矩阵对角化开题报告
- 格式:doc
- 大小:39.50 KB
- 文档页数:4
阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的.根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式.二、研究的基本内容, 拟解决的主要问题:研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用.解决的主要问题:1.了解分块矩阵的基本概念.2.探讨分块对角化的性质.3.研究分块矩阵的应用.三、研究步骤、方法及措施:研究步骤:1.查阅相关资料, 做好笔记;2.仔细阅读研究文献资料;3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4.翻译英文资料;5.撰写毕业论文;6.上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用确定合理的方法来解决问题.四、参考文献:[1] 居余马. 线性代数[M]. 清华大学出版社,1992.[2] 穆大禄, 裴惠生. 高等代数教程[M]. 山东大学出版社, 1990.[3] 北京大学数学系. 高等代数[M]. 高等教育出版社.[4] 叶伯诚. 高等代数[M] . 青岛海洋大学出版社, 1989.[5]张敏. 分块矩阵的应用[J]. 吉林师范大学学报(自然科学版), 2003, 1(1): 120.[6] S.K.Jain. Linear Algebra: An Interactive Approach[M]. 北京: 机械工业出版社, 2003,7.[7] Hamilton J.D, “Time Series Analysis1” Princeton University Press[J].1999, 26 – 291.。
《矩阵与变换》专题教学设计研究的开题报告标题:《矩阵与变换》专题教学设计研究一、研究背景和意义矩阵与变换是高中数学中的重要内容之一,对于培养学生的科学思维和创新能力具有重要意义。
然而,当前高中数学教学中矩阵与变换的内容仍然存在一些问题,如:教学内容的灵活性和针对性不足,教学方法单一,难以激发学生的学习兴趣和创造力。
因此,本研究旨在设计一套针对《矩阵与变换》专题的课程,以提高学生的学习兴趣和学习质量。
二、研究问题和目标问题:高中数学教学中矩阵与变换的如何解决教学内容的灵活性和针对性不足,教学方法单一等问题?目标:设计一套针对《矩阵与变换》专题的课程,加强学生的实际运用和创造性思维,提高学生的学习兴趣和学习质量。
三、研究方法本研究采用实证研究和教学实验相结合的研究方法。
首先,针对现有研究和教学情况,收集和整理相关数据,并进行初步分析。
然后,选取一所高中的学生进行实验研究,进行针对性的课程设计,并对学生的学习情况进行探究和分析。
最后,根据实验结果,对设计的课程进行优化和改进,提高课程的实际操作性和实用性。
四、研究内容和进度安排1.收集和整理相关文献资料(1周)。
2.对现有的研究和教学情况进行分析和总结(2周)。
3.针对一所高中的学生进行实验研究,设计并实施针对《矩阵与变换》专题的课程,并对学生的学习情况进行探究和分析(4周)。
4.根据实验结果,对课程进行优化和改进(1周)。
5.编写研究成果报告并撰写论文(2周)。
五、研究成果的预期效益通过本研究,可以探索出一套针对《矩阵与变换》专题的教学设计方案,并通过实验研究加以验证和优化。
这将有助于提高学生的学习兴趣和学习质量,同时也能推动高中数学课程的改革和创新,提高教学水平和教学质量。
有理矩阵有理对角化问题的算法及程序设计研究报告作者:周腾锦王纯来源:《价值工程》2013年第22期摘要:矩阵对角化是重要的数学方法,但因其计算复杂却造成了应用上的极大困难,虽然已有的数学软件具有处理对角化功能,但对有理矩阵在有理数域上的对角化问题的计算结果却不尽人意。
所以提出了研究有理矩阵在有理数域上相似对角化、合同对角化以及正交对角化的算法与程序课题,设计出能够实现有理矩阵在有理数域上对角化的实用软件,解决了有理矩阵在有理数域上对角化的精确判定与计算问题。
Abstract: Matrix is an important mathematical method of diagonalization, but because of its computational complexity, it has caused great difficulties on the application, The mathematical software has the function of processing of diagonalization, but for rational matrix diagonalization problem in the field of rational number the result is not satisfactory. So the study of rational matrix over the rational number field similarity diagonalization diagonalization, contract and orthogonal diagonalization algorithm and program project, design to realize rational matrices over the field of rational numbers on the diagonalization of utility software, solves the rational matrices over the field of rational numbers on the diagonalization of the accurate determination and computation problem.关键词:有理矩阵;有理对角化;算法;程序Key words: rational matrix;rational diagonalization;algorithm;program中图分类号:TP311.1 文献标识码:A 文章编号:1006-4311(2013)22-0237-040 引言经过一年多的潜心研究,我们有理矩阵有理对角化软件创作小组完成了《有理矩阵有理对角化问题的算法及程序设计》的课题研究与软件开发任务,现将研究情况总结报告如下。
浅谈矩阵的对角化问题(浓缩版)学号:0807402069 学生姓名:马莉莹 指导老师:朱广俊数学科学学院,2008级,数学与应用数学(师范)摘要:矩阵的对角化是矩阵理论中的一个重要问题,本文利用高等代数的有关理论给出了矩阵可对角化的若干条件;从初等变换、线性方程组、特征子空间等不同角度探究了将一般矩阵和实对称矩阵对角化的若干方法;最后,分析了一些特殊矩阵的对角化问题,如幂等矩阵、幂零矩阵、实对称矩阵和Hermite 矩阵等. 关键词:对角化,特征值,特征向量,相似变换,线性变换.Abstract: Diagonalization of Matrix is an important problem in the matrix theory. We give several conditions of matrix diagonalization by the use of higher algebra related theory. We give some methods of diagonalization of general matrix and real symmetric matrix from different aspects, such as elementary transformation, system of linear equations and characteristic subspace. In the end, we analysis the diagonalization of some special matrix, such as idempotent matrix, nilpotent matrix ,real symmetric matrix and hermite matrix. Keywords : diagonalization ,eigenvalue ,eigenvectors ,similarity transformation ,linear transformation.一.矩阵相似对角化的条件由于矩阵的类型和所在数域的不同,其对角化的条件也不同. 1.任意数域上矩阵相似对角化的条件 充要条件设1,,m λλ 为n 阶方阵A 的m 个互异的特征值,且它们的重数分别为1,,m s s ,1,2,,i m = .A 可对角化⇔A 有n 个线性无关的特征向量⇔对于A 的每个特征值i λ,其代数重数等于其几何重数 ⇔()i i r n s λ-=-I A ⇔A的最小多项式无重根⇔1()mii λ=-=∏I A 0⇔对于A 的每个特征值i λ,都有2()()r r λλ-=-I A I A⇔A 的初等因子都是1次的 ⇔A与某个循环矩阵相似充分条件A 有n 个不同特征值⇒A可对角化A的零化多项式无重根⇒A可对角化2.复数域上Hermite 矩阵必可酉相似于对角矩阵.3.实数域上对称矩阵必可正交相似于对角矩阵.二.矩阵对角化的若干方法(一)一般矩阵对角化的方法特征向量法是将矩阵对角化的常规方法,用该方法解决问题时需要求解齐次线性方程组,过程繁琐.下面介绍其它四种将矩阵对角化的方法. 1.矩阵乘积运算法设12,,,s λλλ 是A在数域F 上全部互异的特征值.其重数分别为12,,,s n n n ,且1sii nn ==∑,记i V λ为A 的属于i λ()1,2,,i s = 的特征子空间. 对()i λ-=I A X 0,有:(1)若A 可对角化,则对A 的每一特征值i λ,都有i n 个与之对应的线性无关的特征向量. (2)A 可对角化的充要条件是对于A 的每个特征值i λ,()ii dim V n λ=.采用类比推测,可得定理1.定理1:设12,,,s λλλ 是A 在数域F 上全部互异的特征值,其重数分别为12,,,s n n n ,且1sii nn ==∑,记i W =()1sj j j iλ=≠-∏I A ()1,2,,i s = . 对()()()12s λλλ---= I A I A I A 0,有:(1)若A 可对角化,则矩阵i W 的列向量组中有对应于i λ的i n 个线性无关的特征向量. (2)A 可对角化的充要条件是()i i rank n =W ()1,2,,i s = .定理1表明,要构造可对角化矩阵A 的相似变换矩阵P ,只需对每一特征值i λ,从矩阵乘积()1sj j j i λ=≠-∏I A 中找出i n 个与之对应的线性无关的特征向量,以这样所得的in n=∑个特征向量为列作一个n 阶矩阵即可.例1:设12202120221001⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,求可逆矩阵P ,使得1-P A P 为对角矩阵. 解:由2(1)(5)(1)0λλλλ=-+--=I A ,得 11λ=-(二重),25λ=,31λ= ()()()()()123()50λλλ---=----=因为 I A I A I A I A I AI A ,所以A 可对角化.当11λ=-(二重)时:()()()()123584404840448000λλ--⎛⎫ ⎪-=--=-⎪= ⎪-- ⎪⎝⎭--W I A I A I A I A 取1W 中两个线性无关的特征向量()()12844,04,8,4,0TT=--=--,,,αα. 当25λ=时:()()()()21388808880888000λλ=--⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭=---W I A I A I A I A 取2W 中的特征向量()38,8,8,0T=α当31λ=时:()()()()312000000000050008λλ=--=--⎛⎫ ⎪⎪= ⎪ ⎪--⎝⎭W I A I A I A I A 取3W 中的特征向量()40,0,0,8T=-α.令()1234=,,,P αααα,则1(1,1,5,1)diag -=--P A P2.Jordan 标准形法由于复数域C 上任意n 阶矩阵A 都相似于一个Jordan 矩阵J ,所以存在可逆矩阵P ,使得1-=P A P J .如果J 为对角矩阵,则A 可对角化,否则,A 不可对角化.由于矩阵P 可逆,所以存在一系列的初等矩阵12,,,t P P P ,使得12t = P P P P .于是有:1112112t t ---= P P P A P P P J .可对A 先施行一次初等行变换后,接着施行一次相应的初等列变换,我们称此种初等变换为对A 施行了一次相似变换.显然,可对A 施行一系列的相似变换,将A 化为Jordan 形矩阵J .例2:设460350361⎛⎫⎪-- ⎪ ⎪--⎝⎭=A ,求可逆矩阵P ,使得1-P A P 为对角矩阵. 解:将A 化为Jordan 标准形3121121346026026011350010010(1)(1)361361001r r r r c c c c --⎛⎫⎛⎫⎛⎫+⨯+⨯⎪⎪⎪--−−−−−−→−−−−−−→ ⎪⎪⎪+⨯-+⨯- ⎪ ⎪ ⎪---⎝⎭⎝=⎝⎭⎭A1221200(2)0102001r r c c -⎛⎫+⨯- ⎪−−−−−−→ ⎪+⨯ ⎪⎝⎭由A 的Jordan 标准形知,矩阵A 可对角化且它的特征值为-2,1,1.上述过程对A 共施行了三次相似变换,且三次初等列变换对应的矩阵分别为:123100100120110,010,010001101001⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭P P P所以123120110121⎛⎫⎪==-- ⎪ ⎪--⎝⎭P P P P ,且1211--⎛⎫⎪= ⎪ ⎪⎝⎭P A P .3.λ矩阵标准形法引理1:设A 是n 阶方阵,则必能用初等变换将λ-I A 变为对角矩阵:12()()()()n t t t λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭T 并且多项式 ()(1,2,,)i t i n λ= 的所有根恰好是A 的所有特征值.定理2:设A 是n 阶方阵,{}12()(),(),()n diag t t t λλλλ= T 是对角形λ矩阵,()λP ,()λQ 是可逆的λ矩阵,且满足()()()()λλλλ-=P I A Q T .如果()()()((),)((),())()TTTTTTλλλλλλλ--−−−−−−−−−−→Q I A P I A I T Q Q I.即对()T λ-I A 作初等行变换和初等列变换,使其变为对角矩阵()λT .I 随着()T λ-I A 行的变化而变为()T λQ .则(1) 若12(),(),()n t t t λλλ 的所有根12,,s λλλ 都在F 内,则12,,s λλλ 就是A 的所有特征值.(2) 对于A 的特征值12,,s λλλ ,设第12,,,m ik k k 行是()i λT 的全部为零的行,则()T i λQ 的第12,,,m ik k k 行即构成iV λ的基.其中iV λ为特征值i λ的特征子空间.(3)A 可对角化⇔,(1,2,)i i i r m i s λ∀== ,此处i r 是i λ的重数.根据定理2即可得到λ矩阵标准形法: (1) 作初等变换:()()()((),)((),())()TTTTTTλλλλλλλ--−−−−−−−−−−→Q I A P I A I T Q Q I设{}12()(),(),,()n diag t t t λλλλ= T ,求出12(),(),,()0n t t t λλλ= 的所有解. (2) 若12(),(),,()0n t t t λλλ= 的解都在F 内,并且对每个解i λ都有()i λT 中零行的数目 等于i λ的重数,则A 可对角化,转(3);否则A 不可对角化,结束.(3) 对于A 的任一特征值i λ,若()i λT 的第12,,,m i k k k 行都为零,则取出()T i λQ 的第 1k ,2k , ,m ik 行构作:1111((),,(),,(),,())m s m sT TTTk kk s k s λλλλ= T Q Q Q Q则12112(,,,)sm m s m diag λλλ-= T AT I I I .例3:设132132264⎛⎫⎪=--- ⎪ ⎪⎝⎭A ,求可逆矩阵T ,使得1-T A T 为对角矩阵. 解:作初等变换:()2112100100100,33601002011222410021T λλλλλλλλ--⎛⎫⎛⎫⎪ ⎪-=-+-→-+-+- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭I A I 按上述方法:(1)记2100002()00λλλλ⎛⎫⎪= ⎪ +⎪⎝⎭-T ,100()112201T λλ⎛⎫⎪=-+- ⎪ ⎪-⎝⎭Q 则1230,2λλλ===(2)当120λλ==时,(0)T 中零行的数目0=的重数2=-当32λ=时,(2)T 中零行的数目2=的重数1=-.所以A 可对角化.(3)当120λλ==时,()()()1001000,00001120021T ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭T Q 取(0)T Q 中与(0)T 中零行所对应的特征向量()11,1,2T=-α,()22,0,1T=-α 当32λ=时,()()()1001002,200011200221T ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭T Q 取(2)T Q 中与(2)T 中零行所对应的特征向量()31,1,2T=--α.令()123121,,101212--⎛⎫ ⎪== ⎪ ⎪--⎝⎭T ααα,则1002-⎛⎫⎪⎪ ⎪⎝⎭T A T =4. 数字矩阵对角形法若矩阵A 在数域F 上可对角化,则存在F 上的可逆矩阵T ,使得1-=T AT B 为对角矩阵,且B 的主对角线上的元素为A 的全体特征值.由于矩阵T 可逆,所以存在一系列的初等矩阵12,,,s T T T ,使得12s = T T T T .于是:11111112s s s ----- B =TA T =T T T A T T T ,做初等变换:⎛⎫⎛⎫→⎪ ⎪⎝⎭⎝⎭A B I T . 即对A 施行一系列的初等行变换和初等列变换,使其变为对角矩阵B ,对I 只施行相应的初等列变换变为T .在施行初等变换时,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后所得矩阵与A 相似即可.例4:若1111111111111111⎛⎫ ⎪-- ⎪= ⎪-- ⎪--⎝⎭A ,求可逆矩阵T ,使得1-T A T 为对角矩阵.解:作初等变换:200002001111002011110002111111111111444100031110100444001013114440011131444-⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪-- ⎪⎪⎪--⎛⎫ ⎪=→ ⎪ ⎪ ⎪⎝⎭⎪ ⎪--- ⎪ ⎪⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎪ ⎪--- ⎪⎝⎭A I 所以A 可对角化.令1111444311144413114441131444⎛⎫ ⎪ ⎪ ⎪---⎪=⎪ ⎪--- ⎪ ⎪ ---⎪⎝⎭T ,则有120000200002002--⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭T A T .利用初等变换将矩阵对角化时,我们可以从变换后的最终矩阵中直接读出相似变换矩阵和对角矩阵,大大简化了求解过程.(二)实对称矩阵对角化的方法Schmidt 正交法是将实对称矩阵对角化的基本方法,使用该方法时需要牢记公式且计算量较大.下面我们介绍另外两种方法. 1.直接正交法该方法从向量正交的基本定义出发,直接从特征子空间中求出正交向量,易于理解和掌握,且在特征值出现重根的情况下,计算量也大为减少.例5:设 1333313333133331---⎛⎫ ⎪--- ⎪= ⎪--- ⎪---⎝⎭A ,求正交矩阵P , 使得1-P A P 为对角矩阵. 解:由3(4)(8)0λλλ-=+-=I A ,得14λ=-(三重),28λ=. 设41234(,,,)T x x x x R =∈X当14λ=-时,解齐次线性方程组(4)--=I A X 0,得1243x x x x =+-.先取一个特征向量1(1,1,0,0)T =α. 设特征向量22222(,,,)T a b c d =α.因2α与1α正交,从而有220a b +=.又因为2222a b d c =+-,所以可得2222a d c =-. 取211(,,0,1)22T =-α.再设特征向量33333(,,,)T a b c d =α.因3α与1α和2α都正交,从而有330a b +=,33311022a b d -+=.又因为3333a b d c =+-,所以可得333a c =-.取3(2,2,6,2)T =---α. 现将1α,2α,3α都单位化:122,,0,022T⎛⎫= ⎪⎪⎝⎭β,2666,,0,663T ⎛⎫=- ⎪ ⎪⎝⎭β,33333,,,6626T⎛⎫=--- ⎪ ⎪⎝⎭β. 当28λ=时,可求得单位特征向量:41111,,,2222T⎛⎫=-- ⎪⎝⎭β.令1234(,,,)=P ββββ,则()14,4,4,8T diag ----P AP =P AP =.2.度量矩阵法对于n 维欧氏空间V ,令1,,n αα是它的一个基,它的度量矩阵()()()()1111,,,,n n n n ⎛⎫⎪= ⎪⎪⎝⎭A αααααααα是正定矩阵,于是A 合同于单位矩阵I ,即可求得n 阶可逆矩阵U ,使得T =U AU I .利用U 和V 的基1,,n αα作一个新基:121(,,,)(,,)n n = βββααU .那么,新基的度量矩阵即为:()()()()1111,,,,n Tn n n ⎛⎫⎪= ⎪ ⎪⎝⎭=U A U Iββββββββ.所以12,,,n βββ是欧式空间V 的标准正交基.例6:设0111101111011110-⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭A ,求正交矩阵P , 使得1-P A P 为对角矩阵. 解:由3(1)(3)0λλλ-=-+=I A ,得11λ=(三重),23λ=-. 当11λ=时,解齐次线性方程组()-=I A X 0,得基础解系 1(1,1,0,0)T =α,2(1,0,1,0)T =α,3(1,0,0,1)T =-α当23λ=-时,解齐次线性方程组(3)--=I A X 0,得基础解系4(1,1,1,1)T =--α 则 1234,,,αααα是4R 一组基.记其度量矩阵为B ,那么21101210112004-⎛⎫ ⎪-⎪= ⎪-- ⎪⎝⎭B 对矩阵⎛⎫ ⎪⎝⎭B I 作合同变换:⎛⎫ ⎪⎝⎭B I =2110121011200004100001000010001-⎛⎫ ⎪- ⎪ ⎪--⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭→1000010000100001263026663003630002102⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭.取263026663003630002102⎛⎫-⎪ ⎪ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭U ,则有1111T ⎛⎫⎪⎪= ⎪ ⎪⎝⎭U B U . 利用U 和基1234,,,αααα作新基:12341234(,,,)(,,,)=ββββααααU .则: 122,,0,022T⎛⎫= ⎪⎪⎝⎭β, 2666,,,0663T⎛⎫=- ⎪ ⎪⎝⎭β. 33333,,,6662T⎛⎫=- ⎪ ⎪⎝⎭β, 41111,,,2222T⎛⎫=-- ⎪⎝⎭β.由于1234,,,ββββ的度量矩阵T =U B U I ,故1234,,,ββββ是4R 的标准正交基.令1234(,,,)=P ββββ,则P 是正交矩阵且1T -P AP =P AP .三.特殊矩阵的对角化 1.幂等矩阵定理3:n 阶幂等矩阵A一定可以对角化,并且A的相似标准形是 0r⎛⎫⎪⎝⎭I ,其中()r rank =A ,r I 是r阶单位矩阵.证明: 因为2=A A ,所以A 有零化多项式2()(1)g λλλλλ=-=-,因为()g λ无重根,所以A可对角化.而A 的特征值只有0和1,所以A 的相似标准形是0r⎛⎫⎪⎝⎭I ,其中()r rank =A .由该定理可以推出幂等矩阵的若干性质: 性质1:幂等矩阵A 的迹等于A 的秩.证明:设A 是数域F 上的一个n 阶幂等矩阵,()r rank =A .如果0r =,则()0()rank tr ==A A .如果r n =,则=A I .从而()()rank n tr ==A A .下面设0r n <<.由A 的相似标准形0r⎛⎫⎪⎝⎭I 得: ()((,0))()r rank r tr diag tr ===A I A .性质2:任意n 阶矩阵A 都可以表示成为一个可逆矩阵与一个幂等矩阵的乘积. 证明:设n 阶方阵A 的秩为r ,则存在n 阶可逆矩阵,P Q 使得: 000r ⎛⎫=⎪⎝⎭I PA Q 所以1111100()()0000r r -----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭I I A PQ P Q Q Q . 令11--=B P Q ,1000r -⎛⎫=⎪⎝⎭I C Q Q .易知B 为可逆矩阵.因为2=C C ,所以C 为幂等矩阵.即任意n 阶矩阵A 都可以表示成为一个可逆矩阵与一个幂等矩阵的乘积.2.幂零矩阵引理2:若()f λ 为A 的特征多项式,()m λ为A 的最小多项式,则()()f m ==A A 0. 引理3:设12,,,n λλλ 为n 阶矩阵A 的特征值,则对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ .幂零矩阵具有下列性质:性质3:A 为幂零矩阵的充分必要条件是A 的特征值全为0.证明:(必要性) 若A 为幂零矩阵,则存在正整数k ,使得k =A 0.令0λ为A 的任意一个特征值,则存在≠α0,使得0λ=A αα.由引理3知0k λ为k A 的特征值. 所以存在 ≠β0,使得 0k k λ=A ββ,从而有00k λ=即有00λ=.又由k =A 0,知00kk ==⇒=A A A ,所以 0(1)(1)00k k ⨯-=-=-=-⋅=I A A A . 所以00λ=为A 的特征值.由0λ的任意性知A 的特征值全为0.(充分性)因为A 的特征值全为0, 所以A 的特征多项式为()n f λλλ=-=I A ,由引理2知()n f ==A A 0,所以A 为幂零矩阵.性质4:若A 为幂零矩阵且≠A 0,则A 不可对角化.证明:若A 可对角化,则存在可逆矩阵P ,使得1-=A P DP ,此处D 是n 阶对角形.若A 为 幂零矩阵,则存在正整数k ,使得k =A 0,即: 11()k k k --===A P DP P D P 0,因为1110kk k k k ---=====P D P P D P P P D D D ,所以有: 10,,-====D D 0A P DP 0, 与题设矛盾.3.幂幺矩阵性质5:幂幺矩阵在复数域上可对角化.证明:若A 为幂幺矩阵,则存在正整数k ,使得k =A I ,所以A 有零化多项式()1k g λλ=-. 因为在复数域上,()g λ的根都是k 次单位根,故()g λ无重根,所以A 可对角化.注意:A 在实数域上不一定可对角化! 例如0110-⎛⎫=⎪⎝⎭A ,满足4=A I ,即A 为幂幺矩阵,但是2()1f λλλ=-=+I A 在实数域上无根,所以A 在实数域上不可对角化.4.实对称矩阵性质6:实对称矩阵的不同特征值的特征向量相互正交.性质7:设λ是实对称矩阵的k 重特征值,则对应于特征值λ,矩阵有k 个线性无关的特征向量. 定理4:设A是一个n n ⨯实对称矩阵.则存在一个正交矩阵P,使得()112,,,Tn diag λλλ-== P AP PAP ,并且i λ是实数,1,2,,i n = .证明:设A的互不相等的特征值为12,,,()s s n λλλ≤ ,并且它们的重数依次为1212,,,()s s r r r r r r n +++= .则对于特征值(1,2,,)i i s λ= ,恰有i r 个线性无关的实特征向量.把它们正交化并单位化,即得i r 个单位正交的特征向量.由12s r r r n +++= 知,这样的特征向量共可得n 个.由于不同特征值的特征向量正交,故这n 个单位特征向量两两正交,以它们为列向量作成正交矩阵P ,则:1T -=P AP P AP 为一个实对称矩阵111,,,,,,s s sdiag r r λλλλ⎛⎫⎪ ⎪⎝⎭.5.Hermite 矩阵欧氏空间实质上是实数域上的一个内积空间.类似地考虑复数域上的内积空间—酉空间和酉空间上的线性变换.与正交变换和实对称矩阵类似,酉空间中有酉变换与Hermite 矩阵.性质8:设n n C ⨯∈A 是Hermite 矩阵,则A 的特征值均为实数.证明:设λ为A 的特征值,α为其对应的特征向量,即λ=A αα,那么: (,)(,)(,)(,)(,)(,)λλλλ=====ααααααααααααA A 但(,)0>αα,所以λλ=,即λ为实数.性质9:设n n C ⨯∈A 是Hermite 矩阵,则对应于A 的不同特征值的特征向量必正交. 证明:设,λμ是A的两个不同的特征值,,αβ分别是它们所对应的特征向量,则有λ=A αα,μ=A ββ.(,)(,)(,)(,)(,)(,)λλμμ=====αβαβαβαβαβαβA A ,即()(,)0λμ-=αβ.由于A 的特征值为实数,也即()(,)0λμ-=αβ.又因为λμ≠,所以(,)0=αβ,即,αβ正交.引理4:设n n C ⨯∈A ,则存在一个酉矩阵P ,使得1-P A P 是一个上三角形矩阵.定理5:设n n C ⨯∈A ,并且A是Hermite 矩阵,则存在一个酉矩阵P , 使得()112,,,Hn diag λλλ-== P AP PAP ,并且i λ是实数,1,2,,i n = .证明:由引理4知存在一个酉矩阵P ,使得 ()1H ij n n g -⨯===G P AP P AP 是一个上三角形矩阵.又P 是一个酉矩阵,故G 也是Hermite 矩阵.于是,对任意,,1i j i j n ≤<≤,都有ij ji g g =,这迫使当1,2,,,1,2,,,i n j n i j ==≠ 时,有0ij g =;并且i ii g λ=是实数,1,2,,i n = .因此,Hermite 矩阵必定可以对角化,且它的特征多项式的复数根都是实数.。
矩阵对角化研究开题报告一、选题背景及意义对于一个给定的矩阵,我们可以通过对其进行对角化来得到其特征值和特征向量。
矩阵对角化是线性代数中的重要内容之一,在现代数学及其应用领域中具有广泛的应用。
例如,对角化矩阵在矩阵的指数函数、线性常微分方程组的求解以及优化问题等方面都有着重要的应用。
因此,对角化的研究不仅对于解决数学问题具有必要性,而且也对于实际问题的解决有着重要的意义。
本研究旨在探讨矩阵对角化的一些基本概念和方法,深入研究矩阵对角化的性质,并且应用到一些实际问题的解决中。
二、研究内容和方法1.线性代数基础理论线性代数是研究向量空间及其线性变换的一门基础科学。
本项目将首先复习线性代数的一些基本概念和相关理论,例如行列式、矩阵求逆、特征值与特征向量等内容,并分析这些基本概念与矩阵对角化之间的联系。
2.矩阵对角化的方法对于某个给定的矩阵,我们需要找出它所包含的特征值和对应的特征向量,从而实现矩阵对角化。
本项目将介绍求解矩阵特征值和其所对应的特征向量的方法。
其中,我们会重点讨论幂法、反幂法、QR分解以及雅可比方法等求解特征值和特征向量的常用算法,并在 MATLAB 软件环境下进行数值模拟。
3.矩阵对角化的性质和应用对于对角化后得到的矩阵,我们将会分析它的性质,并探讨矩阵对角化在解决实际问题中的应用。
例如,对角化矩阵在矩阵的指数函数、线性常微分方程组的求解以及优化问题等方面都有着重要的应用。
三、预期目标和成果通过本项目的研究,我们将达到以下目标:1.理解矩阵对角化的基本概念和相关理论。
2.掌握求解矩阵特征值和特征向量的方法,能够利用MATLAB 软件进行数值模拟。
3.深入研究矩阵对角化的性质,探讨其在实际问题中的应用。
4.完成研究报告并撰写相关论文。
5.具备一定的科研能力和团队协作能力。
四、研究计划和进度安排本项目的研究时间为一个学期,具体计划如下:第一周:确定研究课题,分析研究内容和目标,撰写开题报告。
引言在高等代数中,我们为了方便线性方程组的运算引入了矩阵的概念. 在线性方程组的讨论中我们看到,线性方程组的系数矩阵和增广矩阵反应出线性方程组的一些重要性质,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组之外,在二次型中我们用矩阵研究二次型的性质,引入了矩阵合同、正定、负定、半正定、半负定等概念及其判别方法.在线性空间中用矩阵研究线性变换的性质,引入矩阵相似的概念,这是一种等价关系,利用它我们把矩阵分类,其中与对角矩阵相似的矩阵引起的我们的注意,由此我们对线性变换归类,利用简单的矩阵研究复杂的,方便我们看待问题,进而又引入对角型矩阵、λ矩阵及若尔当标准型.基本概念定义定义1 常以n m P ⨯表示数域P 上n m ⨯矩阵的全体,用E 表示单位矩阵.定义2 n 阶方阵A 与B 是相似的,如果我们可以找到一个n 阶非奇异的方阵矩阵T n n P ⨯∈,使得AT T B 1−=或者BT T A 1−=.根据定义我们容易知道相似为矩阵间的一个等价关系:①反身性:AE E A 1−=; ②对称性:若A 相似于B ,则B 相似于A ; ③传递性:如果A 相似于B ,B 相似于C ,那么A 相似于C . 定义3 n 阶方阵A 与B 是合同的,如果我们可以找到一个n 阶非奇异方阵T n n P ⨯∈,使得B =T T AT 或者BT T A T =.根据定义我们容易知道合同也为矩阵间的一个等价联系:①反身性:A =AE E T ;②对称性:由AT T B T =即有11)(−−=BT T A T ;③传递性:由111AT T A T=和2122T A T A T =有)()(21212T T A T T A T =.定义4 式为⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯m b b b 000000021的m 阶方阵叫对角矩阵,这里i b 是数(),2,1m i ⋯⋯=. 定义5 方阵A n n P ⨯∈,若BT T A 1−=,T 非奇异,B 是对角阵,则称A 可相似对角化. 定义6 方阵A n n P ⨯∈,若BT T A T =,T 非奇异,B 是对角阵,则称A 可合同对角化.定义7 矩阵的初等变换:⑴互换矩阵的第i 行(列)于j 行(列); ⑵用非零数c P ∈乘以矩阵第i 行(列);⑶把矩阵第j 行的t 倍加到第i 行.定义 8 由单位矩阵经过一次初等行(列)变换所得的矩阵称为初等矩阵. 共有三种初等矩阵:①单位矩阵经过初等变换⑴得),(j i P 且),(),(1j i P j i P =−;②单位矩阵经过初等变换⑵得))((t i P 且)/1(())((1t i P t i P =−;③单位矩阵经过初等变换⑶得))(,(t j i P 且))(,())(,(1t j i P t j i P −=− 定义9 设方阵n n P B ⨯∈,若E B =2,就称B 为对合矩阵。
毕业设计(论文)文献综述题目:浅谈“循环矩阵”的性质及应用学院:数理与信息学院学生姓名:鲍亨忠学号:080601114专业:数学与应用数学(师范类)班级:B08数学指导老师:王小双起止日期:2012.02.08-2012.02.212012年2月21日毕业设计(论文)开题报告一、综述本课题国内外研究动态, 说明选题的依据和意义近年来,循环矩阵类已成为矩阵理论和应用数学领域中的一个非常活跃的和重要的研究方向。
而它之所以会引起数学工作者如此大的兴趣是因为循环矩阵是一类具有特殊结构且有良好性质的矩阵,并且是非常重要的矩阵,同时它应用非常广泛的一类矩阵,如在编码理论,数理统计,理论物理,固态物理,结构计算,分子轨道理论,数学图象处理等方面应用很广,而循环矩阵的逆特征值问题,在力学振动系统设计,分子结构理论,线性多变量控制理论及数值分析等领域中也经常出现,有关循环矩阵的问题依然是大家研究的一个热点。
1950年以来,循环矩阵被数学界高度重视,发展迅速,各种新的循环矩阵概念也被相继提出,已有十几种。
如向后循环矩阵,循环布尔矩阵,y-(块)循环矩阵,r-循环矩阵,向后(对称)r-循环矩阵,块循环矩阵等等。
许多数学工作者对它进行了大量研究,得出很多成果。
本文在对已有文献进行深入讨论和研究的基础之上分析总结,本文将对此进行进一步的讨论。
在此基础上,进一步地推广了循环矩阵的性质和应用,为大学生学习循环矩阵抛砖引玉。
二、研究的基本内容, 拟解决的主要问题通过整理分析总结文献论文和专业老师探讨的形式了解“循环矩阵”的性质和广泛的应用,探讨矩阵的相关性质及其应用,并利用矩阵对角化的方法循环矩阵的伴随矩阵,逆矩阵,行列式的表达式。
然后进一步地推广了循环矩阵的应用.,即广义循环矩阵和r-循环矩阵,对大学生的学习《循环矩阵》这门课有一个很好的引导和铺垫作用。
以上为本论文的主要目的。
三、研究步骤、方法及措施1.采用文献研究法,通过到图书馆,查阅有关循环矩阵文献资料及循环矩阵书本, 对循环矩阵的历史现状有了初步的认识和了解;2.采用定量定性分析法对循环矩阵分析,进一步认识起本质;3.向导师请教,讨论循环矩阵的性质及其在大学生学习循环矩阵过程中的应用,在老师指导下,与相关同学研究讨论即推广为广义循环矩阵和r-循环矩阵性质和应用;4.上网等查阅收集资料,用文献论证的方法来解决问题.四、参考文献[1]Dan Kalman and James E.White, Polynomial Equations and Circulant Matrices[J], TheMathematical Association of America, 2001.11(18), 821-840[2]Philip Davis, Circulant Matrices[M], Wiley, New York, 1979[3]张盛虞,关于循环矩阵的一些性质,赣南东南民族师范高等专科学校学报,2006年12月第24卷第6期V ol.24 No.6 Dec.2006[4]吴世轩,循环矩阵的若干性质及应用,南方冶金学院学报,2002年1月第23卷第1期Vol.23No.1 Jan.,2002[5]徐春,一类特殊矩阵的性质及求逆方法,科技传播,2010-11(下)[6]李天增,王瑜,循环矩阵的性质及求逆方法,四川理工学院学报(自然科学版),2009年8月第22卷第4期V ol.22 No.4 Aug.2009[7]赵立宽,岳晓鹏,杜学知,关于循环矩阵的几个性质的推广,曲阜师范大学学报,2006年4月第32卷第2期V ol.32No.2Apr.2006[8]杨婷婷,关于循环矩阵的逆,[9]郭训香,吴冬香,矩阵的一些性质赣南师范学院学报2007年第六期No.6 Dec.2007[10]江兆林,周章鑫,《循环矩阵》(专著),成都科技大学出版社,1999年1月第一版.五、研究工作进度准备工作:到指导老师处了解毕业论文的情况如: 目的、内容等,并确定了论文的题目和研究内容; 查找相关资料。
一、综述本课题的研究动态,说明选题的依据和意义矩阵是数学中的一个重要的基本概念,英国数学家凯莱首先把矩阵作为一个独立的数学概念提出来,1855年,他发表了一篇论文《矩阵论的研究报告》系统地阐述了关于矩阵的理论。
1858年,艾米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质。
在矩阵论的发展史上,弗罗伯纽斯讨论了正交矩阵、矩阵的相似变换等概念。
矩阵经过两个多世纪的发展,矩阵及其理论已广泛的应用到现在科技的各个领域。
线性代数是研究线性空间和线性变换的一门学科。
线性空间到自身的映射称为空间上的变换,如果此变换保线性运算称为线性变换。
线性变换可以通过儿何现象直观化,几何现象也可以通过线性变换理论化,几何的直观有助于对数学理论、相关内容的理解。
本课题通过研究线性变换所表示的几何形象,探讨具体的线性变换如正交投影变换、反射变换等以及对应矩阵的几何现象,探讨与线性变换相关的如特征值、特征向量等等内容的几何意义。
二、本课题研究的基本内容,拟解决的主要问题和难点问题基本内容:本课题介绍有关于线性变换的基本概念、基本定理;研究具体的线性变换如投影变换、反射变换、切变变换及其性质;说明线性变换的特征值、特征向量, 线性变换的可对角化等几何意义。
主要问题:线性变换的概念介绍及各种变换的性质和几何意义的研究。
难点问题:各种线性变换的有关的概念的图形表示,线性变换可对角化矩阵的几何意义及其求解过程的研究。
三、研究步骤、方法及措施:1、根据任务书的要求查阅参考书及参考文献,完成开题报告;2、深入阅读相关文献,理解线性变换的基本概念、基本定理;3、理解具体的线性变换如投影变换、反射变换及线性变换的特征值、特征向量等几何意义;4、明确毕业论文所写内容及论文书写格式,撰写论文初稿;5、在指导教师指导下修改论文;6、完成论文答辩.工作进度:序号设计(论文)各阶段名称日期1落实任务(课题名称,指定参考书,参考文献等)1-・2周2毕业实习,撰写毕业实习报告和开题报告3--5 周3提交毕业实习报告和开题报告,查阅资料,学习指定的参考书,进行毕业设计6—9周4撰写毕业论文初稿,交指导老师批阅,进行中期答辩10-11 周5毕业论文初稿指导(思路,格式,解决的方法等)12-14周6提交外文翻译资料,毕业论文定稿,打印,上交15周7准备答辩演示的PPT,进行论文答辩16周五、主要参考文献:[1]史荣昌,魏丰著,矩阵分析(第3版)[M].北京:北京理工大学出版社,2010.[2]纪永强.平面上线性变换的特征向量的几何意义[J].湖州师范学院学报,2013, 35: 1-6.[3]杜美华,孙建英.正交变换的几何意义及其应用[J].哈尔滨师范大学自然科学学报,2014, 30(3):36-39.[4]纪永强.三维向量空间中线性变换的特征向量的儿何意义[J].湖州师范学院学报, 2014, 36(10): 1-7.[5]李尚志.线性代数[M].合肥:高等教育出版社,2006.[6]同济大学应用数学系.高等代数与解析几何[J].北京:高等教育出版社,2005[7]王玉梅.线性变换可对角化问题浅析[J].科技信息,2013, 13:207-208.[8]闫福旭.线性变换下的变换矩阵及应用[J].青海大学学报,2012, 5(30):69-73[9]张新功.线性变换可对角化的充要条件探讨[J].数学通报,2016,1(4):7-9.六、指导教师审核意见:指导教师签字:年—月—日七、专业系(教研室)评议意见:系(教研室)主任签字:年—月—B八、学院领导审核意见:1.通过;2.完善后通过;3.未通过学院领导签字:年—月—日。