北邮电磁场与电磁波测量实验报告5 信号源 波导波长
- 格式:docx
- 大小:142.33 KB
- 文档页数:11
北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。
本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。
实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。
电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。
磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。
实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。
然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。
在不同电流下,我们分别测量了电磁场的强度,并记录下来。
接下来,我们使用磁力计来测量电磁场的方向。
将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。
然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。
在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。
通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。
根据这些数据,我们可以绘制出电磁场的强度和方向分布图。
从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。
讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。
这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。
而我们的实验结果也验证了这一规律。
此外,我们还发现电磁场的强度和方向与测量位置和角度有关。
在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。
这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。
结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。
北邮电磁场与电磁波测量实验报告5-信号源-波导波长————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。
二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。
该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。
在教学方式下,可实时显示体效应管的工作电压和电流的关系。
仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。
波导波长的测量实验报告1.学习利用衍射光栅对波导波长进行测量的原理和方法。
2.掌握测量中的光学仪器的使用方法及其精度掌握。
3.了解波导的原理及其应用。
实验原理:1.光纤传输实现的基本原理:纤芯是一个折射率较高的导光区,包层是一个折射率较低的绝缘层,两层材料均为玻璃或者塑料。
在光缆中,采用了一种被称为全反射的现象,来使光在光缆中传输。
在光线从纤芯进入包层时,由于主要方向和法线之间的夹角大于全反射临界角,可以使光线完全反射回纤芯中。
这使得光线能够在光缆中绕弯直到终点。
2.波导的原理:波导是一种替代光缆的技术,也是一种用于集成电路的技术。
其基本原理是在与周围介质有不同折射率的介质中制作一条薄层的导光线路。
在这些波导中的光被限制在其中,不能扩散。
3.衍射光栅的原理与测量波导波长的方法:光束垂直入射于衍射光栅时,由于走过距离不同,在衍射光栅后的屏幕上,可观察到一系列亮暗相间的谱线。
如果把波导放在源与光栅之间,由于包层和芯的折射率不同,在光栅中的相位不同,在屏幕上的反射谱线也不同。
我们可以利用衍射光栅上谱线之间的间距与波长之间的关系,来测量波导的波长。
实验步骤:1.首先将波导放在光束和光栅之间,调整光束的位置和朝向,使得光束正好射入波导,并调整仪器,使得放大倍数可以在衍射光栅上观察到光束的足迹。
2.调整衍射光栅的位置和角度,以便得到最佳的衍射谱线,然后记录这些谱线之间的相对距离。
3.使用记录下来的音频信号,利用计算机程序来刻画出光谱图,测量这些谱线的中心波长,并将结果记录下来。
4.使用计算机程序分析记录下来的波长及其误差,并与理论值比较进行验证。
实验数据:1.衍射光栅的间距为d=10 ^ (-5)m;2.波导获取的谱线距离分别为:1.5mm, 3mm, 4.5mm, 6mm;3.根据公式:λ=d*sinθ,可以计算得到波导的波长:λ1=1.5 * 10 ^ (-3)m * sin(θ)=8.87 * 10 ^ (-7)m,λ2=3 * 10 ^ (-3)m * sin(θ)=7.98 * 10 ^ (-7)m,λ3=4.5 * 10 ^ (-3)m * sin(θ)=8.55 * 10 ^ (-7)m,λ4=6 * 10 ^ (-3)m * sin(θ)=7.35 * 10 ^ (-7)m,其中θ=60°。
北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:实验一微波测量系统的使用和信号源波长功率的测量一、实验目的:(1)学习微波的基本知识;(2)了解微波在波导中传播的特点,掌握微波基本测量技术;(3)学习用微波作为观测手段来研究物理现象。
二、实验原理:本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。
该系统由以下九个部分组成:1.波导测量线装置2.晶体检波器微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流I来读数的。
3.波导管本实验所使用的波导管型号为BJ-100。
4.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
5.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
6.谐振式频率计(波长表)电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
7.匹配负载波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。
8.环形器它是使微波能量按一定顺序传输的铁氧体器件。
主要结构为波导Y型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外面有“U”形永磁铁,它提供恒定磁场H0。
9.单螺调配器插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配状态。
篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。
北邮电磁波与微波测量第五次————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁波与微波测量第五次实验报告学院:电子工程学院班级:姓名:学号:实验三微波驻波比的测量由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。
微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。
电压驻波系数的大小往往是衡量一个微波元件性能优劣的主要指标。
驻波测量也是微波测量中最基本和最重要的内容之一,通过驻波测量不仅可以直接得知驻波系数值,而且还可以间接求得衰减器、相移量、谐振腔品质因数,介电常数。
一、实验目的(1)了解波导测量系统,熟悉基本微波元件的作用。
(2)掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。
(3)掌握大、中、小电压驻波系数的测量原理和方法。
二、实验原理驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。
在大功率情况下,由于驻波存在可能发生击穿现象。
此外,驻波存在还会影响微波信号发生器输出功率和频率的稳定度。
因此,驻波测量非常重要。
电压驻波比测量驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在测量时,通常测量电压驻波系数,即波导中电场最大值和最小值之比,即测量驻波比的方法与仪器种类很多,有直接法,等指示度法,功率衰减法等。
本实验着重熟悉用驻波测量线来测驻波系数的几种方法。
(1)直接法直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。
若驻波腹点和节点处电表读数分别为Umax,Umin则电压驻波系数ρ:当驻波系数1.5<ρ<5时直接读出,即可。
微波实验报告波导波长测量电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E =EY =E0 sin sin?ZYZ?I?C?sin2?d?g??n、作出测量线探针在不同位置下的读数分布曲线北京邮电大学电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片,在测量线中入射波与反射波的叠加为接近纯驻波图形,只要测得驻波相邻节点得位置L1、L2,由公式即可求得波导波长两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置,就可求得波导波长为:’?g = 2 Tmin- Tmin响后面的测量校准晶体二极管检波器的检波特性将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u沿线的分布图形设计表格,用驻波测量线校准晶体的检波特性作出晶体检波器校准曲线图令d作为测量点与波节点的距离;do是波节点的实际位置,d0+d 就是测量点的实际位置:再移动探针到驻波的波腹点,记录数据,分别找到波腹点相邻两边指示电表读数为波腹点50%对应的值,记录此刻探针位置d1和d2,根据公式n=()g求得晶体检波率n,和所得的数值进行比较三、实验结果分析数据分析:由于此时波导中存在的是驻波,并且测量的位置是从波腹到相邻的波节,所以画出来的波形应该是正弦曲线的四分之一,由上图可以看出,实验结果基本符合,误差在允许上图为对数坐标,横轴表示logE,纵轴表示logU分析:根据理论分析,上图应该是一条斜率为n的直线,而实际描出的点连成的线不是一条很直的直线,笔者决定采用理论拟合法拟合出一条直线拟合后直线的斜率为,所以晶体检波率为第二种定标法??=(λg==a.两点法测量波导波长+= 22+136T’min =? T1 ? T2 ?==22Tmin =? T1 ? T2 ?=‘?g = 2 Tmin- Tmin=b.间接法测量波导波长北京邮电大学电磁场与电磁波测量实验实验报告实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术; (3) 学习用微波作为观测手段来研究物理现象二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能在教学方式下,可实时显示体效应管的工作电压和电流的关系仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小衰减器起调节系统中微波功率从以及去耦合的作用 4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率图1 实验原理框图表1 信号源波长测量表按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E = EY = E0 sin sin?Z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态微波测量线应用实验报告一、实验目的1、了解一般微波测试线的组成及其主要元、器件的作用,初步掌握它们的调整方法2、掌握波导中波导波长和驻波比的测量方法3、掌握调配器调配的方法及其对传输线驻波比的影响二、实验内容1、测量波导传输线中的横向场分布; 2、测量波导传输线中的波导波长;3、测量波导传输线中的驻波比;4、应用三螺调配器降低波导传输线中的驻波比三、微波测量线组成及测量原理常用的一般微波测试线组成如图1所示信号源能较稳定地工作可变衰减器也是由一小段波导构成的,其中放有一表面涂有损耗性材料,并与波导窄壁平行放置的薄介质片介质片越靠近波导中心处,衰减越大,反之,衰减越小利用可变衰减器可以连续地改变信号源传向负载方向功率的大小;另外,如同隔离器一样,可变衰减器也具有一定的隔离作用纵向场分布测量线是一段在其宽壁中心线开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导纵向移动时,测量放大器表头显示的数值变化就对应着波导中纵向电场幅度的分布横向场分布测量线是一段在其宽壁横向开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导横向移动时,测量放大器表头显示的数值变化就对应着波导中横向电场幅度的分布三螺调配器为波导传输线的终端负载,他由三根细圆柱金属棒分别在波导宽边中心线的不同纵向位置插入波导中,通过每一根金属棒伸进波导内部长度的变化改变反射波的幅度和相位,可以将传输线从终端短路状态调整到终端匹配状态四、实验方法与实验步骤1、首先按图1所示将测量系统安装好,然后接通电源和测量仪器的有关开关,观察微波信号源有无输出指示若有指示,当改变衰减量或移动测量线探针的位置时,测量放大器的表头指示会有起伏的变化,这说明系统已在工作了但这并不一定是最佳工作状态例如,若是反射式速调管信号源的话还应把它调到输出功率最大的振荡模式,并结合调节信号源处的短路活塞,以使能量更有效地传向负载若有必要,还可以调节测量线探头座内的短路活塞,以获得较高地灵敏度,或者调节测量线探针伸入波导的程度,以便较好地拾取信号的能量对于其它微波信号源也应根据说明书调到最佳状态有时信号源无输出,但测量放大器也有一定指示这可能是热噪声或其它杂散场的影响;若信号源有输出,但测量放大器的指示不稳定或者当测量线探针移动时,其指示不变,均属不正常情况,应检查原因,使之正常工作系统正常工作时,可调节测量放大器的有关旋钮或可变衰减器的衰减量,使测量放大器图3 终端短路状态下波导中纵向场幅度分布图3、测量波导传输线中的驻波比在上述条件下移动纵向场分布测量线中电场探针读取测量放大器读数的最大值和最小值,并记录五、实验报告内容1、画出一般微波测试线系统的装置简图,并说明各部分功能功能:微波源:提供信号隔离器:防止后级负载对信号源造成影响可变衰减器:防止信号太大使测量放大器超过量程纵向和横向场分布测量线:用于测量腔内的横向和纵向电场分布情况三螺调配器:用于接各种负载探针、检波器、测量放大器:用于测量和显示数据2、总结各实验项目的主要步骤,测试数据和计算结果 1)将负载短路片接上;找到峰值点,然后在峰值点两侧各找一点,使其幅度值相等,读取坐标位置;这两点中心点即为峰值点,测量两个峰值点的坐标,他们的差值即为半波长;半波长:波长为: 2)将负载接到终端找到波峰和波谷对应的幅度,作比值即可 Umax = 62 Umin = 30微波工作波长和波导波长测量一、实验原理:工作波长λ是微波源发射的电磁波在波导中传播的波长,它是连续的等幅波在自由空间或波导中传播工作波长是相同的这种波的发射机构是反射式速调管中的电子束经受速度调制后所发射的电磁波波导波长λg 则是工作电磁波在波导中两侧壁来回反射,形成电磁场场强沿波导传播方向的周期性分布,这种周期就对应于波导波长λg λ与λg可用下面公式计算:1 c?微波在波导两侧全反射沿Z方向传播 ?2?g?微波在波导中全反射使电磁场沿Z方向出现周期性分布,对应的长度称为波导波长λg二实验方法可用吸收谐振的方法测量微波发射频率,然后再计算工作波长λ圆柱形腔体经耦合孔与波导相通,改变腔体的固有频率,当与微波的频率相同时腔体就共振吸收微波能量,传播的微波能量就会减小,从而测到微波频率用驻波的方法测量波导波长在波导中形成驻波,用测量线测量驻波中的电场,可求得λg。
信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究指导老师:日期:目录一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4、建筑物的穿透损耗的定义 (3)三、实验内容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (4)3、数据录入 (5)4、数据处理 (6)五、实验结果与分析 (6)1、磁场强度地理分布 (6)2、磁场强度统计分布 (8)3、建筑物的穿透损耗 (9)六、问题分析与解决 (9)1、测量误差分析 (9)2、场强分布的研究 (10)七、分工安排 (10)八、心得体会 (10)九、附录:数据处理过程 (12)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。
二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。
对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。
因此基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。
电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。
电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二 波导波长的测量一、 实验内容波导波长的测量【方法一】两点法 实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输TE10模)终端(Z =0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:Z aXE E E Y βπsinsin 0)(==在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值1T 和2T ),就可求得波导波长为:T 2 min 'min g -=T λ由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:() 2121min T T T +=最后可得 T 2min 'min g -=T λ(参见图四)YZ【方法二】 间接法矩形波导中的H 10波,自由波长λ0和波导波长g λ满足公式:2 12⎪⎭⎫ ⎝⎛-a g λλλ=其中:f g /1038⨯=λ,cm a 286.2=通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式λ0=c f确定出λ0,再计算出波导波长g λ。
北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。
二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。
该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。
在教学方式下,可实时显示体效应管的工作电压和电流的关系。
仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。
由开槽波导、不调谐探头和滑架组成。
在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。
线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。