线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx
- 格式:docx
- 大小:238.51 KB
- 文档页数:39
习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。
第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1))⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010********* 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B ,求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式. 例如,⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013; 解⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B . 11.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x xx x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x xx x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331,于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫⎝⎛--0000000021101201,于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫⎝⎛-00000010002/102/12/11,于是 ⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z y y z y x ,即⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1, k 2为任意常数). (4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101,于是⎪⎪⎩⎪⎪⎨⎧==--=++=ww z z w z y w z x 757975767171,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1, k 2为任意常数). 14. 写出一个以⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x为通解的齐次线性方程组. 解 根据已知, 可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x xx x ,与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x cx c c x c c x ,或 ⎩⎨⎧+-=-=432431432x x x x x x ,或 ⎩⎨⎧=-+=+-04302432431x x x x x x , 这就是一个满足题目要求的齐次线性方程组.15. λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解? 解⎪⎪⎭⎫⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr. (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解, 必须R (A )<R (B ), 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0. 因此λ=-2时, 方程组无解.(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0. 因此当λ=1时, 方程组有无穷多个解.16. 非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 当λ取何值时有解?并求出它的解. 解⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ.要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2. 当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫ ⎝⎛--000001101101,方程组解为⎩⎨⎧=+=32311xx x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x , 即⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数).当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101,方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ,即 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17. 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解. 解B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ~⎪⎪⎭⎫⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ.要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须 (1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时, 方程组有唯一解. 要使方程组无解, 必须R (A )<R (B ), 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)≠0, 所以当λ=10时, 方程组无解.要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221, 方程组的解为⎪⎩⎪⎨⎧==++-=33223211x x x x x x x , 或⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1, k 2为任意常数). 18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T .证明 必要性. 由R (A )=1知A 的标准形为)0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,即存在可逆矩阵P 和Q , 使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=PAQ , 或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅=Q P A .令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a , b T =(1, 0, ⋅⋅⋅, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T .充分性. 因为a 与b T 是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1, 所以R (A )=1.19. 设A 为m ⨯n 矩阵, 证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ; 证明 由定理7, 方程AX =E m 有解的充分必要条件是R(A)=R(A,E m),而| E m|是矩阵(A,E m)的最高阶非零子式,故R(A)=R(A,E m)=m.因此,方程AX=E m有解的充分必要条件是R(A)=m.(2)方程YA=E n有解的充分必要条件是R(A)=n.证明注意,方程YA=E n有解的充分必要条件是A T Y T=E n有解.由(1)A T Y T=E n有解的充分必要条件是R(A T)=n.因此,方程YA=E n有解的充分必要条件是R(A)=R(A T)=n.20.设A为m⨯n矩阵,证明:若AX=AY,且R(A)=n,则X=Y.证明由AX=AY,得A(X-Y)=O.因为R(A)=n,由定理9,方程A(X-Y)=O只有零解,即X-Y=O,也就是X=Y.。
第三章 向量组的线性相关性1.设T T T v v v )0,4,3(,)1,1,0(,)0,1,1(321===, 求21v v -及32123v v v -+.解 21v v -T T )1,1,0()0,1,1(-=T )10,11,01(---=T )1,0,1(-=32123v v v -+T T T )0,4,3()1,1,0(2)0,1,1(3-+=T )01203,41213,30213(-⨯+⨯-⨯+⨯-⨯+⨯= T )2,1,0(=2.设)(5)(2)(3321a a a a a a +=++-其中T a )3,1,5,2(1=, T a )10,5,1,10(2=,T a )1,1,1,4(3-=,求a解 由)(5)(2)(3321a a a a a a +=++-整理得)523(61321a a a a -+=])1,1,1,4(5)10,5,1,10(2)3,1,5,2(3[61T T T --+=T )4,3,2,1(=3.举例说明下列各命题是错误的:(1)若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示. (2)若有不全为0的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关. (3)若只有当m λλλ,,,21 全为0时,等式 01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.(4)若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数, m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ 同时成立.解 (1) 设)0,,0,0,1(11 ==e a 032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ 原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 其中m e e ,,1 为单位向量,则上式成立,而m a a ,,1 ,m b b ,,1 均线性相关(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ ) m m b a b a b a +++⇒,,,2211 线性无关 取021====m a a a 取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的.(4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2= ⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.4.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组 4321,,,b b b b 线性相关.证明 设有4321,,,x x x x 使得 044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k , 411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相 关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解 则4321,,,b b b b 线性相关. 综合得证.5.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组 r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关. 证明 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k 因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221r r r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k因为0110011011≠= 故方程组只有零解则021====r k k k 所以r b b b ,,,21 线性无关6.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---140113130********211.解 (1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛53105310321043173125 2334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.7.求下列向量组的秩,并求一个最大无关组:(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2) )3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta . 解 (1) 3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~ 秩为2,最大线性无关组为TT a a 21,. 8.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能 由它们线性表示,证明n a a a ,,,21 线性无关. 证明 n 维单位向量n e e e ,,,21 线性无关不妨设:nnn n n n nn nn a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T n T T nn n n n n T n T T a a a k k k k k k k k k e e e 2121222211121121 两边取行列式,得 T n T T nn n n n n T n T T a a a k k k k k k k k k e e e 2121222211121121=由002121≠⇒≠TnTTT n T T a a a e e e即n 维向量组n a a a ,,,21 所构成矩阵的秩为n 故n a a a ,,,21 线性无关.9.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件 是:任一n 维向量都可由它们线性表示.证明 设n εεε,,,21 为一组n 维单位向量,对于任意n 维向量 T n k k k a ),,,(21 =则有n n k k k a εεε+++= 2211即任一n 维向量都 可由单位向量线性表示.必要性⇒n a a a ,,,21 线性无关,且n a a a ,,,21 能由单位向量线性表示,即 nnn n n n nn nn k k k k k k k k k εεεαεεεαεεεα+++=+++=+++=22112222121212121111故⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n T T T nn n n n n T n T T k k k k k k k k k a a a εεε2121222211121121 两边取行列式,得T nT T nnn n n n Tn TTk k k k k k k k k a a a εεε2121222211121121=由0021222211121121≠⇒≠nn n n n n TnTTk k k k k k k k k a a a令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯nn n n n n n n k k k k k k k k k A212222111211则 由⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-T n T TT n T T T n T T T n T T a a a A A a a a εεεεεε 212112121 即n εεε,,,21 都能由n a a a ,,,21 线性表示,因为任一n 维向量能由单 位向量线性表示,故任一n 维向量都可以由n a a a ,,,21 线性表示.充分性⇐已知任一n 维向量都可由n a a a ,,,21 线性表示,则单位向量组:n εεε,,,21 可由n a a a ,,,21 线性表示,由8题知n a a a ,,,21 线性无关.10.设向量组A :s a a a ,,,21 的秩为1r ,向量组B :t b b b ,,,21 的秩2r 向量组C : r s b b b a a a ,,,,,,,2121 的秩3r ,证明 21321},max{r r r r r +≤≤证明 设C B A ,,的最大线性无关组分别为C B A ''',,,含有的向量个数 (秩)分别为221,,r r r ,则C B A ,,分别与C B A ''',,等价,易知B A ,均可由C 线性表示,则秩(C )≥秩(A ),秩(C )≥秩(B ),即321},max{r r r ≤设A '与B '中的向量共同构成向量组D ,则B A ,均可由D 线性表示,即C 可由D 线性表示,从而C '可由D 线性表示,所以秩(C ')≥秩(D ), D 为21r r +阶矩阵,所以秩(D )21r r +≤即213r r r +≤.11.证明()()()B R A R B A R +≤+.证明:设T n a a a A ),,,(21 = T n b b b B ),,,(21 =且B A ,行向量组的最大无关组分别为T r T T ααα,,,21 Ts T T βββ,,,21 显然,存在矩阵B A '',,使得 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T s T T T n T T A a a a ααα 2121,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T s T T T n T T B b b b βββ 2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+∴T n T n T T T T b a b a b a B A 2211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=T s T T T s T T B A βββααα 2121 因此 ()()()B R A R B A R +≤+12.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ⨯矩阵,且A 组线性无关。
第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。
习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。
11,。
12,如3为三个相等的正数,则如为 ___ •解A.(a b(10)设三阶矩阵/= b ab(B) a = b 或Q + 2/?H 0; (D) QHb 且 a +(B) 3;(c)r(D) V3 .b 、b ,若/!的伴随矩阵的秩为1,则必有2/?H0.解c.(11)设/f,分别为〃阶矩阵力,〃对应的伴随矩阵,分块矩阵(?=(A)\ 解D.A B*0 、 0B 才/(12)设4〃都是〃阶非零矩阵,HAB = O, (A)必有一个等于零;(C) 一个小于〃,一个等于〃; 解 B.(13)下列矩阵屮, (B)(D)则A, B 的秩.(B) (D) 都小于斤;都等于n.、,则C 的伴随矩‘0 0 1、‘0 0 1、‘1 0 0、‘1 0 0、(A) 0 1 0; (B) 0-10:(C) 0 3 0:(D)0 1 0J 0 o,J 0 0丿<0 0 1 丿<5 0 1?解B.( 、 a\\a\2°13( 、Q 。
]^22。
23<0 10"(14 )设 / =a2\a22 a23,B =a\\a\2a\3,P 、=1 0 01。
31 。
32 。
331°3|+°11 °32 + °12 °33+°13/<0 0 brl、0 (A ) AP }P 2 = B ;(B) AP 2P } =B ; (C) Pf = B ; (D) P?P\A = B •解C.(15) 设力为3阶矩阵,将/的第2行加到第1行得B,再将B 的第1列的-1倍加到第2列得C,记卩=、0 1;(A) C = P l AP ; (B) C = PAP x :(C) C = P J AP ; (D) C = PAP 7 .解B.(16)设”阶矩阵/与〃等价,则必有 (A)当|/l|=d(aH0)时,\ B\= a ;(B) 当|/l|=d(dH0)时,|B|=—a ;(C)0 0、 砂J 不是初等矩阵.解D.(17)设力是3阶方阵,将/的第1列与第2列交换得〃,再把〃的第2列加到第3列得C,则满足AQ = C 的可逆矩阵Q 为 _______ .<0 1 0>1 0>1 0、<0 1 n(A) 1 0 0 :(B) 1 0 1 ;(C) 1 0 0 ;(D)1 0 0<1 0]丿卫 0 1><0 1 1;.0 \ 0 1丿解D.(18)设/为n (n> 2 )阶可逆矩阵,交换/的第1行与第2行得矩阵〃,4: £分别为〃的伴随矩阵,则 ________ •(A)交换/f 的第1列与第2列得B";(B)交换/f 的第1行与第2行得/;解C.<1 1< 1 2 3、 4.设/ =1 1 -1 ,B = -1 -2 4<1 一1< 05 b,求 2AB-3A, A T B T.解(C) 当MkO 时,|B|=O ;(D)当|/|= 0吋,|B|=O.(C)交换/的第1列与第2列得—(D)交换才的第1行与第2行得一〃.3.已知矩阵/=I-2< 1 3 < 2 6]2A = 2=■ 1一2 - -1 -4・ -2.//(1 30>< 3 3、 4 + B =+—2 一12k-1 b3A-2B = 31-2 '13 <2 0>< 56、一2 -1J 2丿<-5 79、T 43 + 2/42 +J-E.3、<1 0、<-15 -12、 1丿 <0 1丿< 8-7,T 丿求2/,力 + 〃,3"2〃,加, 2丿20、 (-\ 一 1丿2丿AB = 才+ 2/+/ — E 二1-21+ 2 1-2q i i>'12 3、 <1 1 1、r-3 713、 2AB-3A = 2 i i -i-1 -2 4 -3 1 1 -1 — -3 -13 15<i j i 丿< 0 5 1丿J -1 1 丿< 1 21 -3>(1)原式=or+by + cz ; 、 xz3 6、 (3)原式=—2 412 丿了35、(4)原式=6<49,(—2 — 7 8、⑸原式寸_18 _5 ioj「1 -1、<61 6)2 -25 — 0 -7 44 1 J\2 5 -4.ai1、 A T B T = 1 1 -1 1 -1 1/、X(1) (d, by C)y ■ ■(2)y工丿Z );(3)(1丿(5)(7)-12):-1 一4丿-1 -3 JI "1•12 a22 ■13 。
23、兀2/a22a32)-11°(2)原式=尢y 2 y yz yz ;5•计算下列矩阵的乘积.(73、 a23一2丿(6)、 1 (8)1 2丿a2\原式=+ a 22x ; + ci 33x} + 2a n x y x 2 + 2a [3x {x 3+2tz 23x 2x 3 ;所以,AB W BA .(2)因为所以,3 + 〃)2工才+2肋+矿(3)因为(6)原式=a2\宀1+細1 a 22色2 +滋i2 、r 2 - 3、r-4 * 丿 <0 3< 0 5J 2 ,0(1 2) AB =匕8 J(3 4) BA =(4 6丿- 6、 -9,A 2-B 2=- 8、 -L(7) (8)E 、 (E B 、、A 、B\ + Br£〃2丿J力2〃2 )4d+B2=C)、 <3‘2 - 3、‘9 -4、+—/ < 一1<032 2,所以,<1 0 2 19 2 -4、 2原式二0 0 -4 9<0 0 0 6>6•设/2、 3(力 + 〃)214、29A 2 ^ZAB+B 2=12、31原式=其中问所以,+一〃2.7.举例说明下列命题是错误的. (1)(2) 若 A 2 =A,则 A = 0 或/ = (3) 解若/X = /丫,且A^O,则乂 = 丫・(1) 设/ =(2)(3) 设/=1一1T<0°) 0> (°、丿 (°0、 °丿(°0、X",但AX = AY.8.设k 为正整数,求/X其中 (1) A =(2)解(1)由于A 2、1,、I川纳得到> 再用tl 纳法证明之.Q 22A ]3才 32)Q 44才 6才、A 2= 02222 ,A 3 = 0 才 3才 ,A 4 = 0才4才\ 022/才丿/0 k 0才丿1丿(2)计算得到k(kT)才-2、归纳出再用归纳法证明之.9.设/=、 2,求满足AB = BA 的矩阵〃.勺1 "12 "13B= b2i b22 b23 ,031 “31^32 >3Z?n = 3/?,, +2/?2i,2/?H +3% = 3b「+2b22, 2/?p + 3b] 3 = 3/?I3+2», 3 方2i =3/?21 + 2/?3l,< 2b2] + 3bJ = 3bu + 2竝, 2ba 4- 3b23 = 3方23 + 2b和, 3给=3妇,2b3l 4- 3b32 =3b32, 2032 + 坯3 =地3.解之,可得b3\ =仇2 =爼=0,"11 = “22 =伏3 'b\2 =〃23'0]3 =勺3・因此,X<010.设4〃均为川阶矩阵,证明(1)若昇是对称矩阵,则B T AB也是对称矩阵;(2)若/,B都是对称矩阵,则力〃是对称矩阵的充分必要条件是AB = BA. 证明(1)因为(〃丁/〃)丁 = 〃丁/丁(〃丁)丁 = 〃丁力〃,所以,R T AB也是对称矩阵.(2)因为(AB-BA )1-(BAf = B r A T -A'B 1'所以,AB-BA 是对称矩阵.因为(AB + BA^ = (/〃)T + (〃/)丁 = 〃T/T + 〃T 〃T = (_〃) / + A(_〃)=所以,AB^BA 是反对称矩阵.*12.对以下矩阵力和〃,分别求A®B 和3(8)/.13.证明奇数阶反对称矩阵一定不满秩. 证明设/是斤阶反对称矩阵,则\ 5) (1) A =I 3 4丿-14、I 2 —3丿ri 2解直接由定义计算.(1)A® B =(_B 3B (2)B® A =-A 2A A®B =(OB (2A B®A = 3A(2) A =<0 -(1 -4 -5 20]-2 3 10 -15-3 12 -4 166 -98 -12 丿 / 1 -5 -4 20、-3 -4 12 16-2 10 3 -156 8 -9 -12丿‘2-1 4 --2、30 6 01 12 20 -2910 -3 0、0 0 -1-b4 -1 -2、 0 -2 0 1 3 6 0 00 -3 0 ■ 01 2 1 2<0 -1 0 -b5B -AOA —B) 2B\4B 丿4小 昇丿‘2 -1 B= 3 01 1AB-BA,A 1' =-A;川=国]=卜同=(_1)什力 [1一(一1)〃]同=0.因为〃是奇数,所以A =0, /不满秩.14.设/为72阶矩阵A VA = E ,同v0,证明|E + &| = 0.证明因为E A\ = \A T A + A\ = \A y + E\ |/l| = |/4 + E||/i|所以,即 E + A =0.解原方程组写成矩阵形式有因此,/ 、兀 1 <1 -1 -1] -1兀2 =2 -1 -3 1 = 0 1兀3丿<3 2 -5‘17.设/为斤阶可逆矩阵,II 每一行元素之和都等于常数d (dHO ),证明/的逆矩阵的每一行元素证明由题意有<1 0 4、r-n2 2、 (1) 2 2 7 ; (2)-4 0 11 一2丿k 6 -1 -I<1 1 0 2 0 0 0](3)2 13 01 2 1 4丿1‘一11 4 一8、‘1 0 2、(1)-- 4 -2 1; (2)2-133,2—1 2,、4 1 8,< 24 0 0 0、 1 -12 12 0 0 (3)——24 -12 -4 8 0< 3 -5 -2 6丿2 <3 / 、 兀1'—115.求下列矩阵的逆矩阵.16.利用逆矩阵解下列方程组,< 2兀| - x 2 - 3X 3 = 1,-1 -1 2因此,1 1■= A~]1■a■■■■<1 > kb上式说明结论成立.18.设昇* =0, k为正整数,证明(E-AY]=£ + / +…+证明由(E—M)(£+/+・・・+/AF)=E+/+・・・+/*T—M—昇2 A k =E .可知等式成立.19.已知E + AB可逆,试证E + BA也可逆,且(E + BA)1 =E — B(E + AB)'X A .证明由题设有{E BA^E -B{E + AB^ A = E - B(E AB)] BA-BAB(E AB)] A= E^BA-B[E + AB](E^AB)' A=£ + BA — BA = E.因此,结论成立.20.设H阶矩阵A满足A2-A-^E = O,证明A-E . A^E均可逆,并求(/一E)"、(/+ £尸・解由已知等式可得(肠)(A-E) = E,4*(/一2£)(力+ £)= £ ・因此,(A-Ey l =-A ,4(/ + E)T =*(/一2£).21.设三阶矩阵/满足 Aa i =ia i (z = l, 2, 3),其屮,列向量«,=(!, 2, 2)T , a 2 =(2, -2, 1)T,a 3 =(-2, -1, 2)T ,试求矩阵解由已条件有A(a } a 2 a 3) = (Aa t Aa 2 Aa y ) =2a 2 3a 3),即1 2 -2、 = <1 4 -6 2 -2 -1 2 -4 -3 2 1 2丿 (2 2 6,故有‘3 -1、X = (E _ 町' B = 2J -Ir o 10、<1 -1]22.已知矩阵方程X = AX + B,其中力二-1 11 ,B =2 0L1 0-L 7(5 -3丿求矩阵X.解由题设可得X = (E-Ay }B.而‘1 -1(E-AY 1 = 1 0 J 0 0Y 1-12丿-13丄31 3>12 22>0 0丄7>2-2厂I 、 丿、 丿6 3 612 2 < lx 1 - 9 --2zr \\2-3 2-3 2 - - o 5-3 2-3-23 23.设三阶方阵4〃满足关系式A [BA = 6A + BA,且A= 0 -40 0(A-l -E )BA = 6A,B = 6(A'1-E )~l AA'1=6(E — 町U ・另一方面,(E — 力尸76>(才尸解由条件可得解由题设可得24. (3( 1 、2341 3471 \6丿V 7>、已知三阶矩阵/的逆矩阵为昇"<1 1 1,求伴随矩阵/f 的逆矩阵.利用/t =-1 HI才‘得到E = A lA=丄A = A胡,所以,而屮2,故fl ⑷7=2(屮尸二2 1 1 2-1_丄<~22)-2 2 0o )-2,P~X AP =A, 求才.B = 6‘3 0123丿25.设有 P = f -1r 1 ,A =A i5=P (P lAP )l>P 1= PA i5Pl26.求下列分块矩阵的乘积, 其中A, B.E 均为〃阶矩阵.(1)(E 利;27.设£为正整数,‘34 0 0、4-300A -0 0 2 4 (0 0 0 2丿28.设昇,B 分别为厂阶和S 阶可逆矩阵,求下列分块矩阵的逆矩阵.'0 A>(A 0、(1); (2)⑴Q)< B,解(1)设'0A >-1%X] 30丿X“r-i,i2八0oYY 1=1-2” .1 + 215\2 + 2打F 、'0 £、 (A\'E 0、 4 ⑷(/ E);(5)E °,4丿 ; (6) / 0(1) AT\A £);⑵(/ E )[\A £);⑶a 丿解A 2k2k-3X 0 23、2k0 ][o A?,0£4*⑹A 2k=其屮,X P X4是「阶和£阶方阵,则有‘0 /、</IX3AX^ E 0、3 0,比xj BX_小E卩比较最后两个分块矩阵,得到矩阵方程组AX3=E r,AX, = 0, BX、= 0,BX2=E$.解之,得到X4 = 0,“ x】=o,X2 = B'.因此,(2)设'A 0、-1 X〕、C B)xj其屮,X P X4是「阶和$阶方阵,则有(A 0、Xj(AX. AX2 '(E r 0、,C B)& xj ~[CX^BX. CX^BX-比较最后两个分块矩阵,得到矩阵方稈组AX2=0,CX\ + BX3 = 0,CX2 + BX4 =E s.解之,得到x严= A~\二",= -B1CA\=B\2因此,‘1 0 -1 2、fl 3 0 0、2 1 1 1 ■(2) 2 8 0 0 ■0 0 1 01 0 1 0、0 0-1 b1 2 3丿'COS&sin& 0 0 0、‘0% 0 … 0、 -sin& COS&0 0 00 0 a 2 … 0 0 0 1 a b ; (4)■ ■ ■ ■ ■ ■ • ••• 00 0 1 a0 0 …an-\、°0 0 b0 0 … 0丿29.用矩阵的分块法求下列矩阵的逆矩阵.(1)(3)勺工0./=1(1)(2)(3)(4) -2-43 22 3 2 7 6-1 -21 3>COS&sin& 0 0< °一sin&COS&0 0 0o 、o a 2—b将矩阵分块可得这里,A^={a n Y }=cC所以,(1)证明〃可逆;(2)求AB 1 .证明(1) 根据行列式的性质有,|B|二一同H0,故〃可逆. (2) 因为B = E(z, j)A ,所以,AB~]=A[E^ j)AY ]=AA~}E(ijy l =E(iJ).32.用初等变换法求下列矩阵的逆矩阵.‘3 2 1、 (2) 3 1 5,3 2 3,< 3 0 -2 20 2 -1) 1(4)1 -2 -3 -2< 0 1 230.用初等变换求下列矩阵的秩"4 -1 3 -2、3 -14 -2(1)■3 -2 2 -4.0 1 2 2\7< 1 1 1 1 r.3 2 1 1 -3 (3)•0 1 3 2 55 4 3 3 -L(3) 3; (4) 3.31.设/是斤阶可逆矩阵, "00 • • •0 • • • 0 00 • • a~l • ■ • • • •0 • • 0■ ■■• <0■ 0 ■ 0• 0丿厂] 12 20 2 1 5 -1(2)2 03 -1 3< 1 10 4 -b'21 8 3 72 -3 0 7 -5(4)3 -2 5 8 0132< 1 0 2 (1) 2-1 3< 41 8<1 1 1 r1 1 1 0(3)1 1 0 00 0 0乂 0解(1) 3; (2) 3; 将/的第i 行和第丿行互换后得到的矩阵记为B,<-11 2 2) ’ 7 6 2 3、3 ~2(1) -4 0 1 ■(2) -1 -1 2 ■k 6 — 1 - -b1门10 -<"2 2丿<0 0 0'1 1 -2_4、0 01 M M 11 0-1(3);(4)0 1 -1一1 -1 36<1 - -1 0°丿< 2 1 -6-'0>*33.求下列矩阵/的广义逆/一.可见/?(/!) = !,用初等矩阵表示为于是‘10 0、 P= -2 1 0 , Q = E [f < 0 0 I‘10 0、/2) -2 1 0 =(l-2/j /, /2),.0 0 L其中厶,厶为任意复数.(2) 对矩阵进行初等变换可得力=(00 1)F^(1 0 °),可见7?(/) = 1,用初等矩阵表示为'I)(1) A = 2 ;(2) / = (0 0 1);解(1)对矩阵进行初等变换可得A= 2O'1 -1、仃0 1、(3) A =; (4) A =1 2 丿<1 T b=(1‘0 0 (0 0 1) 0 1 1 01]0 =(1 0 0).0丿<0 0 1、f 1、A~ = 0 1 0=<1 0 0 丿 严2丿,1丿其中%加2为任意复数•(3) 对矩阵进行初等变换可得可见R(A) = 2,用初等矩阵表示为q o 、 (1 _i]fi 1、<1 0、 J i><o 1丿<0 b于是(4) 对矩阵进行初等变换可得于是于是p =d ,"0 Q= 0 1 0 1、1 00 0丿A = < 1 -1、 々+4 、 <1 -<-1 2丿 /<0 1J C2+C]'<1 0、(0<1 n r 0、 仃0、'2 r ==<0 LJ i 丿J L A' <1-1 1丿(° -1c 3+(-l)c {(° -1(-1"(10 0、 (° 1 ° 丿可见 /?(/!) = 2,用初等矩阵表示为-1—1)‘1 0 <0、0>(1 0、<1 0 -1) 5<1 0、,Q = 0 1 00 -1 -1 1;1 T 丿\ 7 \ 7 \/\0 0 11P =u o -r 1 O' (\n、 1 一- m2A~ =0 1 0 0 1 - 1 -1J -10 1>m2,\/ I m, + m2—勒丿其中m p m2为任意复数.*34.求卜•列矩阵A的Moore —Penrose广义逆才,(1)<1 2r 2 -r;(2) A = 2 3 .0—1 L<4 ◎A =(3)(\0 2、(0 1 2 -1)2 1 5;(4) A =-2 0 0 60 1 -1i 4 -2 -4 -10?J 3 j丿\/ A解(1)利用初等变换可以将/分解得到2、T丿<1 00 1、丿-11;Z2、R(A) = 2 •取2 oY 1 -b(2)由于R(/) = 2,所以2 -rj i丿-bOY1j<1<2 j丿(3)类似于(2)可得-3,12¥52(4)利用初等变换可以将力分解得到R(A) = 2.取V 2 4、3 6?5 5丿54 22 -14 12-23 11 8 1-17 -11 4 -5厂0 1 0、(1 0 0 0、fl12-3、-1-2 0 0 0 1 0 00 0 1 04 -2 1 0 0 0 0?/ \/ .0 0 0 L A'0 (100—3、-2 0 , G =,0 1 2 —1 丿,4 _2\F =--- / --- ---- \ —1(7T(F T/1(7T) F T< 1°)0 1 1 (6 -12]X-0 2 1836 176J<-3 T丿(-12 -12 48]1 176 -130 -921836 352 -260 -184厂140 166-52丿<2r -2 cosf、dA设矩阵A = A(t) =▲,求■4尸6丿dt 0*35 .-2 0解由定义可计算得到4] 一2丿*36.设有矩阵求譽呼解由矩阵导数的定义可得由于*37.设 f = X 1 AX ,其中cL4 d7A(t) =W) dr<1一sin/ 0d/TO) dt3_ F 丿5(0、Wl (/) a/)…0“⑴、 x =尢2 a) ■ ■, A =°2](。