2017优化方案高考总复习·数学理(新课标)第四章第3讲
- 格式:ppt
- 大小:438.50 KB
- 文档页数:9
4-3A 组 专项基础训练 (时间:45分钟)1.函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数【解析】 f (x +π)=lg|sin(x +π)|=lg|sin x |,所以周期为π,对f (-x )=lg|sin(-x )|=lg|-sin x |=lg|sin x |,所以为偶函数,故选C. 【答案】 C2.(2015·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 【解析】 由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解. 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D. 【答案】 D3.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( )A.13B .1 C.53D .2 【解析】 根据题意平移后函数的解析式为 y =sin ω⎝⎛⎭⎫x -π4,将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0, 故ω的最小值为2. 【答案】 D4.(2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10【解析】 分析三角函数图象,根据最小值求k ,再求最大值. 根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8. 【答案】 C5.函数y =cos 2x +sin 2x ,x ∈R 的值域是( ) A .0,1] B.⎣⎡⎦⎤12,1 C .-1,2] D .0,2]【解析】 y =cos 2x +sin 2x =cos 2x +1-cos 2x 2=1+cos 2x 2.∵cos 2x ∈-1,1],∴y ∈0,1]. 【答案】 A6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.【解析】 由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ).【答案】 ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z )7.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.【解析】 f (x )=3sin ⎝⎛⎭⎫π2x +π4的周期T =2π×2π=4,f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.【答案】 28.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝⎛⎭⎫π24=________.【解析】 由题中图象可知,此正切函数的半周期等于3π8-π8=π4, 即最小正周期为π2,所以ω=2.由题意可知,图象过定点⎝⎛⎭⎫3π8,0,所以0=A tan ⎝⎛⎭⎫2×3π8+φ,即3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ), 又|φ|<π2,所以φ=π4. 又图象过定点(0,1),所以A =1.综上可知,f (x )=tan ⎝⎛⎭⎫2x +π4,故有f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3= 3.【答案】 39.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间.【解析】 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4,令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z .10.设函数f (x )=sin ⎝⎛⎭⎫πx 4-π6-2cos 2πx 8+1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈⎣⎡⎦⎤0,43时,y =g (x )的最大值. 【解析】 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx4=32sin πx 4-32cos πx 4=3sin ⎝⎛⎭⎫πx 4-π3, 故f (x )的最小正周期为T =2ππ4=8.(2)方法一:在y =g (x )的图象上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图象上, 从而g (x )=f (2-x )=3sin ⎣⎡⎦⎤π4(2-x )-π3=3sin ⎣⎡⎦⎤π2-πx 4-π3=3cos ⎝⎛⎭⎫πx 4+π3.当0≤x ≤43时,π3≤πx 4+π3≤2π3,因此y =g (x )在区间⎣⎡⎦⎤0,43上的最大值为 g (x )max =3cosπ3=32. 方法二:区间⎣⎡⎦⎤0,43关于x =1的对称区间为⎣⎡⎦⎤23,2, 且y =g (x )与y =f (x )的图象关于直线x =1对称, 故y =g (x )在⎣⎡⎦⎤0,43上的最大值为 y =f (x )在⎣⎡⎦⎤23,2上的最大值. 由(1)知f (x )=3sin ⎝⎛⎭⎫πx 4-π3,当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在⎣⎡⎦⎤0,43上的最大值为 g (x )max =3sinπ6=32. B 组 专项能力提升 (时间:20分钟)11.函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上单调递减,且函数值从1减小到-1,那么此函数图象与y 轴交点的纵坐标为( )A.12B.22 C.32 D.6+24【解析】 函数y =sin(ωx +φ)的最大值为1,最小值为-1,由该函数在区间⎣⎡⎦⎤π6,2π3上单调递减,且函数值从1减小到-1,可知2π3-π6=π2为半周期,则周期为π,ω=2πT =2ππ=2,此时原函数式为y=sin(2x +φ),又由函数y =sin(ωx +φ)的图象过点⎝⎛⎭⎫π6,1,且|φ|<π2. 代入可得φ=π6,因此函数为y =sin ⎝⎛⎭⎫2x +π6,令x =0,可得y =12.【答案】 A12.(2016·池州月考)已知函数f (x )=2m sin x -n cos x ,直线x =π3是函数f (x )图象的一条对称轴,则nm 等于( )A.332 B. 3C .-233 D.33【解析】 由x =π3是函数f (x )图象的对称轴易得f (0)=f ⎝⎛⎭⎫2π3,∴-n =2m sin2π3-n cos 2π3, ∴-n =3m +n 2,∴3m =-32n ,∴n m =-233.【答案】 C13.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是______.【解析】 由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0(k ∈Z ).【答案】 ⎝⎛⎭⎫k π2-π8,0(k ∈Z ) 14.给出下列命题:①函数f (x )=4cos ⎝⎛⎭⎫2x +π3的一个对称中心为⎝⎛⎭⎫-5π12,0;②已知函数f (x )=min{sin x ,cos x },则f (x )的值域为⎣⎡⎦⎤-1,22; ③若α、β均为第一象限角,且α>β,则sin α>sin β. 其中所有真命题的序号是________. 【解析】 对于①,令x =-512π, 则2x +π3=-56π+π3=-π2,有f ⎝⎛⎭⎫-512π=0, 因此⎝⎛⎭⎫-512π,0为f (x )的一个对称中心,①为真命题; 对于②,结合图象知f (x )的值域为⎣⎡⎦⎤-1,22,②为真命题; 对于③,令α=390°,β=60°,有390°>60°,但sin 390°=12<sin 60°=32,故③为假命题,所以真命题为①②.【答案】 ①②15.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.【解析】 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6.∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈-2a ,a ].∴f (x )∈b ,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1,g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
4-8A组专项基础训练(时间:45分钟)1.若点A在点B的北偏西30°,则点B在点A的()A.北偏西30°B.北偏西60°C.南偏东30°D.东偏南30°【解析】如图,点B在点A的南偏东30°.【答案】C2.(2016·合肥三检)如图,一栋建筑物AB的高为(30-103)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为()A .30 mB .60 mC .30 3 mD .40 3 m 【解析】 如图,在Rt △ABM 中,AM =ABsin ∠AMB =30-103sin 15°=30-1036-24=20 6 m.过点A 作AN ⊥CD 于点N , 易知∠MAN =∠AMB =15°, 所以∠MAC =30°+15°=45°,又∠AMC =180°-15°-60°=105°,从而∠ACM =30°. 在△AMC 中,由正弦定理得MC sin 45°=206sin 30°,解得MC =40 3 m ,在Rt △CMD 中,CD =403×sin 60°=60 m , 故通信塔CD 的高为60 m. 【答案】 B3.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km ,参考数据:3≈1.732)( )A .11.4 kmB .6.6 kmC .6.5 kmD .5.6 km【解析】 ∵AB =1 000×1 000×160=50 0003 m ,∴BC =AB sin 45°·sin 30°=50 00032 m.∴航线离山顶h =50 00032×sin 75°≈11.4 km.∴山高为18-11.4=6.6 km. 【答案】 B4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 等于( )A .30°B .45°C .60°D .75° 【解析】 依题意可得AD =2010 m ,AC =30 5 m ,又CD =50 m , 所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°. 【答案】 B5.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里 【解析】 如图所示,易知,在△ABC 中, AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =102(海里).【答案】 A6.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是____________.【解析】 如图,依题意有甲楼的高度为 AB =20·tan 60°=203(米), 又CM =DB =20(米),∠CAM =60°,所以AM =CM ·1tan 60°=2033(米),故乙楼的高度为CD =203-2033=4033(米). 【答案】 203米,4033米7.(2014·课标全国Ⅰ)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.【解析】 根据图示,AC =100 2 m.在△MAC 中,∠CMA =180°-75°-60°=45°. 由正弦定理得AC sin 45°=AMsin 60°⇒AM =100 3 m.在△AMN 中,MNAM=sin 60°,∴MN=1003×32=150 m.【答案】1508.如图,在四边形ABCD花圃中,已知AD⊥CD,AD=10 m,AB=14 m,∠BDA=60°,∠BCD=135°,则BC的长为________m.【解析】在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x cos 60°,整理得x2-10x-96=0,解得x1=16,x2=-6(舍去).在△BCD中,由正弦定理:BCsin∠CDB=BDsin∠BCD,∴BC=16sin 135°·sin 30°=8 2.【答案】8 29.在斜度一定的山坡上的一点A测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m后,又从B点测得斜度为45°,设建筑物的高为50 m.求此山对于地平面的斜度θ的余弦值.【解析】 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,所以∠ACB =30°. 又AB =100 m ,由正弦定理,得100sin 30°=BCsin 15°,即BC =100sin 15°sin 30°.在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ),解得cos θ=3-1.因此,山对于地平面的斜度的余弦值为3-1.10.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.【解析】 如图所示,根据题意可知 AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇, 则AB =21t ,BC =9t , 在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°, 所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h.此时AB =14,BC =6. 在△ABC 中,根据正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去). 即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.B 组 专项能力提升 (时间:25分钟)11.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是 3 km ,那么x 的值为________.【解析】 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°, 由余弦定理得(3)2=x 2+32-2x ·3·cos 30°, 整理,得x 2-33x +6=0,解得x =3或2 3. 【答案】 3或2 312.(2015·湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 先利用正弦定理求出BC ,再在Rt △BCD 中求CD . 由题意,在△ABC 中,∠BAC =30°, ∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 100 613.(2016·潍坊模拟)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是________.【解析】 设航速为v n mile/h在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得:82sin 30°=12v sin 45°,∴v =32.【答案】 32 n mile/h14.(2016·郑州模拟)在200 m 高的山顶上,测得山下一塔顶和塔底的俯角分别是30°,60°,则塔高为________m.【解析】 如图,由已知可得∠BAC =30°,∠CAD =30°, ∴∠BCA =60°,∠ACD =30°,∠ADC =120°.又AB =200 m ,∴AC =40033 m. 在△ACD 中,由余弦定理得,AC 2=2CD 2-2CD 2·cos 120°=3CD 2,∴CD =13AC =4003 m. 【答案】4003 15.(2016·江西南昌模拟)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【解析】 (1)在△ABC 中,因为cos A =1213,cos C =35, 所以sin A =513,sin C =45. 从而sin B =sin π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365. 由正弦定理AB sin C =AC sin B,得 AB =AC sin B ×sin C =1 2606365×45=1 040 m. 所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8, 故当t =3537min 时,甲、乙两游客距离最短. (3)由正弦定理BC sin A =AC sin B, 得BC =AC sin B ×sin A =1 2606365×513=500 m. 乙从B 出发时,甲已走了50×(2+8+1)=550 m ,还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514, 所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在(单位:m/min)范围内.。
4-6A 组 专项基础训练(时间:45分钟)1.(2015·乌鲁木齐诊断测试三)已知sin 2α=-2425,且α∈⎝⎛⎭⎫3π4,π,则sin α=( ) A.35 B.45C .-35D .-45【解析】 ∵α∈⎝⎛⎭⎫3π4,π,∴cos α<0,sin α>0, 且|cos α|>|sin α|,又(sin α+cos α)2=1+sin 2α=1-2425=125, ∴sin α+cos α=-15, 同理可得sin α-cos α=75,∴sin α=35,故选A. 【答案】 A2.若sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos α等于( ) A.225 B .-225C.425 D .-425【解析】 sin ⎝⎛⎭⎫α+π4-22cos α =sin αcosπ4+cos αsin π4-22cos α=45×22=225. 【答案】 A3.在△ABC 中,tan B =-2,tan C =13,则A 等于( ) A.π4 B.3π4C.π3D.π6【解析】 tan A =tan π-(B +C )]=-tan(B +C )=-tan B +tan C 1-tan B tan C =--2+131-(-2)×13=1.又A 为△ABC 的内角.故A =π4. 【答案】 A4.若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4的值为( ) A .-210 B.210C.3210D.7210【解析】 由tan α+1tan α=103 得sin αcos α+cos αsin α=103, ∴1sin αcos α=103,∴sin 2α=35. ∵α∈⎝⎛⎭⎫π4,π2,∴2α∈⎝⎛⎭⎫π2,π, ∴cos 2α=-45. ∴sin ⎝⎛⎭⎫2α+π4=sin 2αcos π4+cos 2αsin π4 =22×⎝⎛⎭⎫35-45=-210. 【答案】 A5.已知cos 2θ=23,则sin 4θ+cos 4θ的值为( ) A.1318 B.1118C.79D .-1 【解析】 sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-12sin 22θ=1-12(1-cos 22θ)=1118. 【答案】 B6.(2015·浙江)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,最小值是________.【解析】 利用三角恒等变换,化为正弦型函数再求解.f (x )=sin 2x +sin x cos x +1 =1-cos 2x 2+12sin 2x +1=32+22sin ⎝⎛⎭⎫2x -π4. 故最小正周期T =2π2=π.当sin ⎝⎛⎭⎫2x -π4=-1时, f (x )取得最小值为32-22=3-22. 【答案】 π 3-227.设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x 的最小值为________. 【解析】 方法一:因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x, 所以令k =2-cos 2x sin 2x .又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率. 又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3. 方法二:y =2sin 2x +1sin 2x =3sin 2x +cos 2x 2sin x cos x=3tan 2x +12tan x =32tan x +12tan x. ∵x ∈⎝⎛⎭⎫0,π2,∴tan x >0. ∴32tan x +12tan x ≥2 32tan x ·12tan x= 3. ⎝⎛⎭⎫当tan x =33,即x =π6时取等号 即函数的最小值为 3.【答案】 3 8.已知tan ⎝⎛⎭⎫π4+θ=3,则sin 2θ-2cos 2θ的值为________. 【解析】 ∵tan ⎝⎛⎭⎫π4+θ=3, ∴1+tan θ1-tan θ=3,解得tan θ=12. ∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1=2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1=2tan θ1+tan 2θ-1-tan 2θ1+tan 2θ-1 =45-35-1=-45. 【答案】 -459.已知tan α=-13,cos β=55,α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求tan(α+β)的值,并求出α+β的值.【解析】 由cos β=55,β∈⎝⎛⎭⎫0,π2, 得sin β=255,tan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,∴π2<α+β<3π2,∴α+β=5π4. 10.已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. 【解析】 (1)由题设知:f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)由题设知:1013=f ⎝⎛⎭⎫3α+π2=2sin α, 65=f (3β+2π)=2sin ⎝⎛⎭⎫β+π2=2cos β, 即sin α=513,cos β=35, 又α,β∈⎣⎡⎦⎤0,π2,∴cos α=1213,sin β=45, ∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665. B 组 专项能力提升(时间:25分钟)11.(2016·邯郸期末联考)cos 20°cos 40°cos 60°·cos 80°等于( ) A.14 B.18C.116D.132【解析】 原式=sin 20°cos 20°cos 40°cos 80°2sin 20°=sin 40°cos 40°cos 80°4sin 20°=sin 80°cos 80°8sin 20°=sin 160°16sin 20°=116. 【答案】 C12.定义运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( ) A.π12 B.π6C.π4D.π3【解析】 依题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32,故β=π3,故选D. 【答案】 D13.sin ⎝⎛⎭⎫α+π4=24,则sin 2α=________. 【解析】 sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=24, ∴sin α+cos α=12, (sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+sin 2α=14,故sin 2α=-34. 【答案】 -3414.(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 【解析】 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数, 在区间⎣⎡⎦⎤-π6,π4上是增函数, 且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34, 最小值为-12. 15.(2015·安徽合肥质检)已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 【解析】 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3·cos π3-cos ⎝⎛⎭⎫2α+π3·sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
第1页(共31页)2017年全国统一高考数学试卷(理科) (全国新课标III) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( ) A.3 B.2 C.1 D.0 2.(5分)设复数z满足(1+i)z=2i,则|z|=( ) A. B. C. D.2 3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为 ( )
A.﹣80 B.﹣40 C.40 D.80
5.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=第2页(共31页)
x,且与椭圆+=1有公共焦点,则C的方程为( ) A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是( ) A.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=对称
C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减 7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )
A.5 B.4 C.3 D.2 8.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B. C. D. 9.(5分)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则