数,在区间[0,1)上,2,(),xxDfxxxD
其中集合1{|,}nDxxnn*N,则方程()lg0fxx的解的个数是 .
28.(2016山东)已知函数()fx2,,24,,xxmxmxmxm其中0m.若存在实数b,使得关于x的方程()fxb有三个不同的根,则m的取值范围是_______. 29.(2016年天津)已知函数2(43)3,0()(01)log(1)1,0axaxaxfxaaxx且在R上单调递减,且关于x的方程|()|23xfx恰有两个不相等的实数解,则a的取值范围是_______. 30.(2016年浙江)设函数32()31fxxx.已知0a,且()()fxfa 2()()xbxa,x∈R,则实数a=_____,b=______.
31.(2015福建)若,ab是函数20,0fxxpxqpq的两个不同的零点,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq的
值等于 . 32.(2015湖北)函数2()2sinsin()2fxxxx的零点个数为 . 33.(2015湖南)若函数()|22|xfxb有两个零点,则实数b的取值范围是 . 34.(2014江苏)已知)(xf是定义在R上且周期为3的函数,当)3,0[x时, |212|)(2xxxf.若函数axfy)(在区间]4,3[上有10个零点(互不相同),则实数a的取值范围是 .