矩阵的对角化及其应用
- 格式:doc
- 大小:2.98 MB
- 文档页数:36
附件:分类号O15商洛学院学士学位论文矩阵的可对角化及其应用作者单位数学与计算科学系指导老师刘晓民作者姓名陈毕专业﹑班级数学与应用数学专业07级1班提交时间二0一一年五月矩阵的可对角化及其应用陈毕(数学与计算科学系2007级1班)指导老师刘晓民摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。
本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用.关键词:对角化;特征值;特征向量;相似;线性变换Matrix diagonolization and its applicationChen Bi(Class 1,Grade 2007,The Depart of Math and Calculation Science)Advisor:Lecturer Liu Xiao MinAbstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix analysis and generalization, and using higher algebra and linear algebra are given the relevant theory of matrix several conditions diagonolization, also discussed the matrix of the diagonal shape of solving method, and finally summarized; diagonolization matrix in high power, the policy of using eigenvalue beg determinant by characteristic value and value, feature vector reverse matrix, judgment matrix is similar, vector Spaces, the application of linear transformation, etc.Key words: The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。
矩阵的相似与对角化矩阵是线性代数中的重要概念之一,而相似性与对角化是矩阵理论中的两个关键概念。
本文将从相似性与对角化的概念入手,探讨它们的定义、性质以及在线性代数中的应用。
1. 相似矩阵的定义与性质相似矩阵是线性代数中一个重要的概念,它描述了两个矩阵具有相同的特征值,但其特征向量的基和矩阵元素可能不同。
具体来说,如果存在一个可逆矩阵P,使得矩阵A和矩阵B满足A = PBP^(-1),则可以称矩阵A和矩阵B是相似的。
相似矩阵的性质包括:1) 相似矩阵具有相同的特征值,即它们的特征多项式相同。
2) 相似矩阵的特征向量对应相同的特征值,但基可能不同。
3) 相似矩阵具有相同的迹、行列式和秩。
4) 相似矩阵具有相同的幂,即A^k与B^k相似。
2. 对角化的定义与性质对角化是线性代数中与相似性概念紧密相关的一个概念。
简而言之,对角化就是将一个矩阵通过相似变换变成对角矩阵的过程。
具体来说,如果一个n阶矩阵A相似于一个对角矩阵D,即存在一个可逆矩阵P,使得A = PDP^(-1),则称矩阵A是可对角化的。
对角化的性质包括:1) 可对角化矩阵与其特征值和特征向量有关,特征向量构成的基是将矩阵对角化的基。
2) 可对角化矩阵具有简洁的形式,对角线上的元素是矩阵的特征值,其他元素都为0。
3) 可对角化矩阵的幂可以通过对特征值的幂进行对角化得到。
3. 相似与对角化的关系和应用相似的关系为矩阵的对角化提供了有力的理论基础。
具体而言,如果一个矩阵是可对角化的,那么它就必然与一个对角矩阵相似。
换句话说,对角化是相似的一种特殊情况。
相似与对角化的关系在线性代数中有广泛的应用,例如:1) 矩阵的相似性可以简化矩阵的计算,例如求解线性方程组、计算矩阵的幂等等。
2) 对角化可以简化矩阵的求幂运算,从而方便计算高阶矩阵的幂。
3) 对角化可以帮助我们理解矩阵的性质,例如特征向量的重要性、矩阵的谱分解等。
总结:本文从相似性与对角化的定义和性质出发,对相似矩阵与对角化的关系与应用进行了讨论。
矩阵相似和对角化矩阵的相似和对角化是线性代数中重要的概念和技术。
它们在矩阵理论、线性变换和特征值理论等领域具有广泛的应用。
下面将对矩阵相似和对角化进行详细介绍和相关参考内容的分享。
1. 矩阵的相似性(Matrix Similarity):矩阵相似性是指两个矩阵具有相同的特征值与特征向量。
具体来说,对于n阶矩阵A和B,如果存在一个可逆矩阵P,使得P^(-1)AP=B,则称矩阵A与B相似。
矩阵相似性的特性包括:(1) 相似矩阵具有相同的特征值,但不一定有相同的特征向量;(2) 相似矩阵具有相同的迹、行列式和秩;(3) 相似矩阵表示相同的线性变换,只是在不同的坐标系下表示。
矩阵的相似性在计算机图形学、信号处理和网络分析等领域有广泛的应用。
下面是几篇相关的参考文献:- "Matrix Similarity and Its Applications"(作者:Yu Zhang)是一篇介绍矩阵相似性及其应用的综述文章。
它详细讨论了相似矩阵的定义、性质和计算方法,并列举了相似矩阵在网络分析和信号处理中的应用案例。
- "On Similarity of Matrices"(作者:Pe tar Rajković et al.)是一篇关于相似矩阵的形式定义和性质研究的论文。
它推导了相似矩阵的充要条件和相似变换的表达式,并给出了相似矩阵的几何解释和应用示例。
- "Graph Similarity and Matching"(作者:Michaël Defferrard et al.)是一本关于图相似性和匹配算法的专著。
它介绍了基于矩阵相似性的图匹配方法,包括谱聚类、图嵌入和子图匹配等技术,对于矩阵相似性的理解和应用具有参考价值。
2. 矩阵的对角化(Matrix Diagonalization):矩阵的对角化是指将一个可对角化矩阵相似转化成对角矩阵的过程。
矩阵的相似与对角化求解矩阵是线性代数中重要的概念之一,广泛应用于各个领域。
在研究矩阵的性质时,相似和对角化是两个关键的概念。
本文将为您介绍矩阵的相似性和对角化求解方法,并探讨它们在实际问题中的应用。
一、矩阵的相似性矩阵的相似性是指两个矩阵具有相同的特征值和特征向量。
当两个矩阵相似时,它们的性质也会类似。
在数学中,我们用矩阵P表示可逆矩阵,如果矩阵A和B满足P^-1AP=B,那么我们称A和B是相似矩阵。
矩阵的相似性具有以下三个性质:1. 相似性是一种等价关系。
即对于任意的矩阵A,A与自身相似;若A与B相似,则B与A相似;若A与B相似,B与C相似,则A 与C相似。
2. 相似矩阵具有相同的行列式、迹和秩。
这意味着相似矩阵在行列式、迹和秩等方面具有相似的性质。
3. 相似矩阵具有相似的特征值和特征向量。
这是矩阵相似性的核心概念,相似的矩阵具有相同的特征值和特征向量。
二、矩阵的对角化求解方法对角化是指将一个矩阵通过相似变换,转化为对角矩阵的过程。
对角化的求解可以简化矩阵的运算,方便研究矩阵的性质。
下面介绍一种常用的对角化求解方法——特征值分解。
特征值分解是将一个n阶矩阵A分解为A=PDP^-1的形式,其中D是对角矩阵,P是可逆矩阵,D的主对角线上的元素是A的n个特征值。
特征值分解的步骤如下:1. 求出矩阵A的特征值。
特征值可以通过求解特征方程det(A-λI)=0来获得,其中λ是特征值,I是单位矩阵。
2. 根据特征值求出对应的特征向量。
对于每一个特征值λ,通过求解(A-λI)x=0来获得对应的特征向量x。
3. 构造可逆矩阵P。
将所有的特征向量按列组成矩阵P,即P=[x1,x2,...,xn]。
4. 构造对角矩阵D。
将特征值按照对应的特征向量顺序放在D的主对角线上。
5. 得到对角化的矩阵A。
通过A=PDP^-1可以得到矩阵A的对角化形式。
三、应用示例矩阵的相似性和对角化在实际问题中具有广泛的应用。
以下是一些常见的应用示例:1. 线性系统求解:矩阵的相似性可以将一个复杂的线性方程组转化为一个简单的对角形式,从而求解线性系统变得更加方便。
矩阵对角化问题总结矩阵对角化是线性代数中的一个重要概念,它在很多数学和工程领域中都有广泛应用。
对角化可以把一个矩阵转化为对角矩阵的形式,简化了计算和分析的过程。
本文将对矩阵对角化的定义、条件以及计算方法进行总结。
首先,矩阵对角化的定义如下:对于一个n × n的矩阵A,如果存在一个可逆矩阵P,使得我们可以得到对角矩阵D,则称矩阵A是可对角化的。
其中,对角矩阵D的非零元素是A的特征值,且按照相应的特征值的重数排列。
为了判断一个矩阵是否可对角化,我们需要满足以下条件:1. 矩阵A必须是一个方阵(即行数等于列数)。
2. 矩阵A必须具有n个线性无关的特征向量,对应于n个不同的特征值。
当满足上述条件时,我们可以通过以下步骤进行矩阵对角化:1. 求出矩阵A的特征值,即解A的特征方程det(A-λI) = 0,其中I是单位矩阵。
2. 对每个特征值λ,解方程组(A-λI)X = 0,求得对应的特征向量X。
3. 将特征向量按列组成矩阵P。
4. 求出特征值构成的对角矩阵D。
需要注意的是,在实际求解矩阵对角化问题时,可能会遇到以下情况:1. 矩阵A的特征值重数大于1。
在这种情况下,我们需要确保对应于相同特征值的特征向量线性无关。
2. 矩阵A不可对角化。
这意味着矩阵A无法被相似变换为对角矩阵。
这可能发生在矩阵A的特征向量不足以构成一组基的情况下。
矩阵对角化在很多应用中具有重要意义,它简化了矩阵的计算和分析过程。
对角矩阵具有很好的性质,例如幂运算和指数函数的计算变得更加简单。
此外,在线性系统的稳定性和动态响应的分析中,矩阵对角化也起到了关键的作用。
总之,矩阵对角化是一个重要而又广泛应用的概念。
本文对矩阵对角化的定义、条件以及计算方法进行了总结,并提到了在实际问题中可能会遇到的情况。
了解矩阵对角化的概念和方法,对于深入理解和应用线性代数具有重要意义。
矩阵的相似与对角化矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。
对于一个给定的矩阵,我们可以通过相似变换来得到一种新的矩阵,其具有相似的特性。
相似变换可以理解为在某种意义上对矩阵进行了重新标定、旋转或扩张。
而对角化是一种特殊的相似变换,能够将一个矩阵变为对角矩阵,使得矩阵的运算更加简便。
首先,让我们来了解一下相似变换的概念。
对于两个矩阵A和B,如果存在一个可逆矩阵P,使得B = P^(-1) * A * P,那么我们称A和B是相似的,P为相似变换矩阵。
相似矩阵具有许多相似的性质,包括特征值和特征向量等。
具体来说,如果v是矩阵A的特征向量,那么Pv就是矩阵B的特征向量,特征值也有相应的关系。
这种相似变换在许多问题中都发挥着重要作用,例如线性变换和空间旋转等。
接下来,我们来介绍一下对角化的概念。
对角化是一种特殊的相似变换,将一个n阶矩阵A变为对角矩阵D。
换句话说,D是一个n阶对角矩阵,且存在一个可逆矩阵P,使得D = P^(-1) * A * P。
对角化的好处在于对角矩阵的运算更加简单。
由于对角矩阵只有对角线上有非零元素,其他位置都是零,所以矩阵乘法和求幂等运算都可以简化为对角元素的运算。
这种简化过程对于一些数值计算问题非常有用,例如求矩阵的幂和指数函数等。
那么对角化的条件是什么呢?首先,一个矩阵A能够被对角化,必须要有n个线性无关的特征向量。
这意味着A的特征向量都是不同的,并且它们可以组成一个完整的基。
其次,对应于不同特征值的特征向量也应该是线性无关的。
当满足了这些条件后,我们就可以通过特征向量构建一个可逆矩阵P,从而对矩阵A进行对角化。
在实际操作中,对角化的步骤如下。
首先,我们需要求出矩阵A的特征值和特征向量。
特征值可以通过解矩阵特征方程来得到,而特征向量则可以通过将特征值带入到(A - λI)x = 0中求解。
接下来,将求得的特征向量组成一个矩阵P,然后计算出其逆矩阵P^(-1)。
最后,我们可以得到对角矩阵D = P^(-1) * A * P。
矩阵的相似与对角化在线性代数中,矩阵是一种重要的数学工具,与线性变换和向量空间的理论密切相关。
矩阵的相似与对角化是矩阵理论中的两个重要概念,它们在解决特征值问题、矩阵的可对角化性和矩阵的特殊性质等方面发挥着重要作用。
一、矩阵的相似矩阵的相似是指具有相同特征值的矩阵之间存在一种关系。
设A和B是两个n阶矩阵,如果存在一个可逆矩阵P,使得PAP⁻¹=B成立,那么就称矩阵A与B相似,记作A∼B。
相似关系是一种等价关系,它具有自反性、对称性和传递性。
相似矩阵有以下几个重要性质:1. 相似矩阵具有相同的特征值。
设A与B相似,那么它们的特征多项式和特征值都相同。
2. 相似矩阵具有相同的迹。
矩阵的迹是指主对角线上元素的和。
如果A与B相似,那么它们的迹也相等。
3. 相似矩阵具有相同的秩。
矩阵的秩是指矩阵的列空间的维度。
如果A与B相似,那么它们的秩也相等。
二、矩阵的对角化对角化矩阵是一种特殊的相似矩阵,使得矩阵在某一种特殊的变换下能够变为对角矩阵。
设A是一个n阶矩阵,如果存在一个可逆矩阵P,使得PAP⁻¹=D成立,其中D是一个对角矩阵,那么就称矩阵A可对角化。
对角化的充要条件是矩阵A有n个线性无关的特征向量,即A的特征向量组成一个线性无关的向量组。
此时,矩阵A经过适当的变换后,可以将其对角化。
对角化的优点是简化了矩阵的计算和处理。
对角矩阵的运算更加方便,可以更直观地观察矩阵的性质,同时在求解线性方程组和矩阵的幂等问题时,也能够更加高效地进行计算。
三、矩阵相似与对角化的关系矩阵的相似与对角化之间存在一定的联系。
设A是一个n阶矩阵,如果A与对角矩阵D相似,那么A可对角化。
具体地说,如果存在一个可逆矩阵P,使得PAP⁻¹=D成立,那么矩阵A可对角化。
对角化的好处在于可以将矩阵的运算和计算简化为对角矩阵的运算。
同时,对角化也能够更好地揭示矩阵的特殊性质,如特征值、特征向量和秩等。
计算矩阵的相似和对角化是解决线性代数问题的重要方法。
矩阵对角化公式矩阵对角化是线性代数中一个重要的概念,它可以将一个矩阵转化为对角矩阵的形式。
对角化的过程在许多数学和工程领域中都有广泛的应用,例如解线性方程组、求特征值和特征向量、矩阵的幂运算等。
对于一个n阶方阵A,如果存在一个可逆矩阵P,使得P^-1 * A * P = D,其中D为对角矩阵,则称矩阵A可对角化。
这个等式可以进一步展开为 A = P * D * P^-1。
在这个等式中,D的对角线上的元素为矩阵A的特征值,而P的列向量为相应的特征向量。
矩阵对角化的一个重要性质是,可对角化的矩阵必然是可对角化的,并且它们的特征值是相同的。
换句话说,如果A和B是可对角化的,并且它们的特征值相同,则存在可逆矩阵P和Q,使得P^-1 * A * P = Q^-1 * B * Q。
要判断一个矩阵是否可对角化,可以通过计算矩阵的特征值和特征向量来进行。
首先,计算矩阵的特征多项式,并求解特征多项式的根,这些根即为特征值。
接下来,对于每个特征值,求解齐次线性方程组 (A - λI)x = 0,得到对应的特征向量。
如果矩阵A具有n 个线性无关的特征向量,即其特征向量的个数等于矩阵的秩,那么矩阵A是可对角化的。
值得注意的是,并非所有的矩阵都可以对角化。
一些不可对角化的矩阵称为不可对角阵,其中最常见的例子是具有重复特征值的矩阵。
对于不可对角化的矩阵,我们可以使用类似于对角化的方法来将其转化为更简化的形式,例如Jordan标准形或者Schur标准形。
总结起来,矩阵对角化是一种重要的线性代数操作,它可以将矩阵转化为对角矩阵的形式,便于研究矩阵的性质和求解相关问题。
对角化的过程需要计算矩阵的特征值和特征向量,而可对角化的条件是矩阵具有n个线性无关的特征向量。
对于不可对角化的矩阵,我们可以采用其他方法进行简化。
空间解析几何的对角化对角化与相似矩阵的计算与应用在线性代数中,对角化是一个重要的概念,它在几何学和矩阵计算中具有广泛的应用。
本文将探讨空间解析几何中的对角化概念及其与相似矩阵的计算和实际应用。
一、对角化的概念对角化是指将一个矩阵通过相似变换变为对角阵的过程。
在空间解析几何中,对角化可以帮助我们更好地理解和描述几何物体的性质和运动规律。
对于一个n阶矩阵A,如果存在一个可逆矩阵P,使得P^{-1}AP=D,其中D为对角阵,那么我们称矩阵A可对角化,矩阵D的主对角线上的元素即为矩阵A的特征值。
二、对角化的计算方法对角化的计算可以通过求解矩阵的特征值和特征向量来实现。
具体步骤如下:1.计算特征值:解方程|A-\lambda I|=0,其中A为给定矩阵,\lambda为标量,I为单位矩阵。
解该方程可得到矩阵A的特征值。
2.计算特征向量:将每个特征值代入方程(A-\lambdaI)\mathbf{X}=\mathbf{0},其中\mathbf{X}为特征向量。
解该齐次线性方程组即可得到特征向量。
3.构造P矩阵:将特征向量按列排成一个矩阵P,即P=[\mathbf{X_1},\mathbf{X_2},\cdots,\mathbf{X_n}],其中\mathbf{X_i}为第i个特征向量。
4.计算相似矩阵:利用矩阵P和对角阵D,可以得到相似矩阵A=PDP^{-1}。
三、对角化的应用对角化在空间解析几何中有许多应用,以下列举几个常见的应用。
1.求解线性方程组:对角化可以将一个线性方程组转化为简化的形式。
利用相似矩阵的性质,对角阵的求解相对更加简单。
通过对角化,可以更快速地求解线性方程组。
2.描述几何变换:对角化可以帮助我们描述和研究几何物体的旋转、缩放和平移等变换。
通过对角化后得到的相似矩阵,可以直观地了解几何物体的变换规律。
3.优化问题:在优化问题中,对角化可以将问题转化为更简单的形式。
例如,对角化可以将一个二次函数实现坐标的旋转和缩放,从而更便于求解最优解。
矩阵的相似与对角化矩阵是线性代数中非常重要的概念之一,它在各个领域都有广泛的应用。
在研究矩阵的性质时,相似和对角化是两个重要的概念。
本文将介绍矩阵的相似和对角化以及它们在数学和实际问题中的意义。
一、矩阵的相似矩阵的相似是指对于两个矩阵A和B,若存在一个可逆矩阵P,使得P^-1AP = B,则称矩阵A和B相似。
其中,P被称为相似变换矩阵。
相似的概念可以帮助我们判断矩阵之间是否具有一些相似的性质。
在矩阵相似的条件下,它们具有以下几点性质:1. 相似矩阵具有相同的特征值:设A和B是相似矩阵,若c是A的特征值,则c也是B的特征值。
2. 相似矩阵具有相同的特征多项式:特征多项式是一个与矩阵相关的特征方程,相似矩阵的特征多项式相同。
3. 相似矩阵具有相同的迹和行列式:设A和B是相似矩阵,它们的迹和行列式相等。
相似的概念在矩阵的分析和计算中具有重要的作用。
通过相似变换,我们可以简化矩阵的计算和求解问题。
而且,相似关系也有助于我们研究矩阵的特征值和特征向量,进一步分析矩阵的性质和应用。
二、矩阵的对角化对角化是指将一个矩阵通过相似变换,转化为一个对角矩阵的过程。
对角矩阵是一种特殊的矩阵,它的非对角元素都为0。
对于一个n阶方阵A,若存在一个可逆矩阵P,使得P^-1AP = D,其中D是一个对角矩阵,则称A可对角化。
对角化的过程可以表示为A = PDP^-1。
其中,D是由A的特征值按对角线排列而成的对角矩阵。
一个矩阵是否可以对角化,与它的特征值和特征向量密切相关。
对角化的条件如下:1. 若矩阵A具有n个线性无关的特征向量,即A的特征向量的个数等于n,则A可对角化。
2. 若矩阵A的特征向量的个数少于n,则A不可对角化。
对角化的概念在数学和实际问题中都具有广泛的应用。
通过对角化,我们可以将一个复杂的矩阵简化为一个对角矩阵,从而更容易进行计算和分析。
对角化还有助于我们研究矩阵的性质和应用,比如求解线性方程组、计算幂矩阵等。
矩阵对角化的步骤矩阵对角化是线性代数中一项重要的技术,它可以将一个复杂的矩阵转化为一个更简单的对角矩阵。
在实际应用中,对角化可以帮助我们简化数学计算、解决方程组和求解特征值等问题。
下面将介绍矩阵对角化的步骤。
一、什么是矩阵对角化?在线性代数中,一个n×n的方阵A称为可对角化矩阵,当且仅当它可以表示成PDP−1的形式,其中P是可逆方阵,D是对角矩阵。
也就是说,通过一系列变换可以将原始矩阵转换为一个对角矩阵。
二、为什么要进行矩阵对角化?1. 简化计算通过对角化可以将原始矩阵转换为一个更加简单的形式,使得计算更加容易。
例如,在求解线性方程组时,如果系数矩阵可对角化,则可以直接求出其逆和行列式等参数。
2. 求解特征值通过对角化可以求出一个矩阵的特征值和特征向量。
这些参数在许多应用中都非常重要,例如图像处理、信号处理和物理建模等领域。
三、矩阵对角化的步骤1. 求出矩阵的特征值和特征向量对于一个n×n的矩阵A,首先需要求出它的n个特征值λ1,λ2,…,λn 和对应的特征向量v1,v2,…,vn。
这一步可以通过求解矩阵A−λI的零空间来实现,其中I是单位矩阵。
具体地,我们需要求解线性方程组(A−λI)x=0,并找到所有非零解x。
这些非零解构成了矩阵A的特征向量。
2. 构造特征向量矩阵P将所有求得的特征向量按列排成一个矩阵P=[v1v2⋯vn],称为特征向量矩阵。
注意到如果某个特征值有多个线性无关的特征向量,那么它们都可以被加入到P中。
3. 求出对角化矩阵D将所有求得的特征值按对角线排列构成一个对角矩阵D=diag(λ1,λ2,…,λn)。
4. 求出逆变换矩阵P−1由于P是由线性无关的特征向量构成的矩阵,因此它是可逆的。
我们可以通过高斯-约旦消元法或矩阵求逆公式等方法求出P的逆矩阵P−1。
5. 检验对角化结果将对角化矩阵D和逆变换矩阵P−1代入PDP−1,即可得到原始矩阵A的对角化形式。
为了检验结果是否正确,可以计算PDP−1与原始矩阵A之间的误差。
第四章矩阵的对角化对于一个矩阵,如何寻找一个适当的变换,在将其变为简单矩阵的同时,保留原矩阵的一些重要特征,这是矩阵论中一个非常重要的问题.在这一问题的研究中,矩阵的特征值和特征向量的概念起着非常重要的作用.拉普拉斯在19世纪初提出了矩阵的特征值的概念.1854年,若尔当研究了矩阵化为标准形的问题.1885年,埃尔米特证明了一些特殊矩阵的特征根的性质,后人称之为埃尔米特矩阵的特征根性质,凯莱1858年发表了一篇论文《矩阵论的研究报告》,文中研究了方阵的特征方程和特征值的一些基本结果,克莱布什等证明了对称矩阵的特征根性质.在这一问题的研究史上,值得重点介绍的是下面两位数学家:第一位是柯西,他首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称矩阵都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值.第二位是弗罗贝尼乌斯,正是他引入了矩阵的相似变换、合同矩阵、正交矩阵等重要概念,并讨论了正交矩阵和合同矩阵的一些重要性质.矩阵的特征值、特征向量和仿真的对角化理论与方法是矩阵理论的重要组成部分,它不仅在数学的各个分支有重要作用,而且在其他学科如工程技术、数量经济分析等领域有着广泛的应用.本章主要讨论方阵的特征值与特征向量理论及方阵在相似意义下的对角化问题,并应用这些理论和方法解决一些实际问题.§4.1 矩阵的特征值和特征向量一、特征值和特征向量的概念在工程实践及经济管理等许多领域中,经常会遇到矩阵的特征值和特征向量的问题.例 4.1.1 经济发展与环境污染是当今世界亟待解决的两个突出问题.为了研究某地区经济发展与环境污染之间的关系,可建立如下数学模型:设,分别为某地区目前的环境污染水平与经济发展水平,,分别为该地区若干年后的环境污染水平与经济发展水平,且有如下关系,令,,,则上述关系的矩阵形式为:若该地区目前的环境污染水平与经济发展水平,则若干年后的环境污染水平与经济发展水平为,即这里,4就是矩阵的一个特征值,是矩阵的对应于4的一个特征向量.定义 4.1.1 设为阶矩阵,若存在数和维非零列向量,使得;则称为矩阵的特征值,是矩阵一个特征值,称为的属于(或对应于)特征值的特征向量.由特征值、特征向量的定义可得(1)若为的属于的特征向量,则对于非实数,也是的属于的特征向量. (2)若,为的属于的特征向量,则当时,也是的属于的特征向量.(3)若,为的互异特征值,,分别为的属于,的特征向量,则.证若,则,即,故.由于,所以,矛盾.因此.例 4. 1. 2 求阶方阵的一个特征值与所对应的特征向量.解取维向量,,,则,故是的一个特征值,是属于特征值的一个特征向量.将(4.1.1)写成下面形式.根据定义,特征向量就是齐次线性方程组. (4.1.2)的非零解.由于(4.1.2)有非零解的充要条件是其系数行列式等于零,故知阶矩阵的特征值满足方程.为叙述方便,引入下面的概念.定义4. 1. 2 .,称为矩阵的特征多项式,称为的特殊矩阵,称为的特征方程.二、特征值与特征向量的计算求阶矩阵的特征值和特征向量,可按如下步骤进行:(1)计算的特征多项式,求出特征方程的全部根,,,. 对每个特征值,,,,求解齐次线性方程组.设它的一个基础解系为,,,,则的属于的全部特征向量为其中,,,为不全为零的任意常数.限于本教材适用范围,我们将不讨论的复特征值和特征向量.例 4.1.3 求矩阵的特征值与特征向量解矩阵的特征多项式=由,得的特征值为,,.对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于,的全部特征向量为().对于,解齐次线性方程组,即解方程组得基础解系,,,所以对应于的全部特征向量为()..对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为()..例4.1.4 求矩阵的特征值与特征向量解矩阵的特征多项式为=,由,得的特征值为,.对于,解齐次线性方程组,即解方程组,得基础解系,,,,,,所以对应于的全部特征向量为(,不全为零).对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为().例4.1.5 求矩阵的特征值与特征向量解矩阵的特征多项式为=,由,得的特征值为,.对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为(). 对于,解齐次线性方程组,即解方程组,得基础解系,,,所以对应于的全部特征向量为(). 三、特征值与特征向量的性质定理4.1.1 阶矩阵与有相同的特征值.证由,知与有相同的特征多项式,故有相同的特征值.定理4.1.2 设,,,,为方阵的个特征值,则有(1)(2)证(1)根据多项式因式分解与方程根的关系,有(4.1.3)令,得,即(2)比较(4.1.3)式两端的系数,右端为,而左端含的项来自的主对角线元乘积项,其含的系数为,因此.我们将阶矩阵的主对角线元之和称为矩阵的迹,记为(),即( )= ∑=n k 1推论4.1.1 阶矩阵 可逆的充分条件是它的任一特征值不等于零.定理4.1.3 若 为 的特征值, 是对应的特征向量,则(1) 为 的特征值( 为常数);(2) 为 的特征值( 为正整数);(3) 若 为 的多项式,则 为 的特征值;(4) 若 可逆,则 为 的特征值, 为 的特征值.证 由题意,对于 ,有 .(1) 因为 ,故 为 的特征值.(2) 由 ,得 ,假设 , 于是 ,由数学归纳法知结论成立.(3) 设 ,由(2)可得(4) 由于 可逆,故 ,从而 ,故, ,即 为 的特征值, 为 的特征值.下面给出方阵 的特征向量的性质定理4.1.4 设 , , , 为 阶矩阵 的 个互异特征值, , , , 分别是 的属于 , , , 的特征向量,则 , , , 线性无关.证 设有常数 , , , ,使得(4.1.4) 上式两边左乘 ,并注意到 , , , ,有.按这种方法再依次用 , , 左乘(4.1.4),并应用定理4.1.3(2)的结论,得,,,上式的矩阵形式为,,,(,,,),上式左端第二个矩阵的行列式是范德蒙德行列式,因为,,,互不相同,所以该行列式的值不为零,从而该矩阵可逆.用该矩阵的逆右乘上述等式两边,得,,,(,,,)于是,,,,由于特征向量,,,非零,因此只有,,,上式才能成立,故,,,为线性无关.定理4.1.5设,,,为阶矩阵的个互异特征值,,,,分别是的属于,,,的线性无关的特征向量,则向量组,,,,,,,,,,,线性无关.证明略.关于对应同一个特征值的特征向量间的关系,有定理4.1.6 设是阶矩阵的重特征值,则对应于的线性无关特征向量个数不超过个.显然,依据定理4.1.6,当特征值为单根时,对应的线性无关特征向量个数只能是一个.根据上述定理,对于阶矩阵的每一个不同的特征值,求出齐次线性方程组的基础解系,就得到的属于的线性无关的特征向量.然后,把它们合成一起所得的向量组仍然线性无关.阶矩阵的线性无关特征向量个数不大于.例4.1.6设三阶矩阵的特征值为,,求(1)的特征值.(2)的特征值.(3)的特征值及.解(1)由于,因此可逆,由定理4.1.3知,的特征值为,,.(2)由定理4.1.3知,的特征值为6,6,4.(3)因为,所以).设,由定理4.1.3知,的特征值为,1,2,3.由此得的特征值为,,,.例4.1.7 设为正交矩阵,若,则有特征值证,则.另一方面,由于及,则因此,即为的特征值.§4.2 相似矩阵在矩阵的运算中,对角矩阵的运算最方便.我们自然要问,一个阶矩阵是否可化为对角矩阵,且保持矩阵的一些重要性质不变.本节将讨论这个问题.一、相似矩阵定义4.2.1 设,为阶矩阵,如果存在阶可逆矩阵,使得,则称矩阵和相似,也称是的相似矩阵,记作.可逆矩阵称为相似变换矩阵. 例 4.2.1 设,,,不难验证可逆,且.由于,因此.两个相似矩阵是等价矩阵,相似是方阵之间的一种关系,这种关系具有如下性质:(1)反身性:;(2)对称性:若,则;(3)传递性:若,,则;此外,相似矩阵之间有许多共同的性质定理4.2.1 若阶矩阵与相似,则(1);(2);(3),有相同的特征值;(4).证由于,故存在阶可逆矩阵,使得,从而(1);(2);(3)由于,即,有相同的特征多项式,于是,有相同的特征值.(4)由(3)即得.推论4.2.1 若阶矩阵与对角矩阵=相似,则,,,是的个特征值.例4.2.2 若,求,.解对角矩阵的特征值为,,,由于,因此的特征值也为,,,再根据相似矩阵有相同的迹,可得,,解此方程组得,.两个相似的矩阵还具有下面的性质(1)若,则,(为正整数);(2)若,为多项式,则;(3)若,且,均可逆,则;证只证,故存在阶矩阵,使得,从而个即.二、矩阵的对角化定义 4.2.2 若阶矩阵与对角矩阵相似,则称可对角化.相似矩阵有许多共同性质.在我们熟悉的矩阵中,形式最简单的一类是对角矩阵,若矩阵相似于对角矩阵,就可以借助对角矩阵来研究,如何求相应的可逆矩阵?下面我们就来讨论这个问题.定理4.2.3 阶矩阵相似于对角矩阵(可对角化)的充要条件是有个线性无关的特征向量.证必要性.设存在可逆矩阵,使得==.设,,,,由=,得=,或,,,,,,.即,,,,,,因此,,,,,由于可逆,因此,从而,,,都是非零向量,故,,,分别是的属于特征值,,,的特征向量,再由可逆知,,,线性无关.充分性.设,,,分别是的属于特征值,,,的个线性无关的特征向量,则有,,,取,,,,因为,,,线性无关,所以可逆,于是有=.,即==因此矩阵相似于对角矩阵.因为特征向量不是唯一的,所以矩阵不具有唯一性.推论4.2.2若阶矩阵有个互异的特征值,则必可对角化.推论4.2.3阶矩阵可对角化的充分必有条件是的每个重特征值都有个线性无关的特征向量.即.由上述结论可知,例4.1.3和例4.1.4给出的矩阵可对角化,而例4.1.5给出的矩阵不能对角化.根据上述结论,可以归纳出将矩阵对角化的具体计算步骤:(1)求出阶矩阵的全部互异特征值,,,,它们的重数依次为,,,;(2)求的特征向量.对每个特征值求方程组的基础解系,即为的对应的线性无关的特征向量,设为,,,,,,;(3)判定是否可对角化.若对每一个特征值都有,,,,则可对角化,否则不可对角化;(4)当可对角化时,令,,,,,,,,,,,,)个个个且可逆,且有=例4.2.3判断下列矩阵能否对角化,若能,求出可逆矩阵,使得为对角矩阵.(1);(2)解(1)矩阵的特征多项式为=由,得的特征值为,,.由推论4.2.2知,矩阵可对角化.下面求可逆矩阵.对于,解齐次线性方程组,即解方程组,得基础解系,,,即为即为的属于特征值的一个特征向量.对于,解齐次线性方程组,即解方程组得基础解系,,,即为的属于特征值的一个特征向量.对于,解齐次线性方程组,即解方程组,得基础解系,,,即为的属于特征值的一个特征向量.取,,,则有==(2)矩阵的特征多项式为=由,得的特征值为,.当,即为的二重特征值时,.故,依据推论4.2.3知,矩阵可对角化,且对应的线性无关的特征向量为,,,,,.对于,解齐次线性方程组,得的属于特征值的一个特征向量,,.取取,,,则有==对于可对角化的矩阵,我们可应用来求方程的幂,例如,对上例的矩阵,我们有.例4.2.4 设,求为何值时,(1)可对角化,并求相似变换矩阵;(2)为可逆矩阵.解(1)矩阵的特征多项式为=,故的特征值为,.对于,解齐次线性方程组,得的属于特征值的特征向量为,,,,,.对于,解齐次线性方程组,得的属于特征值的特征向量为,,.依据推论4.2.3知,无论为何值,矩阵均可对角化.令,,,则有==.()的特征值分别为,,,故当且时,为可逆矩阵.§4.3 实对称矩阵的对角化我们已经知道,不是每个矩阵都能对角化.但本节讨论的实对称矩阵一定可以对角化,而且还能正交相似于对角矩阵,本节将讨论实对称矩阵的对角化.一、实对称矩阵的特征值与特征向量的性质实对称矩阵的特征值和特征向量具有一些特殊的性质,这些性质可以保证实对称矩阵一定可以对角化.定理4.3.1 实对称矩阵的特征值都是实数.证设为实对称矩阵的特征值,为对应的特征向量,即,.用表示的共轭复数,用表示的共轭复向量.则,于是有,及,以上两式相减得,以为所以.因而,即为实数.由于实对称矩阵的特征值为实数,那么为实矩阵,则齐次线性方程组的解可取为实向量,亦即实对称矩阵的特征向量为实向量.定理4.3.2实对称矩阵不同的特征值对应的特征向量正交,证设,为实对称矩阵的两个不同的特征值,,分别为它们对应的特征向量,则,,,,从而,因是对称矩阵,又有,于是,因,故,即与正交.定理4.3.3 设为阶实对称矩阵,为的重特征根,则,从而特征值恰好对应个线性无关的特征向量.证明略.二、实对称矩阵的对角化由定理4.3.2和定理4.3.3可得定理4.3.4 设为阶实对称矩阵,则存在正交矩阵,使得=其中,,,为的全部特征值.(1)求出阶实对称矩阵的全部互异特征值,,,,它们的重数依次为,,,;(2)求实对称矩阵的特征向量.对每个特征值求方程组的基础解系,即为的对应的线性无关的特征向量,设为,,,;(3)用施密特正交化方法,将特征向量,,,,,,正交,,,单位化,得到一个标准正交向量组,,,,,,;(4)令,,,,,,,,,,,(,,,,,,,,,,,,)个个个且为正交矩阵,且有=例4.3.1 设实对称矩阵,求正交矩阵,使得=为对角矩阵.解矩阵的特征多项式为=,因此,矩阵的特征值为,,.对于,解齐次线性方程组,得基础解系,,;对于,解齐次线性方程组,得基础解系,,;对于,解齐次线性方程组,得基础解系,,.将,,单位化,可得,,,,,,,,令,,,且为正交矩阵,且有=例4.3.2 设实对称矩阵,求正交矩阵,使得=为对角矩阵.解矩阵的特征多项式为=,因此,矩阵的特征值为,.对于,解齐次线性方程组,得基础解系,,,,,;先将向量,正交化,令,,,,再单位化,得,,对于,解齐次线性方程组,得基础解系,,,将其单位化,得.令,,,且为正交矩阵,且有=.例 4.3.3 设三阶实对称矩阵的特征值为,,且属于的特征矩阵为,,,求矩阵.解设的属于特征值的特征向量为,,,则与正交,即,解此齐次线性方程组,得基础解系,,,,,,易见,,正交.将,,单位化,可得,,令,,,则为正交矩阵,且有=,从而=.习题四 (A )一、填空题1. 为 阶矩阵, 有非零解,则 必有一个特征值__________.2.若 阶可逆方阵 的每行元之和 ,则 的一个特征值为__________.3.设 为三阶可逆矩阵,其逆矩阵的特征值为,,,则行列式 __________.4.设 是非奇异矩阵的一个特征值,则矩阵有一个特征值为__________.5.若 为四阶实对称矩阵, ,且2是 的三重特征值,则 的相似对角矩阵为__________.6. 设 为 阶矩阵, 有 个互异特征值 , , , ,则有 __________ , , , .7. 设 是三阶实对称矩阵, 的特征值是 , ,则有 __________. 8.若四阶矩阵 与 相似,矩阵 的特征值为,,,,则9.已知矩阵只有一个线性无关的特征向量,则10.设 , ,,矩阵 , 为自然数,则行列式 11.已知三阶实对称矩阵 的一个特征值为 ,对应的特征向量 , ,,且 的主对角线上的元全为零,则 二、单选题1.设三阶矩阵,则 的特征值是()(A )1,0,1 (B )1,1,2 (C )-1,1,2 (D )1,-1,12.若可对角化的 阶矩阵 只有一个特征值为零,则 =() (A ) (B ) (C )1 (D )03.设 , , , 是矩阵 对应于特征值 的特征向量,当线性组合∑=ni 1满足()时,∑=ni 1也是矩阵 对应于特征值 的特征向量.(A)其中不全为零(B)其中全不为零(C)是非零向量(D)是任一向量4.当满足下列()条件时,矩阵与相似.(A)(B)(C)与有相同的特征多项式.(D)阶矩阵与有相同的特征值且个特征值不相同.5.已知二阶实对称矩阵的特征向量为,且,则必为的特征向量的是()(A)(B),(C),,(D),,不同时为零6.设是阶非零矩阵,,下列命题不正确的是().(A)的特征值只有零(B)必不能对角化(C)必可逆(D)只有一个线性无关的特征向量7.设,是矩阵的两个不同的特征值,对应的特征向量分别为,,则,线性无关的充要条件是()(A)(B)(C)(D)8.若,且,,则以下结论错误的是().(A)(B)(C)为不可逆矩阵(D)必有特征值9.设,有特征值,(二重),且有三个线性无关的特征向量,则.(A)4(B)(C)(D)10.设,为阶矩阵,且与相似,则()(A)(B)与均相似于同一个对角矩阵.(C)与有相同的特征值与特征向量(D)对任意常数,与相似.三、综合题1.求下列矩阵的特征值与特征向量:(1);(2);(3);(4).2.判断下列矩阵与是否相似:(1),;(2),;(3),;(4),.3.求下列矩阵的次幂:(1);(2).4.求正交矩阵,使得为对角矩阵.(1);(2).5.设是阶方阵的一个特征值,且的伴随矩阵为,试证:的非零列向量是的属于的特征向量.6.考察栖息地在同一地区的兔子和狐狸的生态模型,对两种动物的数量的相互依存的关系可用以下模型描述:,,,,,其中,分别表示第年时兔子和狐狸的数量,而,分别表示基年时兔子和狐狸的数量,记,,,,(1)写出该模型的矩阵形式;(2)如果,求.(3)求7.设,相似,求:(1),的值;(2)求正交矩阵,使得.8.设向量,,,,,,,,且,记,求的所有特征值及特征向量.9.设,为三维单位列向量,且,令,证明与相似.10.设三阶实对称矩阵的特征值是1,2,3,矩阵的属于特征值1,2,3的特征向量分别是,,,,,.(1)求的属于特征值3的特征向量;(2)求矩阵.11.设,若为的一个特征值,求;(2)求.12.若存在正交矩阵,使矩阵,同时相似于对角矩阵,则必有.13.设为三阶实对称矩阵,且满足条件,的秩.求的全部特征值.14.设,求实对称矩阵,使.15.设矩阵,求.16.已知三阶矩阵与相似,,是的两个特征值,,计算,其中是的伴随矩阵.(B)1.设矩阵与相似,与相似,试证:与相似.2.已知与对角矩阵相似,求.3.设是阶实幂等矩阵(即),且,.(1)设,,试证.(2)试证:;(3)求4.设,为阶矩阵,,证明(1)是与的相同特征值;(2)与的基础解系线性相关.5.设是阶矩阵,且任一非零维向量都是的特征向量,试证:(即为数量矩阵)6.已知三阶非零矩阵,满足,,,证明:(1)0和1必是与的特征值;(2)若是关于的特征向量,的个特征值两两互异,若的特征向量总是的特征向量,证明.8.设,均为阶非零矩阵,且满足,,证明:(1)是,的特征值.(2)若,,分别是,对应于的特征向量,则,线性无关.答案:一、填空题1.02.3.-64.5..6.7.8.14 7639.10.11.二、单选题1-5 CBCDB6-10 DDADD三、综合题1.(1),,的属于的特征向量,;的属于的特征向量,.(2),;的属于的特征向量为,,不全为零;的属于的特征向量为,(3),;的属于的特征向量为,,不全为零;的属于的特征向量为,.(4)(三重);的属于的特征向量为,,不全为零;2.(1)不相似;(2)相似;(3)相似.3.(1);(2)当为偶数时,;当为奇数时,.。
矩阵的对角化及其应用
湖北民族学院理学院2016届 本科毕业论文(设计)
矩阵的对角化及其应用 学生姓名: 赵远安 学 号: 021241015 专 业: 数学与应用数学 指导老师: 刘先平 答辩时间: 2016.5.22 装订时间: 2016.5.25
A Graduation Thesis (Project) Submitted to School of Science, Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016
Diagonalization of the Matrix and its Applications Student Name: ZHAO Yuanan Student No.: 021241015 Specialty: Mathematics and Applied Mathematics Supervisor: Liu Xianping
Date of Thesis Defense:2016.5.22 Date of Bookbinding: 2016.5.25
摘 要 矩阵在大学数学中是一个重要工具,在很多方面应用矩阵能简化描述性语言,而且也更容易理解,比如说线性方程组、二次方程等. 矩阵相似是一个等价关系,利用相似可以把矩阵进行分类,其中与对角矩阵相似的一类矩阵尤为重要,这类矩阵有很好的性质,方便我们解决其它的问题. 本文从矩阵的对角化的诸多充要条件及充分条件着手,探讨数域上任意一个n阶矩阵的对角化问题,给出判定方法,研究判定方法间的相互关系,以及某些特殊矩阵的对角化,还给出如幂等矩阵、对合矩阵、幂幺矩阵对角化的应用.
关键词:对角矩阵,实对称矩阵,幂等矩阵,对合矩阵,特征值,特征向量,最小多项式 I II III
目 录 摘要…………………………………………………………………………………………I Abstract……………………………………………………………………………………II
绪言…………………………………………………………………………………………1
课题背景……………………………………………………………………………………1
目的和意义……………………………………………………………………………… 1
国内外概况……………………………………………………………………………… 1
预备知识……………………………………………………………………………………2
相关概念……………………………………………………………………………………2
矩阵的对角化………………………………………………………………………………4
特殊矩阵的对角化……………………………………………………………………… 14
矩阵对角化的应用……………………………………………………………………… 22
总结……………………………………………………………………………………… 24
致谢……………………………………………………………………………………… 25
参考文献………………………………………………………………………………… 26
独创声明………………………………………………………………………………… 28 0
1 绪言 本课题研究与矩阵的对角化相关的问题,从对角化的判定展开论述,结合其它学术期刊的结论加上自己的体会,希望能让读者更好的理解矩阵及其对角化的妙处.
1.1 课题背景 在由北京大学数学系几何与代数教研室前代数小组编、王萼芳与石生明修订、高等教育出版社出版的《高等代数》一书中,我们为了方便线性方程组的运算引入了矩阵的概念. 在线性方程组的讨论中我们看到,线性方程组的系数矩阵和增广矩阵反应出线性方程组的一些重要性质,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组之外,还有大量的各种各样的问题也提出矩阵的概念,并且这些问题的研究常常反应为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结为矩阵问题以后却是相同的. 在二次型中我们用矩阵研究二次型的性质,引入了矩阵合同、正定、负定、半正定、半负定等概念及其判别方法.在向量空间中用矩阵研究线性变换的性质,引入矩阵相似的概念,这是一种等价关系,利用它我们把矩阵分类,其中与对角矩阵相似的矩阵引起的我们的注意,由此我们对线性变换归类,利用简单的矩阵研究复杂的,方便我们看待问题,进而又引入对角型矩阵、λ矩阵及若尔当标准型.本文主要由矩阵定义和向量空间研究矩阵的对角化,从不同角度揭示矩阵对角化的判定及其性质,还给出特殊矩阵的对角化及其相应的应用.
1.2 课题研究的目的和意义 课题研究的意义: (1) 研究矩阵对角化的判定定理及应用,为其它学术研究提供便捷的工具;
(2) 比较全面的介绍矩阵的对角化,方便读者的整体理解和应用; 1.3 国内外概况 实数域、复数域等数域上的矩阵的对角化研究已经很成熟,涉及特征值、最小多项式、线性变换方面的对角化证明也已完善,四元素体上矩阵的广义对角化也有小有成就,矩阵对角化与群环域的结合方面的研究也有所突破. 实对称矩阵、正交矩阵、分块儿矩阵的对角化已完善,矩阵的应用也渐渐出现在更多的学科和科研当中. 矩阵的同时对角化、同时次对角化,以及对角化与秩的恒等式等方面的研究基本完善.
1 2 预备知识
给出本文内容所涉及的一些定义,方便对后面定理证明的理解. 定义1 常以nmP表示数域P上nm矩阵的全体,用E表示单位矩阵.
定义2 n阶方阵A与B是相似的,如果我们可以找到一个n阶非奇异的方阵矩阵TnnP,使得ATTB1或者BTTA1 .
根据定义我们容易知道相似为矩阵间的一个等价关系:①反身性:AEEA1; ②对称性:若A相似于B,则B相似于A; ③传递性:如果A相似于B,B相似于C,那么A相似于C.
定义3 n阶方阵A与B是合同的,如果我们可以找到一个n阶非奇异方阵TnnP,使得B=TTAT或者BTTAT. 根据定义我们容易知道合同也为矩阵间的一个等价联系:①反身性:A=AEET;②对称性:由ATTBT即有11)(BTTAT;③传递性:由111ATTAT和2122TATAT
有)()(21212TTATTAT.
定义4 式为mbbb000000021的m阶方阵叫对角矩阵,这里ib是数(),2,1mi. 定义5 方阵AnnP,若BTTA1,T非奇异,B是对角阵,则称A可相似对角化.
定义6 方阵AnnP,若BTTAT,T非奇异,B是对角阵,则称A可合同对角化.
定义7 矩阵的初等变换:⑴互换矩阵的第i行(列)于j行(列); ⑵用非零数cP
乘以矩阵第i行(列);⑶把矩阵第j行的t倍加到第i行.
定义 8 由单位矩阵经过一次初等行(列)变换所得的矩阵称为初等矩阵. 共有三
2 种初等矩阵:①单位矩阵经过初等变换⑴得),(jiP且),(),(1jiPjiP;②单位矩阵经
过初等变换⑵得))((tiP且)/1(())((1tiPtiP;③单位矩阵经过初等变换⑶得))(,(tjiP
且))(,())(,(1tjiPtjiP.
定义9 设方阵nnPB,若EB2,就称B为对合矩阵. 定义10 设方阵nnPA,若AAm,就称A为幂幺矩阵. 定义 11 设方阵CnnP,若CC2,就称C为幂等矩阵. 定义 12 设方阵nnPA,P,若存在向量,满足XAl,我们就称是A
的特征值,X是A属于特征值的特征向量.
定义13 nnPA,定义)(Am为矩阵A的最小多项式 ,)(Am的一个根为A而且比其他以A为根的多项式的次数都低,)(Am首项系数是1.
3 3 矩阵的对角化
本章介绍数域P上n阶方阵阵的对角化问题. 先给出矩阵对角化几个一般的充要、充分条件及其证明. 引理1 如果1,…,k是矩阵Q的不同的特征值,而,1i…,iir是属于特征值i的线性无关的特征向量,2,1i…,k,那么,11…,11r,…,1k,…,kkr也线性无关. 证明:假设12121111tt…1111rrt…11kkt…kkkrkrt=0,Ptij,令11iit…+iiiikkt=i,则
iiiQ(2,1i…k,), 且 21…k=0 ……(1) 分别用,,,2QQE…1,kQ左乘以(1)两端,再由引理4得:iiimQ,(1...2,1km;ti,...,1),由此有
.0......................................,0...,0...,0...
12121112222121221121kkkkkkKkKk
该线性方程组的系数矩阵为
11211211111kkkkkD
,D为范德蒙行列式,又由)...2,1(kii互异有0D.
根据克拉默法则就有0i,即11iit…+iiiikkt=0,再由iiri,...,1线性无关得:)...2,1(0...21kitttiiiik ,故kikrirr...,...,,...,1111线性无关.
推论1 属于不同特征值的特征向量是线性无关的. 定理1 QnnP与对角阵相似Q有n个特征向量,它们是线性无关的.
证明:Q可以对角化可逆矩阵21,(TTT,…,)nT使得