当前位置:文档之家› 2-力学中的守恒定律

2-力学中的守恒定律

2-力学中的守恒定律
2-力学中的守恒定律

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

《质点力学的运动定律、守恒定律》

2 质点力学的运动定律 守恒定律 2.1直线运动中的牛顿运动定律 1. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图 所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足 (A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. 答案: (C) 参考解答: 按牛顿定律水平方向列方程: ,) sin (cos a m F g m F A A =--μθθ 显然加速度a 可以看作θ 的函数,用高等数学求极值的方法, 令 ,0d d =θ a ,有.μθ=tg 分支程序: 凡选择回答错误的,均给出下面的进一步讨论: 1.一质量为m 的木块,放在木板上,当木板与水平面间的夹角θ由00变化到090的过程中,画出木块与木板之间摩擦力f 随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0 ,并指出θ0与摩擦系数μ的关系. (A) 图(B)正确,sin θ0 =μ. (B) 图(A)正确,tg θ 0=μ. 答案: (B) 参考解答: (1) 当θ较小时,木块静止在木板上,静摩擦力;sin θmg f = (正确画出θ为0到θ 0之间的f -θ 曲线) (2) 当θ=θ 0时 (tg θ 0=μ),木块开始滑动; (3) 0θθ>时,滑动摩擦力,cos θμmg f = (正确画出θ为θ 0到90°之间的f -θ曲线) . 2.2曲线运动中的牛顿运动定律 1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的? (A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. A

力学的基本概念(五)能量守恒定律习题及答案

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E =k m g F 2)(2 μ- (B) p E =k m g F 2)(2 μ+ (C) K F E p 22 = (D) k m g F 2)(2μ-≤p E ≤ k m g F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定 在半 径为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相 连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力 对小环所作的功为 -0.207 J 。 6.有一倔强系数为 k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A C

动力学基本定律和守恒定律

第2章 动力学基本定律 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度 (D) 必定对另一些物体产生力的作用 5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则 [ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等 6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什么变化? [ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 T2-1-6图

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

关于大学物理中力学守恒定律的应用

关于大学物理中力学守恒定律的应用 李军,张之麒 (陇东学院 电气工程学院,甘肃 庆阳 745000) 摘 要:通过分析物理力学中守恒定律的条件,总结出物理力学守恒定律解决一般问题的方法。 关键字:动量守恒定律;机械能守恒定律;角动量守恒定律 On conservation law of mechanics in University Physics Application LI Jun ,ZAHNG Zhi-qi (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract: Through the analysis of physical and mechanical conservation laws in condition, summed up the law of conservation of physical mechanics of solving problems method. From a new understanding of life from the nature of specific phenomena ( collision, blow, explosion and other issues ). Key words: Momentum conservation law; law of conservation of mechanical energy; law of conservation of angular momentum 0 引言 力学守恒定律是大学物理中非常重要的知识点,但也是非常难掌握的知识点,我们在用守恒定律解决问题的时候都会出现各种各样的问题,究其原因就是对守恒定律的守恒条件掌握的不够牢固,应用的不够灵活。力学中的守恒定律主要有三个:动量守恒定律、机械能守恒定律与角动量守恒定律是整个物理学大厦的基石,它们不仅在低速、宏观领域中成立,而且在高速、微观领域中依然成立。这些守恒定律是比牛顿运动定律更基本的规律。 1动量守恒定律 由动量定理可知,若 ∑=0外 i F , 则有 011 2 1 =-∑∑==i n i i i n i i v m v m 或

高中物理-实验验证动量守恒定律检测题

高中物理-实验验证动量守恒定律检测题 1.图1是“验证碰撞中的动量守恒”实验的实验装置.让质量为m1的小球从斜面上某处自由滚下,与静止在支柱上质量为m2的小球发生对心碰撞,则 图1 图2 (1)两小球的质量关系必须满足________. A.m1=m2B.m1>m2 C.m1<m2D.没有限制 (2)实验必须满足的条件是________. A.轨道末端的切线必须是水平的 B.斜槽轨道必须是光滑的 C.入射小球m1每次都必须从同一高度由静止释放 D.入射小球m1和被碰小球m2的球心在碰撞的瞬间可以不在同一高度上 (3)若采用图1装置进行实验,以下所提供的测量工具中必需的是________. A.直尺B.游标卡尺C.天平D.弹簧秤E.秒表 (4)在实验装置中,若用游标卡尺测得小球的直径如图2,则读数为_______cm. 解析:(1)在“验证碰撞中的动量守恒”实验中,为防止被碰球碰后反弹,入射球的质量必须(远)大于被碰球的质量,因此B正确,A、C、D错误.故选B. (2)要保证每次小球都做平抛运动,则轨道的末端必须水平,故A正确;“验证动量守恒定律”的实验中,是通过平抛运动的基本规律求解碰撞前后的速度的,只要离开轨道后做平抛运动,对斜槽是否光滑没有要求,故B错误;要保证碰撞前的速度相同,所以入射球每次都要从同一高度由静止滚下,故C正确;要保证碰撞后都做平抛运动,两球要发生正碰,碰撞的瞬间,入射球与被碰球的球心应在同一水平高度,两球心的连线应与轨道末端的切线平行,因此两球半径应该相同,故D错误.故选AC. (3)小球离开轨道后做平抛运动,它们抛出点的高度相同,在空中的运动时间t相等,m1v1=m1v1′+m2v2′,两边同时乘以时间t,则有:m1v1t=m1v1′t+m2v2′t, m1OP=m1OM+m2(ON-2r),则实验需要测出:小球的质量、小球的水平位置、小球的半径,故需要用到的仪器有:天平,直尺和游标卡尺;故选,ABC. (4)游标卡尺是20分度的卡尺,其精确度为0.05 mm,则图示读数为:13 mm+11×0.05 mm =13.55 mm=1.355 cm. 答案:(1)B (2)AC (3)ABC (4)1.355

实验:验证动量守恒定律

实验:验证动量守恒定律 [实验方案] 方案一:利用气垫导轨完成一维碰撞实验 [实验器材] 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. [实验步骤] 1.测质量:用天平测出滑块的质量. 2.安装:正确安装好气垫导轨. 3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向). 4.验证:一维碰撞中的动量守恒. [数据处理] 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2. 方案二:利用斜槽上滚下的小球验证动量守恒定律 [实验器材] 斜槽、小球(两个)、天平、复写纸、白纸等. [实验步骤] 1.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球. 2.安装:按照图甲所示安装实验装置.调整固定斜槽使斜槽底端水平. 甲 3.铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O .

4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P 就是小球落点的平均位置. 5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M 和被撞小球落点的平均位置N .如图乙所示. 乙 6.验证:连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1·OP =m 1·OM +m 2·ON ,看在误差允许的范围内是否成立. 7.结束:整理好实验器材放回原处. [数据处理] 验证的表达式:m 1·OP =m 1·OM +m 2·ON . 方案三:在光滑桌面上两车碰撞完成一维碰撞实验 [实验器材] 光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥. [实验步骤] 1.测质量:用天平测出两小车的质量. 2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥. 3.实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动. 4.测速度:通过纸带上两计数点间的距离及时间由v =Δx Δt 算出速度. 5.改变条件:改变碰撞条件,重复实验. 6.验证:一维碰撞中的动量守恒. [数据处理] 1.小车速度的测量:v =Δx Δt ,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出. 2.验证的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2. [注意事项]

1.4 实验:验证动量守恒定律

1.4 实验:验证动量守恒定律 一、实验目的 1.掌握动量守恒定律适用范围。2.会用实验验证动量守恒定律。 二、实验原理 1.碰撞中的特殊情况——一维碰撞 两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动. 2.两个物体在发生碰撞时,作用时间很短。根据动量定理,它们的相互作用力很大。如果把这两个物体看作一个系统,那么,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是这些力与系统内两物体的相互作用力相比很小,在可以忽略这些外力的情况下,使系统所受外力的矢量和近似为0,因此,碰撞满足动量守恒定律的条件。 3.物理量的测量 需要测量物体的质量,以及两个物体发生碰撞前后各自的速度。物体的质量可用天平直接测量。速度的测量可以有不同的方式,根据所选择的具体实验方案来确定。 三、实验方案设计 方案一:用气垫导轨完成两个滑块的一维碰撞,实验装置如图所示: (1)质量的测量:用天平测量质量. (2)速度的测量:利用公式v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为计时器显示的滑块(挡光片)经过光电门时对应的时间. (3)利用在滑块上增加重物的方法改变碰撞物体的质量. (4)碰撞的实现:两小车的碰撞端分别装上撞针和橡皮泥. 实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧、细线、弹性 碰撞架、胶布、撞针、橡皮泥等. 实验过程: (1)测质量:用天平测出小车的质量m 1、m 2。 (2)安装:正确安装好光电计时器和滑轨。 (3)实验:接通电源,让质量小的小车在两个光电门之间,给质量大的小车一个初速度去碰撞质量小的小车,利用配套的光电计时器测出两个小车各种情况下碰撞前后的速度v 1、v 1′、v 2′。 本实验可以研究以下几种情况。 a.选取两个质量不同的滑块,在两个滑块相互碰撞的端面装上弹性碰撞架,滑块碰撞后随即分开。 b.在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针插入橡皮泥中,使两个滑块连成一体运动。 如果在两个滑块的碰撞端分别贴上尼龙拉扣,碰撞时它们也会连成一体。 c.原来连在一起的两个物体,由于相互之间具有排斥的力而分开,这也可视为一种碰撞。这种情况可以通 过下面的方式实现:在两个滑块间放置轻质弹簧,挤压两个滑块使弹簧压缩,并用一根细线将两个滑块固定。烧断细线,弹簧弹开后落下,两个滑块由静止向相反方向运动。

实验8验证动量守恒定律

实验8验证动量守恒定律 【基础】 1.在“验证动量守恒定律”的实验中已有的实验器材有:斜槽轨道,大小相等质量不同的小钢球两个,重垂线一条,白纸,复写纸,圆规。实验装置及实验中小球运动轨迹及落点的情况简图如图所示。 试根据实验要求完成下列填空: (1)实验前,轨道的调节应注意。 (2)实验中重复多次让a球从斜槽上释放,应特别注意。 (3)实验中还缺少的测量器材有:。 (4)实验中需测量的物理量是。 (5)若该碰撞过程中动量守恒,则一定有关系式成立。 【解析】 (1)由于要保证两物体发生弹性碰撞后做平抛运动,即初速度沿水平方向,所以必须保证槽的末端的切线是水平的。 (2)由于实验要重复进行多次以确定同一个弹性碰撞后两小球的落点的确切位置,所以每次碰撞前入射球a的速度必须相同,根据mgh=mv2可得v=,所以每次必须让a球从同一高处静止释放滚下。 (3)要验证m a v0=m a v1+m b v b,由于碰撞前后入射球和靶球从同一高度同时做平抛运动,根据h=gt2可得两球做平抛运动的时间相同,故由此可验证m a v0t=m a v1t+m b v b t,而v0t=OP,v1t=OM,v b t=ON,故只需验证m a OP=m a OM+m b ON。所以要测量a球的质量m a和b球的质量m b,故需要天平;要测量两物体平抛时水平方向的位移即线段OP、OM和ON的长度,故需要刻度尺。 (4)由(3)的解析可知实验中需测量的物理量是a球的质量m a和b球的质量m b,线段OP、OM和ON的长度。 (5)由(3)的解析可知若该碰撞过程中动量守恒,则一定有关系式m a OP=m a OM+m b ON。 2.如图所示,气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮

普通物理学教程力学课后答案高等教育出版社第三章-动量定理及其守恒定律

第三章 动量定理及其守恒定律 习题解答 3.5.1 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+==ρρ, j i a m F ?12?24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 3.5.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ?sin ?cos ωω+=ρ,a,b, ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a ρ ρρ2222)?sin ?cos (/ωωωω-=+-== r m a m F ρ ρρ2ω-==, ∴作用于质点的合力总指向原点。 3.5.3 在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较低的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动? 解:以地为参考系,设谷物的质量为m ,所受到的最大静摩擦力为 mg f o μ=,谷物能获得的最大 加速度为 2/92.38.94.0/s m g m f a o =?===μ ∴筛面水平方向的加速度至少等于3.92米/秒2,才能使谷物 与筛面发生相对运动。

大学物理答案《质点力学的运动定律 守恒定律》.

第2章质点力学的运动定律守恒定律 一、选择题 1(C,2(E,3(D,4(C,5(C,6(B,7(C,8(C,9(B,10(C,11(D,12(A,13(D 二、填空题 (1. ω2=12rad/s ,A=0.027J (2. 290J (3. 3J (4. 18 N ·s (5. j t i t 23 23+ (SI (6. 16 N ·s , 176 J (7. 16 N ·s ,176 J (8. M k l /0,M k nm M Ml +0 (9. j i 5- (10. 2m v , 指向正西南或南偏西45° 三、计算题 1. 已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2 /x k f -=,k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解:根据牛顿第二定律 x m t x x m t m x k f d d d d d d d d 2

v v v v =?==- = ∴??-=-=4 /202d d ,d d A A x mx k mx x k v v v v v k mA A A m k 3 14(212= -=v ∴ /(6mA k =v 2. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K ,忽略子弹的重力,求: (1 子弹射入沙土后,速度随时间变化的函数式; (2 子弹进入沙土的最大深度. 解:(1 子弹进入沙土后受力为-K v ,由牛顿定律 t m K d d v v =- ∴??=-=- v v v v v v 0

第二章 力学中的守恒定律

第二章 力学中的守恒定律 2.1 在下面两种情况中,合外力对物体作的功是否相同?(1)使物体匀速铅直地升高 h 。(2) 使物体匀速地在水平面上移动h 。如果物体是在人的作用下运动的,问在两种情况中对物体作的功是否相同? 答:合外力对物体做功不同。 2.2 A 和B 是两个质量相同的小球,以相同的初速度分别沿着摩擦系数不同的平面滚动。其中A 球先停止下来,B 球再过了一些时间才停止下来,并且走过的路程也较长,问摩擦力对这两个球所作的功是否相同? 答:摩檫力对两球做功相同。 2.3 有两个大小形状相同的弹簧:一个是铁做成的,另一个是铜做成的,已知铁制弹簧的倔强系数比铜大。 (1) 把它们拉长同样的距离,拉哪一个做功较大? (2) 用同样的力来拉,拉哪一个做功较大? 答:(1)拉铁的所做功较大; (2)拉铜的做功较大。 2.4 当你用双手去接住对方猛掷过来的球时,你用什么方法缓和球的冲力。 答:手往回收,延长接球时间。 2.5 要把钉子钉在木板上,用手挥动铁锤对钉打击,钉就容易打进去。如果用铁锤紧压着钉,钉就很难被压进去,这现象如何解释? 答:前者动量变化大,从而冲量大,平均冲力也大。 2.6 "有两个球相向运动,碰撞后两球变为静止,在碰撞前两球各以一定的速度运动,即各具有一定的动量。由此可知,由这两个球组成的系统,在碰撞前的总动量不为零,但在碰撞后,两球的动量都为零,整个系统的总动量也为零。这样的结果不是和动量守恒相矛盾吗?" 指出上述讨论中的错误。 答:上述说法是错误的,动能守恒是成立的。虽然碰前各自以一定的速度不为零,相应的动量也不为零,但动量是矢量,系统的总动量在碰前为0,满足动量守恒定律。 2.7 试问:(1) 一个质点的动量等于零,其角动量是否一定等于零?一个质点的角动量等于零,其动量是否一定等于零? (2) 一个系统对某惯性系来说动量守恒,这是否意味着其角动量也守恒? 答:(1)一个质点的动量等于零,其角动量也一定为零;一个质点的角动量等于零,其动量不一定为零。 (2)一个系统对某惯性系来说动量守恒,这并不意味其角动量也守恒。 * * * * * * 2.8 一蓄水池,面积为2 50S m =,所蓄的水面比地面低5.0m ,水深d=1.5m 。用抽水机把这池里的水全部抽到地面上,问至少要作多少功? 解:池中水的重力为5 3 105.7105.150100.1?=????===sdg mg F ρ 将水全部抽到地面,其发生的平均位移为 m d h l 75.52 5.152=+=+ = 抽水机所做的功即克服重力所做的功,所以)(103.475.5105.76 5 J Fl A ?=??== 2.9 以45牛顿的力作用在一质量为15千克的物体上,物体最初处于静止状态。试计算在第 一与第三秒内所作的功,以及第三秒末的瞬时功率。 解:已知015, 450===υkg m N F

实验-验证动量守恒定律

实验七验证动量守恒定律 1.实验原理 在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否相等. 2.实验器材 斜槽、小球(两个)、天平、直尺、复写纸、白纸、圆规、重垂线. 3.实验步骤 (1)用天平测出两小球的质量,并选定质量大的小球为入射小球.

(2)按照如图1甲所示安装实验装置.调整、固定斜槽使斜槽底端水平. 图1 (3)白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O. (4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把小球所有的落点都圈在里面.圆心P就是小球落点的平均位置. (5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如图乙所示. (6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1·OP=m1·OM+m2·ON,看在误差允许的范围内是否成立. (7)整理好实验器材,放回原处. (8)实验结论:在实验误差允许范围内,碰撞系统的动量守恒.

1.数据处理 验证表达式:m1·OP=m1·OM+m2·ON 2.注意事项 (1)斜槽末端的切线必须水平; (2)入射小球每次都必须从斜槽同一高度由静止释放; (3)选质量较大的小球作为入射小球; (4)实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变. 命题点一教材原型实验

练习册-第2章《质点力学的运动定律--守恒定律》答案(1)

第2章 质点力学的运动定律 守恒定律 一、选择题 1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(D),12(A),13(D) 二、填空题 (1). ω2=12rad/s ,A=0.027J (2). 290J (3). 3J (4). 18 N ·s (5). j t i t 23 23+ (SI) (6). 16 N ·s , 176 J (7). 16 N ·s ,176 J (8). M k l /0,M k nm M Ml +0 (9). j i 5- (10). 2m v , 指向正西南或南偏西45° 三、计算题 1. 已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2 /x k f -=,k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解:根据牛顿第二定律 x m t x x m t m x k f d d d d d d d d 2 v v v v =?==- = ∴ ??-=-=4 /202d d ,d d A A x mx k mx x k v v v v v k mA A A m k 3 )14(212=-=v ∴ )/(6mA k =v 2. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求: (1) 子弹射入沙土后,速度随时间变化的函数式; (2) 子弹进入沙土的最大深度. 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律 t m K d d v v =- ∴ ? ?=-=- v v v v v v 0 d d ,d d 0t t m K t m K

力学三个守恒定律及其成立的条件

有关机械能守恒定律的一些看法 古春红 摘要:机械能守恒定律是自然界中普遍存在的规律,也是中学物理知识考查中的重点。在对能量守恒定律的理解和应用中,存在一些容易混淆的问题。本文就这些疑问,从机械能守恒定律的成立条件、适用范围加以分析,希望能澄清这些问题。 关键字:机械能守恒 保守系 保守力 非保守力 能量的相对性 一.问题的提出 能量守恒定律是自然界中普遍存在的规律,从宏观低速物体到微观高速的微粒,都符合能量守恒定律。能量的形式多种多样,有动能、势能、核能、热能等等,因此能量守恒定律可以具体到某种形式的能量的守恒律,比如在机械运动中的机械能守恒定律。机械能与我们的生活最接近,最容易感受到,同时它也是中学物理教学中的一个重点,是中学物理知识考查的重头戏。由于中学生对机械能守恒律理解得不深入,常常不顾机械能守恒定律的成立条件而妄加应用,又或把机械能守恒的条件和动量守恒的条件混为一谈。学生中还会提出这样的问题:既然一个物体的速度大小与选择的参考系有关,那么物体的动能大小也跟参考系的选择有关、机械能守恒定律成立的条件也跟参考系有关吗?一个物体在外力作用下在粗糙的水平面上匀速运动,那么它的机械能守恒吗?对此,我们有必要对机械能守恒定律的成立条件、适用范围以及一些有争议的问题做一做辨析。 二.有关机械能守恒定律 赵凯华、罗蔚茵主编的《新概念物理教程——力学》中提到机械能守恒定律的内容为:一个保守系总机械能的增加等于(未计入外场部分的)外力对它所作的功;如果从某个参考系看来,这部分外力做功为零,则该系统的机械能不变。 这里需要理解的关键字有:保守系、外力做功、从某个参考系看来。搞清楚了这几个关键字,那么前面提出的问题自然就解决了。 下面下先从理论上推导关于保守系的机械能守恒的条件。 对于单个质点,其动能的增量和力对它做功的关系式可以表示为: dE k =d (mv 2/2)=f ?dr =d A , 式中dA 代表力f 对它做的元功,dE k 代表其动能的增加。把此式运用到一个物体系,该物体系由若干个相互作用着的物体(质点)组成,并用脚标i 标记第i 个质点,对i 求和: ∑∑∑∑==?===i i i i i i i 2i i ki k dA dA dr )v m 21( d dE dE f 式中,∑∑==i i 2i i ki k v m 21E E 为系统的总动能,dA 是对系统内所有质点所做的元功。下面讨论dA 。 系统内的质点i 所受的力f i 可以分解为内力和外力: f i =f i 外+f i 内 而 ∑≠=i j ij i f f 内 从而元功可以分解为内力的功和外力的功: dA=dA 外+dA 内 对于内力的功,把它写成对系统内质点i 、j 对称的形式,再利用牛顿第三定律:

验证动量守恒定律(含答案)

实验十六 验证动量守恒定律 一、实验原理 在一维碰撞中,测出物体的质量m 和碰撞前后物体的速度v 、v ′,找出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前后动量是否守恒. 二、实验器材 方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等. 方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥. 方法四:斜槽、小球(两个)、天平、复写纸、白纸等. 三、实验步骤 方案一:利用气垫导轨完成一维碰撞实验 (1)测质量:用天平测出滑块质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下(①改变滑块的质量.②改变滑块的初速度大小和方向)碰撞前后的速度. (4)验证:一维碰撞中的动量守恒. 方案二:利用等长悬线悬挂等大小球完成一维碰撞实验 (1)测质量:用天平测出两小球的质量m 1、m 2. (2)安装:把两个等大小球用等长悬线悬挂起来. (3)实验:一个小球静止,拉起另一个小球,放下时它们相碰. (4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度. (5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒. 方案三:在光滑桌面上两车碰撞完成一维碰撞实验 (1)测质量:用天平测出两小车的质量. (2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥. (3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动. (4)测速度:通过纸带上两计数点间的距离及时间由v =Δx Δt 算出速度. (5)改变条件:改变碰撞条件,重复实验.

2牛顿运动定律及牛顿力学中的守恒定律全解

习题2 2-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为 6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。当2s t =时,求: (1) 质点的位矢; (2) 质点的速度。 解:由 x x f a m = ,有:x a 263m /168s = =,27 m /16 y y f a s m -== (1)2 0035 22m /84 x x x v v a dt s =+=-+?=-?, 20077 2m /168 y y y v v a dt s -=+=?=-?。 于是质点在2s 时的速度:57 m /s 48 v i j =-- (2)22011()22x y r v t a t i a t j =++1317 (224)()428216 i j -=-?+??+? 137 m 48 i j =-- 2-2 质量为2kg 的质点在xy 平面上运动,受到外力2424=-F i t j 的作用,t =0时,它的初速度为034=+v i j ,求t =1s 时质点的速度及受到的法向力n F 。 解:解:由于是在平面运动,所以考虑矢量。 由:d v F m d t =,有:2 4242d v i t j dt -=?,两边积分有: 0201(424)2 v t v d v i t j dt =-??,∴3024v v t i t j =+-, 考虑到034v i j =+,s t 1=,有15v i = 由于在自然坐标系中,t v v e =,而15v i =(s t 1=时),表明在s t 1=时,切向

经典力学中的对称性与守恒定律

毕业论文 题目经典力学中的对称性与守恒定律学生姓名郭俊明学号1110014028所在院(系) 物理与电信工程学院 专业班级物理1101班 指导教师王剑华 2015年5月10日

陕西理工学院毕业论文 经典力学中的对称性和守恒定律 郭俊明 (陕理工物理与电信工程学院物理学专业1101班,陕西汉中 723001) 指导老师:王剑华 [摘要]对称性和守恒定律在物理学中具有非常重要的意义,因此近几个世纪以来对于它的研究引起了物理学家的高度关注。本文首先从经典力学中的变分原理出发,导出拉格朗日方程,利用拉格朗日函数中的物理信息,找出对称性与守恒定律之间的关系,就此举出生活中守恒定律的应用实例,最后得出守恒定律是由对称性或某种基本量不可观察—不可测量所导致的。 [关键词]变分原理; 拉格朗日函数;对称性;守恒定律 引言 人类在认识自然界时,经常会观察其对称性,而对称性是自然界的所有物质和过程都存在或者产生它的对应,是物理规律经过某种变换后的不变性。所谓的对应指的是形态上的对应、现象中的相同、物质的正反、结构上的重复、规律的不变性和性质的一致等等。从对称性出发能解释自然界相互联系中的不变性、一致性和共同性。所以,对称性是物理学家探索自然规律的基本依据和出发点。物理学中动量守恒、能量守恒和角动量守恒在任何时间和任何地点都相同,并且与空间的取向无关。所以,对称性与守恒定律之间必然存在特定的关系。 以前有很多物理学家都在寻找物理规律中的对称性和守恒定律之间的关系。1918年,德国的女数学家诺特(Amalie Emmy Nother,1882-1935)在她获得讲课的权力之后,发表了关于对称性和守恒定律内禀关系,即为著名的“诺特定理”,它的精髓是如果运动规律在不依赖时间的变换下具有不变性,那么必定相应地存在一个守恒定律和守恒量[2]。虽然对称性和守恒定律的关系是从经典力学推导出来的,但它实际的应用领域却远远超出了牛顿力学的范畴,比如,微观领域中动量守恒定律在康普顿效应中的应用[3].现在的科学家着眼于力学系统与守恒量的研究,并且渗透到数学、力学、物理学等各个领域。众多科学家寻求典型力学系统的守恒量,并且研究与守恒量相应的Noether 对称性和Lie 对称性,受到了许多分析力学专家关注。 20世纪六七十年代Currie 等对Lagrange 对称性的最早探索是对不同自由度Lagrange 函数等价问题的研究。上世纪70 年代末到90 年代,Lutzky 等对力学系统的Lagrange 函数等价问题做了一系列的研究, 后来将这种Lagrange 函数等价关系叫做为Lagrange 对称性,Lagrange 对称性现逐渐被推广到Hamil- ton 等系统。近些年来,科学家在约束力学系统三种对称性及其导致守恒量的研究方面取得了许多重要成果[4-11]。在我们的生活中,守恒定律有许多应用,使生活中的现象更具科学化[14]。 本文将从经典力学中的变分原理入手,接着以拉格朗日函数为基础进行讨论,找出函数中的对称关系及其成立的条件,最终推导三种对称性与守恒量之间的关系,就此举出生活中的实例,并且进行解释说明,最后进行总结。 1.由变分原理到拉格朗日方程 变分法是研究泛值函数的一种数学理论,它是力学中最速落径问题的诱导而发展起来

相关主题
文本预览
相关文档 最新文档