淄博市2011年学业水平考试数学试题答案
- 格式:doc
- 大小:197.00 KB
- 文档页数:4
2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 (A )0 (B) 33(C) 1 (D) 3【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 3663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C. 7. 广告费用x (万元) 4 2 3 5 销售额y (万元) 49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得$9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -= 【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,所以222a b =+,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A. 9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v(λ∈R),1412A A A A μ=u u u u v u u u u v (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ=u u u u v u u u u v (λ∈R),1412A A A A μ=u u u u v u u u u v(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若62(x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为6162(r rr r T C x x-+=⋅⋅-,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+L L根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,1516x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在V ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cosC 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A BC C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c Ca A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯. 18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011年湖南省普通高中学业水平考试数学参考答案及评分标准一、选择题(每小题4分,满分40分)二、填空题(每小题4分,满分20分)11.5; 12. 2; 13.3 ; 14. ︒45; 15. 2.三、解答题(满分40分)16.解法一:(1)21sin =α ,)2,0(πα∈, αα2sin 1cos -=∴ …………………………………2分232112=⎪⎭⎫⎝⎛-=. …………………………………3分(2) 23cos sin 22sin ==ααα , …………………………………4分 21sin cos 2cos 22=-=ααα, …………………………………5分∴2132cos 2sin +=+αα. ……………………………………6分 解法二:(1)依题意得6πα=, ………………………………………………2分236c o s c o s==πα. ………………………………………………3分 (2)3cos 3sin2cos 2sin ππαα+=+ ………………………………………5分 213+=. ………………………………………6分 17.解:(1)()人12020020001200=⨯, ………………………………2分 ()人802002000800=⨯,故从高一学生中抽取120人,高二学生中抽取80人.……………………………………4分 (2)解法一:由图可知,成绩在60分(含60分)以上的频率为:75.010005.010025.01003.010015.0=⨯+⨯+⨯+⨯, ………………………6分1500200075.0=⨯ (人).所以,成绩在60分(含60分)以上的学生人数大约是1500人. ………………………8分 解法二:成绩在60分以下的频率为 :25.010015.01001.0=⨯+⨯, ……………………………………5分则成绩在60分(含60分)以上的频率为:75.025.01=-, ……………………………6分()人1500200075.0=⨯,所以,成绩在60分(含60分)以上的学生人数大约是1500人. ……………………8分18.解:(1)依题意得⎩⎨⎧=++=516b a b ……………………………2分解得 ⎩⎨⎧=-=62b a ,………………………………3分则62)(2+-=x x x f ; ……………………………………4分 (2)()51)(2+-=x x f ,则)(x f 在[]1,2-上递减,在[]2,1上递增,…………6分又6)2(,14)2(,5)1(==-=f f f ,故函数)(x f y =在区间]2,2[-上的最小值为5,最大值为14. ……………………8分 19.解:(1)2a =4, 3a =8. ………………………………2分依题意知数列}{n a 是以首项和公比都为2的等比数列, ……………………3分则nn n a 2221=⋅=-. …………………………………………………4分(2)∵nn a 2=,∴n b n n ==2log 2, ………………………………………………6分∴ 数列}{n b 的前n 项和)1(2121+=+++=n n n S n .……………………………8分 20.解:配方得()k y x -=-++52)1(22, …………………………………………2分(1)圆心C 的坐标为)2,1(-.………………………………………………………………4分 (2) ,05>-k 5<∴k ,即k 的取值范围为()5,∞-. …………………………………………7分 (3)假设存在实数k 满足题设条件, 由⎩⎨⎧=+-++=+-04204222k y x y x y x 得:081652=++-k y y ,由0)8(54162>+-=∆k 得524<k . ……………………………………8分设),(,),(2211y x N y x M ,则⎪⎩⎪⎨⎧+==+585162121k y y y y , ∴16)(852*******++-=+y y y y y y x x581651288-=+-+=k k , …………………………………9分0,2121=+∴⊥y y x x ON OM ,由058=-k ,得 52458<=k . 故存在实数58=k 满足题设条件. …………………………………………10分 说明:解答题如有其它解法,酌情给分.× ×。
2011年普通高等学校招生全国统一考试(天津卷)数学(理)试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷参考公式:如果事件A ,B 互斥,那么如果事件A ,B 相互独立,那么()()()P A B P A P B =+U()()().P AB P A P B =棱柱的体积公式.V Sh =圆锥的体积公式1.3V Sh =其中S 表示棱柱的底面面积 其中S 表示圆锥的底面面积 h 表示棱柱的高 h 表示圆锥的高一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131ii--= A .2i + B .2i -C .12i -+D .12i --2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件 3.阅读右边的程序框图,运行相应的程序,则输出i 的值为 A .3 B .4 C .5 D .6 4.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1105.在62x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为A .154-B .154C .38-D .386.如图,在△ABC 中,D 是边AC 上的点,且AB=AD ,2AB=BD ,BC=2BD ,则sin C 的值为A 3B 3C 6D 67.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃--⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭第II 卷二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___________ 10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2,::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则线段CE 的长为__________.13.已知集合{}1|349,|46,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.14.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +u u u r u u u r的最小值为____________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X . 17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-u u u u r u u u u r,求点M 的轨迹方程.19.(本小题满分14分)已知0a >,函数2()ln ,0.f x x ax x =->(()f x 的图像连续不断) (Ⅰ)求()f x 的单调区间;(Ⅱ)当18a =时,证明:存在0(2,)x ∈+∞,使03()()2f x f =; (Ⅲ)若存在均属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明ln 3ln 2ln 253a -≤≤.20.(本小题满分14分)已知数列{}n a 与{}n b 满足:1123(1)0,2n n n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;(III )设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑.答案解析一、选择题( 本大题共8 题, 共计40 分)1、(5分) B.2、(5分) A∵x≥2,∴x2≥4.∵y≥2,∴y2≥4.∴x2+y2≥8≥4.∴x≥2且y≥2?x2+y2≥4,反之令x2+y2=5≥4,可取x=2,y=1,无法推出y≥2.故选A项.3、(5分) B第一次运算:i=1,a=2,a<50;第二次运算:i=2,a=5,a<50;第三次运算:i=3,a =16,a<50;第四次运算:i=4,a=65,a>50.所以输出i=4.4、(5分) D设等差数列{a n}的首项为a,公差d=-2.则a7=a1+6d=a1-12;a3=a1+2d=a1-4;a9=a1+8d=a1-16.∵a7是a3与a9的等比中项,∴=a3·a9,∴(a1-12)2=(a1-4)(a1-16),∴a1=20.∴S10=10a1+d=110.5、(5分) C设含x2的项是二项展开式中第r+1项,则.令3-r=2,得r=1.∴x2的系数为.6、(5分) D设BD=a,则BC=2a,AB=AD=A.在△ABD中,由余弦定理,得cos A===.又∵A为△ABC的内角,∴sin A=.在△ABC中,由正弦定理得,.∴sin C=·sin A=·=.7、(5分) C,log23.4>log22=1,log43.6<log44=1,>log3 3=1,又log23.4>>,∴log23.4>>log43.6.又∵y=5x是增函数,∴a>c>b.8、(5分) B由题意得,即在同一坐标系内画出函数y=f(x)与y=c的图象如图所示,结合图象可知,当c∈(-∞,-2]∪(-1,)时两个函数的图象有两个公共点,从而方程f(x)-c=0有两个不同的根,即y=f(x)-c与x轴有两个不同交点.二、填空题( 本大题共6 题, 共计30 分)9、(5分) 12解析:设抽取男运动员人数为n,则女运动员人数21-n.由分层抽样知:,∴n=12.10、(5分) 6+π解析:由几何体的三视图可知,原几何体是一个长方体和一个圆锥的组合体.下面的长方体的长、宽、高分别是3 m,2 m,1 m,∴体积为3×2×1=6(m3).上面的圆锥底面圆半径为1 m,高为3 m,∴圆锥的体积为π×12×3=π(m3).∴该几何体的体积为(6+π) m3.11、(5分)解析:消去参数t,得抛物线标准方程y2=8x,其焦点F(2,0),∴过抛物线焦点斜率为1的直线方程:x-y-2=0,∵直线与圆(x-4)2+y2=r2相切,∴r=d=.12、(5分)解析:设BE=m,则BF=2m,AF=4m.∵AB与CD是圆的两条相交弦,交点为F,∴由相交弦定理,得AF·FB=CF·FD==2,∴4m·2m=2,∴m2=.又∵CE是圆的切线,根据切割弦定理,得CE2=EB·EA=m(m+2m+4m)=7m2=,∴CE=.13、(5分) {x|-2≤x≤5}解析:解不等式|x+3|+|x-4|≤9.(1)当x<-3时,|x+3|+|x-4|=-x-3+4-x≤9,∴x≥-4,即-4≤x<-3;(2)当-3≤x≤4时,|x+3|+|x-4|=x+3+4-x≤9恒成立,∴-3≤x≤4;(3)当x>4时,|x+3|+|x-4|=x+3+x-4≤9,∴x≤5,即4<x≤5.综上所述,A={x∈R|-4≤x≤5}.∵t∈(0,+∞),∴x=4t+-6≥2-6=-2,当且仅当t=时等号成立.∴B={x∈R|x≥-2}.∴A∩B={x∈R|-4≤x≤5}∩{x∈R|x≥-2}={x∈R|-2≤x≤5}.14、(5分) 5解析:根据题意,以AD为x轴,DC为y轴,建立平面直角坐标系,如图所示.∵AD=2,∴A(-2,0).∵BC=1,∴可设B(-1,n).∴点P在DC上运动,∴可设P(0,y)(0≤y≤n).∴=(-2,-y),=(-1,n-y),∴=(-5,3n-4y).∴.∴当3n=4y,即y=n时,取得最小值5.三、解答题( 本大题共6 题, 共计80 分)15..解:(1)由,得,所以f(x)的定义域为.f(x)的最小正周期为(2)由得,,整理得.因为,所以.因此由,得.所以16.解:(1)①设“在1次游戏中摸出i个白球”为事件A i(i=0,1,2,3),则②设“在1次游戏中获奖”为事件B,则B=A2∪A3.又且A2,A3互斥,所以.(2)由题意可知X的所有可能取值为0,1,2.所以X的分布列是X0 1 2PX的数学期望17. 解:(方法1)如图所示,建立空间直角坐标系,点B为坐标原点.依题意得(1)解:易得,于是所以异面直线AC与A1B1所成角的余弦值为(2)解:易知设平面AA1C1的法向量,则即不妨令可得,同样地,设平面A1B1C1的法向量,则即不妨令,可得于是从而所以二面角A—A1C1—B的正弦值为(3)解:由N为棱B1C1的中点,得设M(a,b,0),则由平面A1B1C1,得即解得故因此,所以线段BM的长为(方法2)(1)解:由于AC//A1C1,故是异面直线AC与A1B1所成的角. 因为平面AA1B1B,又H为正方形AA1B1B的中心,可得因此所以异面直线AC与A1B1所成角的余弦值为(2)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以≌,过点A作于点R,连接B1R,于是,故为二面角A—A1C1—B1的平面角. 在中,连接AB1,在中,,从而所以二面角A—A1C1—B1的正弦值为(3)解:因为平面A1B1C1,所以取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND//C1H且.又平面AA1B1B,所以平面AA1B1B,故又所以平面MND,连接MD并延长交A1B1于点E,则由得,延长EM交AB于点F,可得连接NE.在中,所以可得连接BM,在中,18. 解:(1)设F1(-c,0),F2(c,0)(c>0).由题意,可得|PF2|=|F1F2|,即整理得(舍),或,所以.(2)由(1)知,可得椭圆方程为3x2+4y2=12c2,直线PF2方程为.A,B两点的坐标满足方程组,消去y并整理,得5x2-8cx=0.解得得方程组的解.不妨设.设点M的坐标为.由于是由,即,化简得将,所以x>0.因此,点M的轨迹方程是18x2-16xy-15=0(x>0).19. 解:(1).令.xf′(x) +0 -f(x) ↗极大值↘所以,f(x)的单调递增区间是的单调递减区间是.(2)证明:当由(1)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令由于f(x)在(0,2)内单调递增,故.取所以存在x0∈(2,x′),使g(x0)=0,即存在(说明:x′的取法不唯一,只要满足x′>2,且g(x′)<0即可.)(3)证明:由f(α)=f(β)及(1)的结论知,从而f(x)在[α,β]上的最小值为f(α).又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故从而20. 解:(1)由可得又b n a n+a n+1+b n+1a n+2=0,当n=1时,a1+a2+2a3=0,由a1=2,a2=4,可得a3=-3;当n=2时,2a2+a3+a4=0,可得a4=-5;当n=3时,a3+a4+2a5=0,可得a5=4.(2)证明:对任意n∈N*,a2n-1+a2n+2a2n+1=0,①2a2n+a2n+1+a2n+2=0,②a2n+1+a2n+2+2a2n+3=0.③②-③,得a2n=a2n+3.④将④代入①,可得a2n+1+a2n+3=-(a2n-1+a2n+1).即c n+1=-c n(n∈N*).又c1=a1+a3=-1,故c n≠0,因此是等比数列.(3)证明:由(2)可得a2k-1+a2k+1=(-1)k,于是,对任意k∈N*且k≥2,有a1+a3=-1,-(a3+a5)=-1,a5+a7=-1,(-1)k(a2k-3+a2k-1)=-1.将以上各式相加,得a1+(-1)k a2k-1=-(k-1),即a2k-1=(-1)k+1(k+1),此式当k=1时也成立.由④式得a2k=(-1)k+1·(k+3).从而S2k=(a2+a4)+(a6+a8)+…+(a4k-2+a4k)=-k,S2k-1=S2k-a4k=k+3所以,对任意n∈N*,n≥2,对于n=1,不等式显然成立.。
2011年福建省宁德市初中毕业、升学考试数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分.一、选择题:(本大题有10小题,每小题4分,满分40分) 1.D ;2.B ;3.A ;4.C ;5.C ;6.A ;7.D ;8.C ;9.C ;10.B. 二、填空题:(本大题有8小题,每小题3分,满分24分)11.-1;12.a (a -3);13.140;14.-3;15.4;16.(0,2);17.<;18.40°,或20°. 三、解答题:(本大题有8小题,满分86分) 19.(满分14分)⑴解:原式=23213+--…………4分=13-.…………7分⑵解:方程两边都乘以()()12-+x x ,得()()2213+=-x x .…………4分解这个方程,得x =7.…………6分检验:将x =7代入最简公分母,()()012≠+-x x . 所以,x =7是原方程的解.…………7分20.(满分8分) 证法一:∵AB ∥DE ,∴∠B =∠DEC .…………1分 ∵BE =CF ,∴B E +EC =C F +EC .…………2分 即BC =EF .又∵AB =DE ,∴△ABC ≌△DEF .…………6分 ∴AC =DF .…………8分证法二:连接AD ,∵AB =DE ,AB ∥DE ,∴四边形ABED 是平行四边形.…………2分 ∴AD ∥BE ,AD =BE .∵BE =CF ,∴AD ∥CF ,AD =CF . ∴四边形ACFD 是平行四边形.…………6分 ∴AC =DF .…………8分21.(满分8分)解:⑴用科学记数法表示全省常住人口:3.689×107人.…………2分⑵泉州人口812万人,宁德人口282万人;画统计图正确.…………4分 ⑶中位数是282万人.……………6分⑷全省平均人口密度最大的是厦门市,达2076人/平方千米.…………8分 22.(满分10分) 解:⑴“4朝下”的频率:616010 ;…………2分 ⑵这种说法是错误的.在60次试验中,“2朝下”的频率为31并不能说明“2朝下”这一事件发生的概率为31.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.…………5分⑶随机投掷正四面体两次,所有可能出现的结果如下:…………8分总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于4的结果有10种.……9分∴851610P 4==)(朝下数字之和大于.…………10分 23.(满分10分)解法一:设去年同期接待外地游客为x 人,本地游客为y 人.………1分依题意,得()()⎩⎨⎧+⨯=+++=+.%4015000%101%501,5000)(y x y x ………6分 解得⎩⎨⎧==.1250,3750y x ………9分答:去年1~5月份该旅行社接待外地游客3750人,本地游客1250人.…10分解法二:设去年同期接待外地游客为x 人,则本地游客为(5000-x )人.………2分依题意,得()%4050005000%10%50⨯=-+x x ………6分解得3750=x ………9分答:去年1~5月份该旅行社接待外地游客3750人,本地游客1250人.…10分24.(满分10分)解:⑴过B 作BF ⊥AD 于F .在Rt △ABF 中,………………1分∵sin ∠BAF =ABBF,∴BF =AB sin ∠BAF =2.1sin40°≈1.350.∴真空管上端B 到AD 的距离约为1.35米. ………………4分 ⑵在Rt △ABF 中, ∵cos ∠BAF =ABA F, ∴AF =AB cos ∠DAF =2.1cos40°≈1.609. ………………6分 ∵BF ⊥AD ,CD ⊥AD ,又BC ∥FD , ∴四边形BFDC 是矩形.∴BF =CD ,BC =FD .………………7分 在Rt △EAD 中, ∵tan ∠EAD =DEDA , ∴ED =AD tan ∠EAD =1.809tan25°≈0.844. ………………9分 ∴CE =CD -ED =1.350-0.844=0.506≈0.51∴安装铁架上垂直管CE 的长约为0.51米.………………10分 25.(满分13分)解:⑴小颖摆出如图1所示的“整数三角形”:…………3分小辉摆出如图2所示三个不同的等腰“整数三角形”:…………8分⑵①不能摆出等边“整数三角形”.理由如下: 设等边三角形的边长为a ,则等边三角形面积为243a . 因为,若边长a 为整数,那么面积243a 一定非整数. 所以不存在等边“整数三角形”.…………10分;②能摆出如图3所示一个非特殊“整数三角形”: …………13分26.(满分13分)解:⑴①直线6-=x y 与坐标轴交点坐标是A (6,0),B (0,-6);…………1分②如图1,四边形DCEF 即为四边形ABEF 沿EF 折叠后的图形;…………3分6图13 34 46 6图24 512图3⑵∵四边形DCEF 与四边形ABEF 关于直线EF 对称, 又AB ∥EF , ∴CD ∥EF .∵OA =OB ,∠AOB =90°, ∴∠BAO =45°. ∵AB ∥EF , ∴∠AFE =135°. ∴∠DFE =∠AFE =135°.∴∠AFD =360°-2×135°=90°,即DF ⊥x 轴∴DF ∥EH ,∴四边形DHEF 为平行四边形. …………5分 要使□DHEF 为菱形, 只需EF =DF ,∵AB ∥EF ,∠F AB =∠EBA , ∴F A =EB . ∴DF =F A =EB =t . 又∵OE =OF =6-t , ∴EF =()t -62. ∴()t -62=t . ∴2126+=t .∴当2126+=t 时,□DHEF 为菱形. …………7分⑶分两种情况讨论:①当0<t ≤3时,…………8分四边形DCEF 落在第一象限内的图形是△DFG , ∴S =221t .∵S =221t ,在t >0时,S 随t 增大而增大, ∴t =3时,S 最大=29;…………9分②当3<t <6时,…………10分四边形DCEF 落在第一象限内的图形是四边形DHOF , ∴S 四边形DHOF =S △DGF —S △HGO . ∴S =()22622121--t t =1812232-+-t t =()64232+--t .∵a =23-<0,∴S 有最大值.∴当t =4时,S 最大=6.…………12分综上所述,当S =4时,S 最大值为6. …………13分。
山东省淄博市重点中学2011届高三上学期期中考试试题(数学理)第Ⅰ卷 60分注意事项:1.答卷前,考生务必用钢笔或签字笔将自己的班别、姓名、考号填写在答题纸和答题卡的相应位置处。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
3.非选择题答案必须写在答题纸相应位置处,不按要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卡和答题纸一并收回 一、选择题(把答案涂到答题卡上,每个小题5分,共12个小题60分) 1.已知命题,1sin ,:≤∈∀x R x p 则p ⌝是( )A 1sin ,≥∈∃x R xB 1sin ,≥∈∀x R xC 1sin ,>∈∃x R xD 1sin ,>∈∀x R x 2.设集合A ={1, 2},则满足A ∪B ={1,2,3}的集合B 的个数是( )A .1B .3C .4D .83.函数x x x f 1lg )(-=的零点所在的区间是( )A .(0,1]B .]10,1(C .]100,10(D .(100,+∞)4.设函数()()2x x g x f +=,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为 ( )A.4B.41-C.2D. 21-5.由直线x =12,x =2,曲线y =1x及x 轴所围成图形的面积为( )A.154B.174C.12ln2 D .2ln2 6.已知函数()⎪⎭⎫ ⎝⎛-=2sin πx x f (x ∈R),下面结论错误的是 ( )A.函数f(x)的最小正周期为π2;B.函数f(x)在区间⎥⎦⎤⎢⎣⎡2,0π是增函数;C.函数f(x)的图象关于直线x=0对称;D.函数f(x)是奇函数7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64B .100C .110D .1208已知,0,2||,1||=⋅==OB OA OB OA 点C 在∠AOB 内,且∠AOC=45°,设nmR n m 则),,(∈+=等于 ( ) A .21 B .22 C .2 D .29.已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是( )A .(-72,+∞) B .(0,+∞) C .[-2,+∞) D .(-3,+∞)10.已知向量()(),54,2,2,1=--==若(),25=∙+c b a 则与的夹角为( )A .30°或150°B .60°或120°C .120°D .150°11.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是 ( )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin 312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=12.符号[x]表示不超过x 的最大整数,如[]32.5=,[-1.1]=-2,定义函数{x}=x-[x],给出下列四个命题:①函数{x}的定义域是R ,值域为[0,1];②方程{}21=x 有无数解;③函数{x}是周期函数;④函数{x}是增函数.其中正确的命题序号有 ( ) A.②③ B.①④ C.③④ D.②④第Ⅱ卷 90分二、填空题(把答案写到答题纸相应位置上,每个小题4分,共4个小题16分)13.数列}{n a 满足()()⎪⎩⎪⎨⎧<≤-<≤=+121,12210,21n n n n n a a a a a ,若761=a ,则2010a 的值为________. 14.设向量()()3,2,2,1==,若向量+λ与向量()7,4--=共线,则=λ .15. 点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,角α的取值范围是_______16. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距10海里C 处的乙船,乙船立即朝北偏东θ角的方向沿直线前往B 处救援,则sin θ的值等于__________三、解答题(每个小题应该写出必要的解题步骤,只有结果没有步骤的不得分,步骤要清晰规范。
参照秘密级管理★启用前试卷类型:A 淄博市2021年初中学业水平考试数学试题本试卷共7页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.2.选择题每小题选出答案后,用2B铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.非选择题必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内如需改动,先划掉原来答案,然后再写上新答案,严禁使用涂改液、胶带纸、修正带修改,不允许使用计算器.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记。
5.评分以答题卡上的答案为依据,不按以上要求作答的答案无效。
一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列几何体中,其俯视图一定是圆的有三棱柱球正方体圆柱(A)1个(B)2个(C)3个(D)4个2.如图,直线a∥b,∠1=130°,则∠2等于(A)70°(B)60°(C)50°(D)40° (第2题图)3.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是(A)液态氧(B)液态氢(C)液态氮(D)液态氦4.经过4.6亿公里的飞行,我国首次火星探测任务“天问一号”探测器于2021年5月15日在火星表面成功着陆,火星上首次留下了中国的印迹.将4.6亿用科学记数法表示为(A)4.6×109(B)0.46×109(C)46×108(D)4.6×108 5.小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是(A)6,7(B)7,7(C)5,8(D)7,86.设m=512-,则(A)0<m<1 (B)1<m<2(C)2<m<3 (D)3<m<4 7.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,CD为⊙O的直径,弦AB⊥CD,垂足为点E,CE=1寸,AB=10寸,则直径CD的长度是(A)12寸(B)24寸(C)13寸(D)26寸8.如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=P,EF=r,DB=q,则p,q,r之间满足的数量关系式是(A)111r q p+=(B)112p r q+=(C)111p q r+=(D)112q r p+=(第8题图)(第5题图)(第7题图)9.甲、乙两人沿着总长度为10km 的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm /h ,则下列方程中正确的是 (A )1010121.2x x += (B )10100.21.2x x -= (C )1010121.2x x-= (D )10100.21.2x x-= 10.已知二次函数y =2x 2﹣8x +6的图象交x 轴于A ,B 两点.若其图象上有且只有P 1,P 2,P 3三点满足123ABP ABP ABP ==S S S △△△=m ,则m 的值是(A )1(B )32(C )2(D )411.如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,过点E 作EF ⊥AB 交AC 于点F .若BC =4,△AEF 的面积为5,则sin ∠CEF 的值为 (A )35(B )55(C )45(D )255(第11题图)12.如图,在平面直角坐标系中,四边形AOBD 的边OB 与x 轴的正半轴重合,AD ∥OB ,DB ⊥x 轴,对角线AB ,OD 交于点M .已知AD :OB =2:3,△AMD 的面积为4.若反比例函数y =kx的图象恰好经过点M ,则k 的值为 (A )275 (B )545(C )585(D )12(第12题图)二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果。
2011年普通高等学校夏季招生全国统一考试数学(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试用时120分钟. 参考公式:柱体的体积公式:V =Sh ,其中S 是柱体的底面积,h 是柱体的高.圆柱的侧面积公式:S =cl ,其中c 是圆柱的底面周长,l 是圆柱的母线长. 球的体积公式:343V R π=,其中R 是球的半径. 球的表面积公式:S =4πR 2,其中R 是球的半径.用最小二乘法求线性回归方程系数公式:1221ni ii nii x y nx ybxnx ---=-∑∑ , ay bx =- . 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B );如果事件A 、B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(理)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A .[1, 2) B .[1,2] C .(2,3] D .[2,3]2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若点(a ,9)在函数y =3x 的图象上,则tan 6a π的值为 …( ) A .0B .33C .1D .34.不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7] B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)5.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.若函数f (x )=sin ωx (ω>0)在区间[0,3π]上单调递增,在区间[3π,2π]上单调递减,则ω=( )A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元)4 2 35 销售额y (万元) 49 26 39 54 根据上表可得回归方程 y bx a =+ 中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221x y a b-=(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .2222154x y -=B .2222145x y -=C .2222136x y -=D .2222163x y -=9.函数2sin 2xy x =-的图象大致是( )10.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .911.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( )A .3B .2C .1D .012.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R ),1412A A A A μ= (μ∈R ),且112λμ+=,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.执行下图所示的程序框图,输入l =2,m =3,n =5,则输出的y 的值是__________.14.若62()a x x -展开式的常数项为60,则常数a 的值为__________.15.设函数()2xf x x =+ (x >0),观察: 1()()2xf x f x x ==+, 21()(())34xf x f f x x ==+, 32()(())78xf x f f x x ==+, 43()(())1516xf x f f x x ==+, ……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=__________.16.已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =__________.三、解答题:本大题共6小题,共74分.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,C .已知cos 2cos 2cos A C c aB b--=. (1)求sin sin CA的值; (2)若cos B =14,b =2,求△ABC 的面积S .18.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.19.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EA ⊥平面ABCD ,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF .(1)若M 是线段AD 的中点,求证:GM ∥平面ABFE ;。
2011年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2)B.[1,2] C.(2,3] D.[2,3]考点:交集及其运算。
专题:计算题。
分析:根据已知角一元二次不等式可以求出集合M,将M,N化为区间的形式后,根据集合交集运算的定义,我们即可求出M∩N的结果.解答:解:∵M={x|x2+x﹣6<0}={x|﹣3<x<2}=(﹣3,2),N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A点评:本题考查的知识点是交集及其运算,求出集合M,N并画出区间的形式,是解答本题的关键.2.(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算;复数的基本概念。
专题:数形结合。
分析:把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.解答:解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D点评:判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.3.(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.考点:指数函数的图像与性质。
专题:计算题。
分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.4.(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7] B.[﹣4,6] C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)考点:绝对值不等式的解法。
2011年高中阶段学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是A.r>15 B.15<r<20 C.15<r<25 D.20<r<25 9.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 2324得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.图4图313.若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.18.(本小题满分7分)如图7,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.图5图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回...地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少米?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题: 如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a 2-b 2=(3b )2-b 2=2b 2=b ·c .即a 2-b 2= bc . 于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB为直径作⊙O ′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式; (2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图102011年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分)1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB≌ΔCOD、ΔAOD≌ΔCOB、ΔADB≌ΔCBD、ΔABC≌ΔCDA之一均可;12.3434+(或34+3);13.x1<x2<0或0<x1<x2;14.4;15.10 ;16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x-–21(2)x-]×(2)2x x-······························································ 3分=1(2)x x-×(2)2x x-–21(2)x-×(2)2x x-=12–2(2)xx-·········································································································· 4分=22(2)xx--–2(2)xx-=12x-····················································································································· 5分当x=1时,原式=121-·············································································································· 6分= 1 ··························································································································· 7分图7 说明:以上步骤可合理省略 . 18.(1) 内. ············································································································ 2分 (2) 证法一:连接CD , ························································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,·········································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD , ································································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ··········································································································· 6分 ∴ □DECF 为菱形. ······························································································ 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ·································· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ·············································································································· 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··········································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ·············································································································· 6分 ∴□DECF 为菱形. ······························································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13,·················································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.································································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ········································ 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩·············································································· 5分解得:1.5≤x ≤5 ····································································································· 6分注意到x 为正整数,∴x =2,3,4,5 ···································································· 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车 2 3 4 5 乙种货车7654································································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ································································· 1分 可能出现的所有结果列表如下:1 2 344812大双积 小双5510 15或列树状图如下:·························································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ···································································· 6分∵23≠13,∴大双的设计方案不公平. ··································································· 7分 (2) 小双的设计方案不公平. ················································································ 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ····················································································································· 1分 解得k =2, ·············································································································· 2分∴反比例函数的解析式为y =1x. ··········································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ························································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ······································································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ································ 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ =103, ············································································ 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =tan45°×PQ =10,即:AB =(103+10)(米); ························································· 5分 (2) 过A 作AE ⊥BC 于E ,图8在Rt△ABE中,∠B=30°,AB =103+10,∴AE=sin30°×AB=12(103+10)=53+5, ··············································· 7分∵∠CAD=75°,∠B=30°,∴∠C=45°,····································································································· 8分在Rt△CAE中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米) ·······················································10分23. (1) 由题意,得∠A=90°,c=b,a =2b,∴a2–b2=(2b)2–b2=b2=bc. ······················································3分(2) 小明的猜想是正确的.·······················································4分理由如下:如图3,延长BA至点D,使AD=AC=b,连结CD,···································································································5分则ΔACD为等腰三角形.∴∠BAC=2∠ACD,又∠BAC=2∠B,∴∠B=∠ACD=∠D,∴ΔCBD为等腰三角形,即CD=CB=a, ·······················································6分又∠D=∠D,∴ΔACD∽ΔCBD,···············································7分∴AD CDCD BD=.即b aa b c=+.∴a2=b2+bc.∴a2–b2= bc············8分(3) a=12,b=8,c=10. ························································· 10分24.(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC= ∠COB=90°,∴ΔAOC∽ ΔCOB,·································································································· 1分∴OA OCOC OB=.又∵A(–1,0),B(9,0),∴19OCOC=,解得OC=3(负值舍去).∴C(0,–3), ································································································································ 3分设抛物线解析式为y=a(x+1)(x–9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x–9),即y=13x2–83x–3.································· 4分(2) ∵AB为O′的直径,且A(–1,0),B(9,0),∴OO′=4,O′(4,0),······························································································ 5分∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=12∠BCE=12×90°=45°,连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.图9-3。
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第□卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第n卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V =Sh,其中S是柱体的底面积,h是柱体的高。
圆柱的侧面积公式:S二cl,其中c是圆柱的地面周长,丨是圆柱的母线长。
4 3球的体积公式:V R ,其中R是球的半径。
3球的表面积公式:错误!未找到引用源。
,其中R是球的半径。
nZ X i Y - nx y 用最小二乘法求线性回归方程系数公式:错误!未找到引用源。
=号w = y-bX.2 2 X j _nxi d如果事件A、B互斥,那么P(A B)二P(A)+P(B);如果事件A、B独立,那么P(AB) = P(A):P(B)。
第I卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合M = :x | x2 x - 6 :: 0』,N = \x |1 乞x 乞3.',则M N 二(A) [1,2) (B) [1,2] (C) (2,3] (D) [2,3]2、复数z= — (i为虚数单位)在复平面内对应的点所在象限为(A) 第一象限(B)第二象限3、若点(a,9 )在函数y = 3的图象上,贝U(A) 0 (B) 丁(C) 1(C)第三象限(D)第四象限a"tan 的值为6(D) 34、不等式x -5 x 3 _10的解集是(C) -二,-5| 〔7, :: (D) 16,二5、 对于函数y=f(x),x^R ,“y=|f (x)的图象关于y 轴对称”是“ y=f(x)是奇函数”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件6、 若函数f(x) =sin 「x (门、0)在区间 0,上单调递增,在区间 ,一 上单调递减,则-■=_ 3.[3 23 2 (A) 3 (B) 2(C)-(D)-237、 某产品的广告费用 x 与销售额y 的统计数据如下表:广告费用x (万兀)4 235销售额y (万兀)49263954图象在区间10,6 1上与x 轴的交点的个数为 (A) 6(B) 7(C) 8(D) 911、右图是长和宽分别相等的两个矩形,给定下列三个命题:① 存在三棱柱,其正(主)视图、俯视图如右图;② 存在四棱柱,其正(主)视图、俯视图如右图;③ 存在圆柱,其正(主)视图、俯视图如右图。
1
淄博市二○一一年初中学业水平考试
数学试题(A 卷)参考答案及评分标准
评卷说明:
1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.每小题只给出一种或两种解法,对考生的其它解法,请参照评分意见进行评分.
3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.
一、选择题(本大题共12小题,第1~8小题每题3分,第9~12小题每题4分,共40分.错选、不选或选出的答案超过一个,均记零分):
二、填空题 (本大题共5小题,每小题4分,共20分) : 13π等,答案不唯一,只要填写正确均可得分;
14.x 1x 2=2-
; 15.40;
16.
3
1; 17.
23
2
. 三、解答题 (本大题共7小题,共60分) : 18.(本题满分8分) 解:)3(2)2(3
-⨯+-
=-8+(-6) ……………………………………………………………6分 =-14 ……………………………………………………………………8分 19.(本题满分8分) 解:∵∠1=∠2
∴AB ∥CD …………………………3分 ∴∠3=∠4 …………………………6分 ∵∠3=75° ∴∠4=75° …………………………8分
2
20.(本题满分8分) 解:(1)笔试成绩的极差是90-64=26(分); …………………………2分 (2)说课成绩的中位数是85.5分;众数是85分; …………………………6分 (3)序号是3、6号的选手将被录用. 因为5,6号选手的成绩分别是:
5号:
4.8610
5
94388265=⨯+⨯+⨯;
6号:
9.8610
5
85392284=⨯+⨯+⨯; …………………………7分 ∵88.1>86.9>86.4>84.6>84.2>80.8,
∴序号是3,6号的选手将被录用. …………………………8分 21.(本题满分9分)
解:(1)证明:连接OE ,则OB =OE . …………………………1分 ∵△ABC 是等边三角形,
∴∠ABC =∠C =60°.
∴△OBE 是等边三角形.
∴∠OEB=∠C =60°.
∴OE ∥AC . ………3分 ∵EF ⊥AC , ∴∠EFC =90°. ∴∠OEF =∠EFC =90°.
∴EF 是⊙O 的切线. ………5分 (2)连接DF ,
∵DF 是⊙O 的切线,
∴∠ADF =90°. ………6分
设⊙O 的半径为r ,则BE =r ,EC =r -4,AD =r 24-. 在Rt △ADF 中, ∵∠A =60°,
∴AF =2AD =r 48-. ………………7分 ∴FC =44)48(4-=--r r .
在Rt △CEF 中 ∵∠C =60°, ∴EC =2FC
∴r -4=2(44-r ). ………8分 解得3
4=
r . ∴⊙O 的半径是
3
4
. …………9分 22.(本题满分9分)
(1) 四边形ABDC ′中,AB =DC ′,∠B =∠C ′
(或四边形ABDC ′中,一组对边相等,一组对角相等). (2)作法: ①延长NP ;
②以点M 为圆心,MN 为半径画弧,交NP 的延长线于点G ;
M
N
P
G
Q
(第22题)
(第21题)
3
③以点P 为圆心,MN 为半径画弧,以点M 为圆心, PG 为半径画弧,两弧交于点Q ;
④连接MQ ,PQ ;
⑤四边形MNPQ 是满足条件的四边形.
23.(本题满分9分) 解:(1)∵四边形ABCD 是菱形, ∴AB =AD . ………1分
又∵2
221
4(
)21(1)24
m m m m m ∆=--=-+=-, ………2分 当2(1)0m -=时,
即m=1时,四边形ABCD 是菱形. ………3分 把m=1代入2
1
024
m x mx -+-=, 得2
1
04x x -+
=. ∴121
2
x x ==. ………4分
∴菱形ABCD 的边长是1
2
. ………5分
(2)把AB =2代入2
1024
m x mx -+-=,得
1
42024m m -+-=, ………6分
解得5
2m =. ………7分
把52
m =代入2
1024m x mx -+-=,得
25
102
x x -+=.
解得12x =,21
2
x =. ………8分
∴AD=12
.
∵四边形ABCD 是平行四边形, ∴□ABCD 的周长是2(2+1
2
)=5. ………9分 24.(本题满分9分)
解:(1)抛物线2
y ax bx c =++过点(0,2)C -,
可得2c =-. ……………1分
把点(2,2)A --,(2,2)B 代入22
-+=bx ax y ,整理得
4
⎩⎨
⎧=+=-.
424024b a b a ,
解得1
2
a =, 1
b =. ……………2分 ∴抛物线的解析式为:2
122
y x x =+-. ……………3分
(2
)∵MN =
A ,
B 都在直线y x =上,
MN 在线段AB 上,M 的横坐标为m
如图1,过点M 作x 轴的平行线,过点N 作y 轴的平行线, 它们相交于点H .
∴△MHN 是等腰直角三角形 . ∴MH =NH =1.
∴点N 的坐标为(1m +,1m +). …………4分 ①如图2,当0m <时,PM m =-
2
211
1(1)12(1)22
2
NQ m m m m ⎡⎤=+-+++-=-
++⎢⎥⎣⎦
. 当四边形PMQN 为平行四边形时,PM =NQ . ∴21
(1)22
m m -=-
++ . …………5分 解得31=m (舍去), 32-=m . ……6分 ②如图3,当0m >时,PM m =.
22111(1)12(1)222NQ m m m m ⎡⎤
=+-+++-=-++⎢⎥⎣⎦
.
当四边形PMNQ 为平行四边形时,PM =NQ , ∴21
(1)2
m m =-
++ ……7分 (图3)
(图2) (图1)
(第24题)。