2017年高考全国卷Ⅰ理科数学试题及详细解析
- 格式:doc
- 大小:2.69 MB
- 文档页数:16
2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}131xA x xB x =<=<,,则()A .{}0=<AB x x B .A B =RC .{}1=>A B x xD .A B =∅A{}1A x x =<,{}{}310x B x x x =<=<∴{}0A B x x =<,{}1A B x x =<,选A2. 如图,正方形ABCD 的图形来自中国古代的太极图.正方形切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4B设正方形边长为2,则圆半径为1则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248=故选B3. 设有下面四个命题()1p :若复数满足1z ∈R ,则z ∈R ;2p :若复数满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,B1:p 设z a bi =+,则2211a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;4. 记n S 为等差数列{}n a 的前项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .8C45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①②3⨯-①②得()211524-=d624d = 4d =∴选C5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的的取值围是() A .[]22-, B .[]11-, C .[]04, D .[]13,D因为()f x 为奇函数,所以()()111f f -=-=, 于是()121f x --≤≤等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞,单调递减 121x ∴--≤≤3x ∴1≤≤ 故选D6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .35C.()()()66622111+1111x x x x x ⎛⎫+=⋅++⋅+ ⎪⎝⎭对()61x +的2x 项系数为2665C 152⨯== 对()6211x x⋅+的2x 项系数为46C =15, ∴2x 的系数为151530+= 故选C7. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16B由三视图可画出立体图该立体图平面只有两个相同的梯形的面 ()24226S =+⨯÷=梯6212S =⨯=全梯 故选B8. 右面程序框图是为了求出满足321000n n ->的最小偶数,那么在和空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+ D因为要求A 大于1000时输出,且框图中在“否”时输出 ∴“”中不能输入A 1000>排除A 、B又要求为偶数,且初始值为0, “2可保证其为偶故选D9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C D1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .10A设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直轴 易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴ 同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==-又DE 与AB 垂直,即DE 的倾斜角为π2θ+ 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A11. 设,y ,为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<< D .325y x z << D取对数:ln 2ln3ln5x y ==.ln33ln 22x y => ∴23x y >ln2ln5x z =则ln55ln 22x z =< ∴25x z <∴325y x z <<,故选D12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330C .220D .110A设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第组的项数为,则组的项数和为()12n n +由题,100N >,令()11002n n +>→14n ≥且*n ∈N ,即N 出现在第13组之后第组的和为122112nn -=-- 组总共的和为()2122212n nn n --=---若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数即()*21214k n k n -=+∈N ,≥ ()2log 3k n =+→295n k ==, 则()2912954402N ⨯+=+=故选A二、 填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |},则31x <A .{|0}A B x x =< B .A B =RC .{|1}A B x x => D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p p B .14,p p C .23,p p D .24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。
2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合A ={x |x <1},B ={x |31x <},则A. B. C. D.(2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. B. C. D.(3)设有下面四个命题:若复数满足,则;:若复数满足,则; :若复数满足,则;:若复数,则.其中的真命题为A. B. C. D. (4)记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.8{|0}A B x x =<I A B =R U {|1}A B x x =>U A B =∅I 14π812π41p z 1z∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p n S {}n a n 4524a a +=648S ={}n a(5)函数在单调递减,且为奇函数.若,则满足的的取值范围是A. B. C. D. (6)展开式中的系数为 A.15 B.20 C.30 D.35 (7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.16 (8)右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A.A >1 000和n =n +1B.A >1 000和n =n +2C.A ≤1 000和n =n +1D.A ≤1 000和n =n +2()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]621(1)(1)x x++2x(9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把 得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2 C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2(10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A.16B.14C.12D.10 (11)设x ,y ,z 为正数,且,则A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z(12)几位大学生响应国家的创业号召,开发了一款应用软件。
2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为. 16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可. 【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p 2:复数z=i满足z2=-1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.8【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=-2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式-1≤f(x-2)≤1化为-1≤x-2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=-1,则f(-1)=1,又∵函数f(x)在(-∞,+∞)单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x-2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x-2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,=×2×(2+4)=6,S梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C 1:y =cosx,C 2:y =sin(2x +),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y =cos2x 图象,再把得到的曲线向左平移个单位长度,得到函数y =cos2(x +)=cos(2x +)=sin(2x+)的图象,即曲线C 2, 故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10【分析】方法一:根据题意可判断当A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0),则直线l 2的方程为y =x -1,联立方程组,则y 2-4y -4=0,∴y 1+y 2=4,y 1y 2=-4, ∴|DE|=•|y 1-y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11.(5分)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.可得3y =,2x =,5z =.根据==,>=.即可得出大小关系.另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【分析】方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别即可求得N的值.【解答】解:设该数列为{an },设bn=+…+=2n+1-1,(n∈N+),则=ai ,由题意可设数列{an }的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21-1+22-1+…+2n+1-1=2n+1-n-2,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230-29-2+25-1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226-25-2+25-1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221-20-2+210-1=221+210-23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215-14-2+25-1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=-n=2n+1-2-n,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,则①1+2+(-2-n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(-2-n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(-2-n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有+5=440,满足N>100, ∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为-5 .【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(-1,1).∴z=3x-2y的最小值为-3×1-2×1=-5.故答案为:-5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:-=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=3,V==,令=5-x,三棱锥的高h=,求出S△ABCf(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5-x,三棱锥的高h===,=3,则V===,令f(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,令f′(x)≥0,即x4-2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC-sinBsinC=-=-,∴cos(B+C)=-,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2-2bccosA,∴b2+c2-bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB ⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A-PB-C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A-PB-C为钝角,∴二面角A-PB-C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中x为i抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【分析】(1)通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(-3+3)=(9.334,10.606),进而需剔除(-3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为P(X=0)=×(1-0.9974)0×0.997416≈0.9592,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(-3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(-3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(-3+3)之外,因此需对当天的生产过程进行检查.剔除(-3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97-9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(-3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P 2(0,1),P3(-1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2-4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,-1).【解答】解:(1)根据椭圆的对称性,P3(-1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(-1,)代入椭圆C,得:,解得a2=4,b2=1, ∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,yA ),B(m,-yA),∵直线P2A与直线P2B的斜率的和为-1,∴===-1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2-4=0,,x1x2=,则=====-1,又t≠1,∴t=-2k-1,此时△=-64k,存在k,使得△>0成立,∴直线l的方程为y=kx-2k-1,当x=2时,y=-1,∴l过定点(2,-1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;<(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min=g(e-2)=e-2lne-2+e-2-1=--1,g(1)=0, 0,g(a)=alna+a-1,a>0,求导,由g(a)min即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(-∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a-2)e x-x,当x→-∞时,e2x→0,e x→0,∴当x→-∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)=f(ln)=a×()+(a-2)×-ln<0,min∴1--ln<0,即ln+-1>0,设t=,则g(t)=lnt+t-1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=-lna,当f′(x)>0,解得:x>-lna,当f′(x)<0,解得:x<-lna,∴x∈(-∞,-lna)时,f(x)单调递减,x∈(-lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,-lna)是减函数,在(-lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,=f(-lna)=1--ln, ②当a>0时,由(1)可知:当x=-lna时,f(x)取得最小值,f(x)min当a=1,时,f(-lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1--ln>0,即f(-lna)>0,故f(x)没有零点,当a∈(0,1)时,1--ln<0,f(-lna)<0,由f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0, 故f(x)在(-∞,-lna)有一个零点,假设存在正整数n0,满足n>ln(-1),则f(n)=(a+a-2)-n>-n>-n>0,由ln(-1)>-lna,因此在(-lna,+∞)有一个零点.∴a的取值范围(0,1).【点评】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查计算能力,考查分类讨论思想,属于中档题.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【分析】(1)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为进行分析,可以求出a的值.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,学科网然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<< {|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B.3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A.13,p p B .14,p p C .23,p p D .24,p p 【答案】B 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D.6.621(1)x x++展开式中2x 的系数为A .15B .20C .30D .35【答案】C 【解析】因为6662211(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B 【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.8.下面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2cos(2cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .10【答案】A11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 【答案】D【解析】令235(1)x y z k k ===>,则2log x k =,3log y k =,5log z k=∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >,22lg lg 5lg 2515lg 25lg lg 32x k z k =⋅=<,则25x z <,故选D.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++= 项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=,所以对应满足条件的最小整数293054402N ⨯=+=,故选A.二、填空题:本题共4小题,每小题5分,共20分。
2017年高考数学全国卷1理科数学试题全部解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学全国卷1理科数学试题全部解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学全国卷1理科数学试题全部解析(word版可编辑修改)的全部内容。
2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .A B =R C .{}1=>A B x xD .A B =∅【答案】A【解析】{}1A x x =<,{}{}310xB x x x =<=<∴{}0A B x x =<,{}1A B x x =<, 选A2. 如图,正方形ABCD 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为2,则圆半径为1则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248=故选B3. 设有下面四个命题()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,【答案】B【解析】1:p 设z a bi =+,则2211a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R 。
2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2017年浙江,1,4分】已知{|11}P x x =-<<,{20}Q x =-<<,则P Q =( )(A )(2,1)- (B)(1,0)- (C )(0,1) (D )(2,1)-- 【答案】A【解析】取,P Q 所有元素,得P Q =(2,1)-,故选A .【点评】本题考查集合的基本运算,并集的求法,考查计算能力.(2)【2017年浙江,2,4分】椭圆22194x y +=的离心率是( )(A )133 (B )53 (C )23 (D )59【答案】B【解析】94533e -==,故选B . 【点评】本题考查椭圆的简单性质的应用,考查计算能力.(3)【2017年浙江,3,4分】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )(A )12π+ (B )32π+(C)312π+ (D)332π+【答案】A【解析】由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为2111π3(21)13222V π⨯=⨯⨯+⨯⨯=+,故选A .【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.(4)【2017年浙江,4,4分】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是( )(A)[]0,6 (B )[]0,4(C)[]6,+∞ (D )[]4,+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点()2,1时取最小值4,无最大值,故选D .【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.(5)【2017年浙江,5,4分】若函数()2f x x ax b =++在区间[]01,上的最大值是M ,最小值是m ,则–M m ( ) (A )与a 有关,且与b 有关 (B )与a 有关,但与b 无关(C )与a 无关,且与b 无关 (D )与a 无关,但与b 有关 【答案】B【解析】解法一:因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,故选B .解法二:函数()2f x x ax b =++的图象是开口朝上且以直线2a x =-为对称轴的抛物线,①当12a->或02a-<,即2a <-,或0a >时,函数()f x 在区间[]0,1上单调,此时()()10M m f f a -=-=,故M m -的值与a 有关,与b 无关;②当1122a ≤-≤,即21a -≤≤-时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f >,此时()2024a aM m f f ⎛⎫-=--= ⎪⎝⎭,故M m -的值与a 有关,与b 无关;③当1022a ≤-<,即10a -<≤时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f <,此时()2024a a M m f f a ⎛⎫-=--=- ⎪⎝⎭,故M m -的值与a 有关,与b 无关.综上可得:M m -的值与a 有关,与b 无关,故选B .【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键. (6)【2017年浙江,6,4分】已知等差数列[]n a 的公差为d ,前n 项和为n S ,则“0d >"是“4652S S S +>"的( )(A )充分不必要条件 (B )必要不充分条件 (C)充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】由()46511210212510S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“0d >”是“4652S S S +>"的充要条件,故选C .【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题.(7)【2017年浙江,7,4分】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( )(A)(B)(C )(D ) 【答案】D 【解析】解法一:由当()0f x '<时,函数f x ()单调递减,当()0f x '>时,函数f x ()单调递增,则由导函数()y f x =' 的图象可知:()f x 先单调递减,再单调递增,然后单调递减,最后单调递增,排除A ,C,且第二个拐点(即函数的极大值点)在x 轴上的右侧,排除B ,,故选D .解法二:原函数先减再增,再减再增,且0x =位于增区间内,故选D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8)【2017年浙江,8,4分】已知随机变量1ξ满足()11i P p ξ==,()101i P p ξ==-,1,2i =.若12102p p <<<,则( )(A )12E()E()ξξ<,12D()D()ξξ<(B)12E()E()ξξ<,12D()D()ξξ>(C)12E()E()ξξ>,12D()D()ξξ< (D)12E()E()ξξ>,12D()D()ξξ< 【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222()(1),()(1)D p p D p p ξξ=-=-,121212()()()(1)0D D p p p p ξξ∴-=---<,故选A .【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(9)【2017年浙江,9,4分】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),PQR分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面较为α,β,γ,则( )(A )γαβ<< (B )αγβ<< (C )αβγ<< (D )βγα<< 【答案】B【解析】解法一:如图所示,建立空间直角坐标系.设底面ABC ∆的中心为O .不妨设3OP =.则()0,0,0O ,()0,3,0P -,()0,6,0C -,()0,0,62D ,()3,2,0Q ,()23,0,0R -,()23,3,0PR =-,()0,3,62PD =,()3,5,0PQ =,()33,2,0QR =--,()3,2,62QD =--.设平面PDR 的法向量为(),,n x y z =,则0n PR n PD ⎧⋅=⎪⎨⋅=⎪⎩,可得 23303620x y y z ⎧-+=⎪⎨+=⎪⎩,可得()6,22,1n =-,取平面ABC 的法向量()0,0,1m =. 则1cos ,15m n m n m n⋅==-,取1arccos 15α=.同理可得:3arccos 681β=. 2arccos95γ=.∵1231595681>>.∴αγβ<<.解法二:如图所示,连接OD OQ OR ,,,过点O 发布作垂线:OE DR ⊥,OF DQ ⊥,OG QR ⊥,垂足分别为E F G ,,,连接PE PF PG ,,.设OP h =.则cos ODR PDR S OES PE α∆∆==22OE OE h =+.同理可得:22cos OF OF PF OF h β==+c,22cos OG OG PG OG hγ==+.由已知可得:OE OG OF >>.∴cos cos cos αγβ>>,αβγ,,为锐角.∴α<γ<β,故选B .【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.(10)【2017年浙江,10,4分】如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1·I OA OB =,2·I OB OC =,3·I OC OD =,则( ) (A )123I I I << (B )132I I I << (C )312I I I << (D )223I I I <<【答案】C【解析】∵AB BC ⊥,2AB BC AD ===,3CD =,∴22AC =,∴90AOB COD ∠=∠>︒,由图象知OA OC <,OB OD <,∴0OA OB OC OD >⋅>⋅,0OB OC ⋅>,即312I I I <<,故选C .【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(11)【2017年浙江,11,4分】我国古代数学家刘徽创立的“割圆术"可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 内,S =内 . 【答案】332【解析】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,AOB ∆是边长为1的正三角形,所以正六边形ABCDEF 的面积为133=611sin 6022S ⎛⎫⨯⨯⨯⨯=⎪⎝⎭内. 【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.(12)【2017年浙江,12,6分】已知ab ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = . 【答案】5;2【解析】由题意可得222i 34i a b ab -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.(13)【2017年浙江,13,6分】已知多项式()()12543211234512x x x a x a x a x a x a +++++++=,则4a = ,5a = .【答案】16;4【解析】由二项式展开式可得通项公式为:32r r m mC x C x ,分别取0,1r m ==和1,0r m ==可得441216a =+=,令0x =可得325124a =⨯=.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.(14)【2017年浙江,14,6分】已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是 ;cos BDC ∠= .【答案】152;104【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,ABE ∆中,1cos 4BE ABC AB ∠==,1115cos ,sin 14164DBC DBC ∴∠=-∠=-=,BC 115sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△.又2110cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,10cos sin 4BDC DBF ∴∠=∠=,综上可得,BCD ∆面积为152,10cos 4BDC ∠=.【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题. (15)【2017年浙江,15,6分】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是 __;最大值是 __. 【答案】4;25【解析】解法一:设向量a 和b 的夹角为θ,由余弦定理有2212212cos 54cos a b θθ-=+-⨯⨯⨯=-, ()2212212cos 54cos a b πθθ+=+-⨯⨯⨯-=+,则54cos 54cos a b a b θθ++-=++-, 令54cos 54cos y θθ=++-,则[]221022516cos 16,20y θ=+-∈,据此可得:()maxa b a b ++-2025==,()min164a b a b++-==,即a b a b ++-的最小值为4,最大值为25.解法二记AOB α∠=,则0απ≤≤,如图,由余弦定理可得:54cos a b θ-=-,54cos a b θ+=+,令54cos x θ=-,54cos y θ=+,则()2210,1x y x y +=≥, 其图象为一段圆弧MN ,如图,令z x y =+,则y x z =-+,则直线y x z =-+过M 、N 时z 最小为13314min z =+=+=,当直线y x z =-+与圆弧MN 相切时z 最大,由平面几 何知识易知max z 即为原点到切线的距离的2倍,也就是圆弧MN 所在圆的半径的2倍, 所以21025max z =⨯=.综上所述,a b a b ++-的最小值为4,最大值为25.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.(16)【2017年浙江,16,4分】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 中不同的选法.(用数字作答) 【答案】660【解析】解法一:由题意可得:“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队”中的选择方法为:411843C C C ⨯⨯种方法,其中“服务队中没有女生"的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.解法二:第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯=种,第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种, 故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为:660.【点评】本题考查了分类计数原理和分步计数原理,属于中档题.(17)【2017年浙江,17,4分】已知α∈R ,函数()4f x x a a x=+-+在区间[]1,4上的最大值是5,则a 的取值 范围是 .【答案】9(,]2-∞【解析】[][]41,4,4,5x x x ∈+∈,分类讨论:①当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值245a -=,92a ∴=,舍去;②当4a ≤时,()445f x x a a x x x =+-+=+≤,此时命题成立;③当45a <<时,(){}maxmax 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩, 解得:92a =或92a <,综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题. 三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程.(18)【2017年浙江,18,14分】已知函数()22sin cos 23sin cos fx x x x x x =--∈R (). (1)求23f π⎛⎫⎪⎝⎭的值;(2)求()f x 的最小正周期及单调递增区间.解:(1)()22πsin cos 23sin cos cos 23sin 22sin 26f x x x x x x x x ⎛⎫=--=--=-+ ⎪⎝⎭,4ππsin 232236f π⎛⎫+=⎪⎝⎛⎫=- ⎪⎭⎭⎝. (2)由()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为π.令πππ2π22π262k x k -≤+≤+,k Z ∈,得ππππ36k x k -≤≤+,k Z ∈,函数()f x 的单调递增区间为ππππ.36k k k Z ,,⎡⎤-+∈⎢⎥⎣⎦.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档. (19)【2017年浙江,19,15分】如图,已知四棱锥–P ABCD ,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (1)证明://CE 平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 解:解法一:(1)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的重点,∴//EF PA ,在四边形ABCD 中,//BC AD ,22AD DC CB ==,F 为中点易得//CF AB ,∴平面//EFC 平面ABP , EC ⊂平面EFC ,//EC ∴平面PAB .(2)连结BF ,过F 作FM PB ⊥与M ,连结PF ,因为PA PD =,所以PF AD ⊥,易知四边形BCDF 为矩形,所以BF AD ⊥,所以AD ⊥平面PBF ,又//AD BC , 所以BC ⊥平面PBF ,所以BC PB ⊥,设1DC CB ==,则2AD PC ==,所以2PB =,1BF PF ==,所以12MF =,又BC ⊥平面PBF ,所以BC MF ⊥,所以MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,也即点D 到平面PBC 的距离为12,因为E 为PD 的中点,所以点E 到平面PBC 的距离为14,在PCD ∆中,2PC =,1CD =,2PD =,由余弦定理可得2CE =,设直线CE 与平面PBC 所成的角为θ,则124sin =8CE θ=.解法二:(1)略;构造平行四边形.(2)过P 作PH CD ⊥,交CD 的延长线于点H 在Rt PDH 中,设DH x =,则易知2222(2)(1)2x x -++=(Rt PCH ),解得12DH =,过H 作BC 的平行线,取 1DH BC ==,由题易得3,0,02B ⎛⎫ ⎪⎝⎭,1,1,02D ⎛⎫ ⎪⎝⎭,3,1,02C ⎛⎫⎪⎝⎭,30,0,2P ⎛⎫ ⎪ ⎪⎝⎭, 113,,424E ⎛⎫ ⎪ ⎪⎝⎭,则513(,,)424CE =-- ,33(,0,)22PB =-,(0,1,0)BC =, 设平面PBC 的法向量为(,,)n x y z = ,则330220n PB x z n BC y ⎧⋅=-=⎪⎨⎪⋅==⎩ ,令1x =,则3t =,故(1,0,3)n =, 设直线CE 与平面PBC 所成的角为θ,则531|3|2442sin =|cos <,n|=8251322216416CE θθ-+⨯==++⨯ 故直线CE 与平面PBC 所成角的正弦值为28. 【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(20)【2017年浙江,20,15分】已知函数()()1212x f x x x e x -⎛⎫=--≥ ⎪⎝⎭.(1)求()f x 的导函数;(2)求()f x 在区间1[+)2∞,上的取值范围.解:(1)()()()11212112111212121x xx x f x e x x e x x e x e x x x ----⎛⎫⎛⎫⎛⎫'=----=--+-=-- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. (2)令()21g x x x =--,则()1121g x x '=--,当112x ≤<时,()0g x '<,当1x >时,()0g x '>,则()g x在1x =处取得最小值,既最小值为0,又0x e ->,则()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的最小值为0.当x 变化时,()f x ,()f x '的变化如下表:x 1,12⎛⎫ ⎪⎝⎭ 1 51,2⎛⎫ ⎪⎝⎭ 52 5,2⎛⎫+∞ ⎪⎝⎭ ()f x ' — 0 + 0 — ()f x↘↗↘又121122f e -⎛⎫= ⎪⎝⎭,()10f =,525122f e -⎛⎫= ⎪⎝⎭,则()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的最大值为1212e -.综上,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的取值范围是1210,2e -⎡⎤⎢⎥⎣⎦..【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.(21)【2017年浙江,21,15分】如图,已知抛物线2x y =,点11,24A ⎛⎫- ⎪⎝⎭,39,24B ⎛⎫⎪⎝⎭,抛物线上的点()1124P x y x ⎛⎫-<< ⎪⎝⎭,.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求AP PQ ⋅的最大值.解:(1)由题易得()2,P x x ,1322x -<<,故()21141,1122AP x K x x -==-∈-+,故直线AP 斜率的取值范围为()1,1-. (2)由(1)知()2,P x x ,1322x -<<,所以211,24PA x x ⎛⎫=--- ⎪⎝⎭,设直线AP 的斜率为k ,则11:24AP y kx k =++, 139:24BP y x k k =-++,联立直线AP 、BP 方程可知222234981,2244k k k k Q k k ⎛⎫+-++ ⎪++⎝⎭, 故23432221,11k k k k k k k PQ k k ⎛⎫+----++= ⎪++⎝⎭,又因为()21,PA k k k =----, 故()()()()()()33232211111111k k k k k PA PQ PA PQ k k kk+-+--⋅=⋅=+=+-++,所以()()311PA PQ k k ⋅=+-,令()()()311f x x x =+-,11x -<<,则()()()()()221242121f x x x x x '=+-=-+-,由于当112x -<<-时()0f x '>,当112x <<时()0f x '<,故()max 127216f x f ⎛⎫== ⎪⎝⎭,即PA PQ ⋅的最大值为2716. 【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题. (22)【2017年浙江,22,15分】已知数列{}n x 满足:11x =,()()11ln 1*n n n x x x n N ++=++∈.证明:当*n N ∈时,(1)10n n x x +<<;(2)1122n n n n x x x x++-≤;(3)121122n n n x ++≤≤.解:(1)令函数()ln(1)f x x x =++,则易得()f x 在[0,)+∞上为增函数.又1()n n x f x +=,若0n x >⇒1()(0)0n f x f +>=恒成立10n x +⇒>,又由11ln(1)n n n x x x ++=++可知0n x >,由111111ln(1)ln(1)0n n n n n n n n x x x x x x x x ++++++-=++-=+>⇒>.所以10n n x x +<<.(2)令()()()()22ln 1ln 1ln 1222x x x g x x x x x x x +=++--+=++-⎡⎤⎡⎤⎣⎦⎣⎦,0x >,则()()()()()()()121111ln 11ln 1ln 12212212212x x g x x x x x x x x x x +'=+++-=+-+=+++-+++, 令()()()111ln 12212h x x x x =+++-+,则()()()()2221125210212121x x h x x x x ++'=-+=>+++, 所以()h x 单调递增.所以()()00h x h >=,即()0g x '>,()g x 单调递增.所以()()00g x g >=⇒()()ln 1ln 12xx x x x ++>-+⎡⎤⎣⎦, 所以()()11111112ln 1ln 122n n n n n n n n n x x x x x x x x x +++++++⎡⎤-=-+≤++=⎣⎦,1122n n n n x xx x ++-≤. (3)11112111212222n n n n n n n n x x x x x x x x ++++-≤⇒-≤⇒≥-,即121111222n n n n n x x +++≥-⇒递推得 12+11111(1)11111182122224212n n nk n k n x x -+=-≥-=-=+⇒-∑2211(2)1222n n n x n --≤≤≥+. 由11x =知21(N*)2n n x n -≤∈,又由()ln(1)0h x x x =-+>可知112()()0n n n x x h x h x ++-=>=.即11111112(N*)222n n n n n n n n x x x x x x n ++-->⇒>⇒≥=∈.综上可知,121122n n n x --≤≤. 【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题.。
2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。
考试用时 120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题 卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答 案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能 答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目 指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
x | x 1 ,B {x | 3 1},则1.已知集合 A x {x | x 0} {x| x 1}B . A B RA . ABC . A BD . A B 1 4A .C .B .D .81 243.设有下面四个命题1R,则 z R ; p :若复数 z 满足 z 2 R ,则 z R ;p :若复数 z 满足 1 z2p :若复数 z , z 满足 z zR ,则 z z ;p :若复数 z4R z R.,则 3121 212其中的真命题为 A . p , p1B . p , p1C . p , p2D . p , p23434a 24 S48 ,则{a }的公差为4.记 S 为等差数列{a } 的前 项和.若an, nn456nA.1B.2C.4D.85.函数f(x)在(,)单调递减,且为奇函数.若f(1)1,则满足1f(x2)1的的取值范围是xA.[2,2]B.[1,1]C.[0,4]D.[1,3]1)(1x)6.(1展开式中x2的系数为6x2A.15B.20C.30D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n n2,则下32面结论正确的是πA.把C上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个6 1单位长度,得到曲线C2πB.把C上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12 1个单位长度,得到曲线C2π1C.把C上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个26 1单位长度,得到曲线C2π1D.把C上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移212 1个单位长度,得到曲线C 210.已知F 为抛物线C : y 24x的焦点,过F 作两条互相垂直的直线l ,l ,直线l 与 交C121于A 、B 两点,直线l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 2A .16 11.设xyzB .14C .12D .103 5为正数,且2x,则 y z A .2x 3y 5z C .3y5z 2xB .5z 2x 3y D .3y2x 5z12.几位大学生响应国家的创业号召,开发了一款应用软件。