《不等式与不等式组》教学反思
- 格式:doc
- 大小:28.50 KB
- 文档页数:5
《用求差法比较大小》教学设计教学目标:1、掌握作差比较法。
2、提高分析、解决问题能力。
3、锻炼学生的思维品质(思维的严谨性、灵活性、深刻性)。
教学重点与难点:1、求差比较法证明不等式是本节课的教学重点。
2、求差后,如何对“差式”进行适当变形,并判断符号是本节课教学难点。
教学过程设计:一、引入1、故事问题:电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才。
”舟妹对答绝妙,三个秀才无言以对,一副狼狈相。
若用数学方法解决罗秀才提出的问题,设“一少”的狗有条,“三多”的狗有条,则解此问题所列关系式正确的是()A.B.C.D.设计意图:激发兴趣,体会不等式在生活中的应用。
2、温度计上显示的温度分别为—3摄氏度和—5摄氏度,问:哪个温度高?从简单的例子出发,让同学们掌握一些生活中的有理数的比较方法,可以很简单得出正数比负数大,那么两个负数应该怎样比较大小呢?同学们已经学过有理数的大小比较,那么两个代数式如何比较大小呢?3、制作某产品有两种用料方案,方案1用4块A型钢板,8块B型钢板;方案2用3块A型钢板,9块B型钢板。
A型钢板的面积比B型钢板大,从省料角度考虑,应选哪种方案?提问1:方案1的面积(),方案2的面积()。
学生思考回答。
方案1:4x+8y 方案2: 3x+9y问题2:4x+8y与 3x+9y 如何比较大小呢?师:直接比较这两个式子的大小有困难,但是将两式作差所得到的结果与0比大小比较容易证明,这种方法我们叫做作差法。
设计意图:从学生熟悉的问题出发,自然地引入直接进入主题。
二、讲授新课:(一)阅读材料(教材P121)学生阅读,分享新知。
归纳结论:对于任意两个数a,b的大小比较,有下面的方法:当a>b时,一定有a-b>0;当a<b时,一定有a-b<0;当a=b时,一定有a-b=0。
第一篇:一元一次不等式组的解法教学反思9.2实际问题与一元一次不等式(2)(教学反思)本课设计充分体现教科书的编写意图,通过创设与学生实际生活联系密切的问题情境,并由学生根据自己的经验列出一元一次不等式解决问题,从中发现一元一次不等式与一元一次方程之间的内在联系,从而学会用去分母的方法解一元一次不等式.要让学生懂得:学习的目的就是为了学以致用.为实现上述构想,本课设计了一系列的学生活动.特别是在“探究新知”中一连抛出5个问题,引发学生独立思考,讨论交流,尝试练习,自主建构一元一次不等式的解法.在这些活动中,又采用了个体活动、小组活动、全班活动等多种形式,为学生的自主学习提供了广阔的“舞台”,真正凸现出学生是数学学习的主人,动手实践、自主探索与合作交流是学生学习数学的重要方式这一全新的理念.本节课以开放式的课堂形式组织教学,让学生再教师提出的学习目标下进行自学,然后和小组同学共同合作探究难点、解决问题。
由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生去自学,主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。
这节课成功之处在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。
在课堂教学中,给了学生更多的展示自己的机会,并且教师的鼓励与欣赏有助于学生认识自我,建立自信,发挥评价的教育功能。
学生在解题时经常出现解题过程单一、思路狭窄、逻辑混乱、叙述冗长、主次不分等问题,这是学生思维过程缺乏灵活性、批判性的表现,也是学生的思维创造性水平不高的表现。
因此,教师必须引导学生反思自已的解题方法,努力寻找解决问题的最佳方案。
通过这一反思过程,开阔了学生的视野,使学生的思维朝着灵活、精细和新颖的方向发展。
教师应重视结合学生作业中出现的错误来设计教学情境,使学生在纠正作业错误的过程中加深对基础知识的理解。
第二篇:一元一次不等式组的解法教学反思一元一次不等式组的解法教学反思1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,一元一次不等式组的解法教学反思。
不等式与不等式组教学反思6篇不等式与不等式组教学反思篇1本节课我采用使用导学案的教学方式,让学生朗读本节课的学习目标和学习重难点,让学生带着问题来学习本节课的知识点。
引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
课堂开始通过找规律引入课题,激发学生的学习兴趣以及积极性。
通过简单的问题引导学生通过探究得出不等式的性质 1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。
接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。
在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。
还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
练习的设计上以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。
同时使学生体会数学中的分类讨论思想。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。
在教学过程中,学生参与的积极性较高,课堂气氛活跃。
其中不存在不少问题。
比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。
但是怕学生接受不了高难度的题目,因此在设计导学案时经过反复思考,终究没有选择类似的题目。
终究是不放心学生。
我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
不等式与不等式组教学反思篇2课后我把自己的课堂教学进行了冷静思考和总结,下面谈谈自己的收获和体会。
不等式组的教学反思_基本不等式教学反思不等式一章,对学生来说是难点,把握好教学很关键,我经过教学反思见下。
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。
用“大大取较大、小小取较小、大小小大取中间、大大小小取不了”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力。
在教学中我要求学生两者皆用。
2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。
教学中,一方面加强训练,锻炼学生的自我解题能力。
另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
4、本节课课堂容量(安排的例题的题量太多)偏大,而且在思维上也有比较特殊的地方,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。
因此今后在课时的安排上要尽可能的安排更多的课时,以减少每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。
同时还要重视思考题的作用,因为班上有一部分同学体现出基础比较扎实,而且对数学也比较有兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。
5.从课堂的效果来看学生对象客观题这样的题型(如:选择题、填空题)用特殊方法解题的思维还不够,他们总是担心会出问题,特别是选择题缺乏比较和分析的能力,因为选择题是一种比较特殊的题型,它的特殊性在于这类题目的答案是已知的,有的学生在做题的时候根本就不看题目中的四个选择答案,实际的解题过程中对于选择题来讲能把四个答案选项分析清楚对提高解题的速度和准确性是很有好处的。
但本节课中出现的解客观题的一些特殊的方法在解与不等式有关的题目时特别的有效,但是如果不等式的问题中出现了分类讨论的情况,特殊的方法就有它的局限性,这时就需要学生能够灵活处理了。
问题中出现了分类讨论的题目一般来讲都是比较难的题目,教学上我的处理是在教学的过程中如果出现了这类问题就具体跟学生讲解,在学期末的复习时候再跟学生总结。
《不等式的性质》教学反思《不等式的性质》教学反思(精选9篇)《不等式的性质》教学反思篇1教后记不等式的性质是人教版七年级下册第九章《不等式与不等式组》的第二节课,本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质。
不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的很多章节,在实际问题中被广泛应用,可以说它是解决其它数学问题的一种有利工具。
因此不等式的性质的学习对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用。
在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的兴趣,培养自觉运用数学的意识。
现就今天在初一级1班上的《不等式的性质》这节课,进行反思如下:一、课前准备应该对该知识点进行深刻的认识和理解不等式的三个基本性质是本章解一元一次不等的基础,也是证明不等式主要依据。
解不等式就是用不等式的性质来施行一系列的等价变换。
因此,在课前准备工作上要正确认识和理解不等式的性质。
在教学过程中,要灵活的应用不等式的性质解一元一次不等式。
由于一元一次不等式的解法与一元一次方程的解法十分相似,所以在学习本节时,与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。
在学生已经理解一元一次不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合解一元一次不等式。
二、教学过程中知识点的落实在本节课中,要求学生学习的主要内容是不等式的三条性质,及运用这三条性质对不等式进行正确变形来解不等式。
如果直接就给同学们讲不等式有这样的三条性质,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我在上这一节课时就想到了运用类比的思想来学习这节课的内容,这样学生既学会了新知识又复习了旧知识,还把他们联系到了一起,而且学生还觉得这节课学的知识其实好象是旧知识,只是进行了一点改动,接受起来比较的容易,掌握起来也比较的容易。
七年级数学下册不等式与不等式组教案人教新课标版一、教学目标:知识与技能:使学生掌握不等式的概念、性质和基本运算;学会解一元一次不等式及不等式组。
过程与方法:通过观察、实验、探究等活动,培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观:激发学生学习数学的兴趣,培养学生克服困难、自主学习的品质。
二、教学内容:第一课时:不等式的概念与性质1. 不等式的定义2. 不等式的性质第二课时:不等式的基本运算1. 不等式的加减法2. 不等式的乘除法第三课时:解一元一次不等式1. 一元一次不等式的解法2. 解不等式组的策略第四课时:不等式应用举例1. 应用不等式解决实际问题2. 不等式组在实际问题中的应用第五课时:复习与拓展1. 复习不等式、不等式组的解法及应用2. 拓展练习三、教学重点与难点:重点:不等式的概念、性质,解一元一次不等式及不等式组的方法。
难点:不等式的性质,解一元一次不等式,不等式组在实际问题中的应用。
四、教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。
五、教学过程:第一课时:1. 导入新课:通过生活中的实例引入不等式概念。
2. 讲解不等式的性质。
3. 练习不等式的基本运算。
第二课时:1. 讲解不等式的加减法运算。
2. 讲解不等式的乘除法运算。
3. 练习不等式的基本运算。
第三课时:1. 讲解一元一次不等式的解法。
2. 讲解解不等式组的策略。
3. 练习解一元一次不等式及不等式组。
第四课时:1. 举例讲解应用不等式解决实际问题。
2. 举例讲解不等式组在实际问题中的应用。
3. 练习不等式及不等式组在实际问题中的应用。
第五课时:1. 复习不等式、不等式组的解法及应用。
2. 拓展练习。
六、教学评价:采用课堂练习、课后作业、小组讨论、个人总结等方式进行教学评价。
重点关注学生对不等式及不等式组的掌握程度,以及在实际问题中的应用能力。
七、教学策略:1. 采用多媒体课件辅助教学,直观展示不等式的性质和运算过程。
第九章不等式与不等式组李度一中陈海思本章复习【知识与技能】1.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.2.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.3.了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴含的化归思想.4.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.【过程与方法】用提问法引导学生复习本章所有知识点,再通过典型题、热点题的剖析与训练提高学生的解题能力.【情感态度】通过一些经典的、现实的、有意义的、富有挑战性的题型的训练,培养学生主动学习、探究学习、互相交流等学习品质,激发学生的学习兴趣.【教学重点】一元一次不等式(组)的解法及列不等式(组)解应用问题.【教学难点】与一元一次不等式(组)有关的综合型问题,应用型问题.一、知识框图,整体把握1.利用不等式(组)解决实际问题的基本过程2.本章知识安排的前后顺序二、回顾思考,梳理知识1.不等式的三个性质:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.2.一元一次不等式的解法与一元一次方程的解法基本相同,只是在系数化为1时,若两边同乘(或除以)同一个负数,不等号的方向要改变,解未知数为x 的不等式,就是将不等式逐步变成x>a(或x<a)的形式.3.解一元一次不等式组的关键是求不等式的公共解集.4.设未知数、列不等式(组)是解有关应用题的关键步骤,解相关应用题时,必须根据问题中的相关信息,将问题数学化,进而对其中的数量关系进行梳理,有条理地、逐步深入地考虑如何寻求解决问题的方法.三、典例精析,复习新知例1(山东临沂中考)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下,最多还能搭载____捆材料.分析:本题不等关系是:210+会议材料重量≤1050.设还可搭载x捆材料,则:210+20x≤1050,解得x≤42.故最多还能搭载42捆材料.例2 当m为何值时,方程组解:先解关于x,y的方程组,再由列出关于m的不等式组,解不等式组便可求出m的范围.解方程组得例3某商店积压了100件某种商品,为使这批货物飞快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:第次降低30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.三次降价处理销售结果如下表:问:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利.解:(1)设原价为x元,则2.5×0.73x÷x=85.75%;(2)原价销售额为100x元,新价销售额为2.5×10×0.7x+2.5×0.72x×0+0.8575x×50=109.375x元,因109.375x>100x,故新方案销售更盈利.例4(1)若不式组 2x-3a<7b,6b-3x<5a 的解集是5<x<22.求a,b的值.(2)已知不等式组的解集为x>2,求a的范围.解:(1)原不等式组可化为依题意,得1/3(6b-5a)<x<1/2(3a+7b).又由题意知,该不等式组的解集为5<<22.所以解得(2)原不等式组可化为.依题意,知x>2,所以a≤2.例5 若关于x的不等式-3x+m>0有5个正整数解,求m的取值范围.解:解不等式得x<m/3,因为它有5个正整数解,所以x的正整数解是x =1,2,3,4,5.而x<5的正整数解为1,2,3,4,不符合题意,所以m/3比5大,而x<6的正整数解为1,2,3,4,5,符合题意,所以m/3不超过6,上5<m/3≤6.所以15<m≤18.想一想,若关于x的不等式-3x+m≥0有5个正整数解,则m的取值范围又如何呢?(答案:15≤m<18)例6 某食堂在开晚餐前有a名学生在食堂排队等候就餐,开始卖晚餐后,仍有学生前来排队买晚餐,设学生前来排队买晚餐的人数按固定的速度增加,食堂每个窗口卖晚餐的速度也是固定的.若开放一个窗口,则需要40分钟才使排队等候的学生全部买到晚餐;若同时开放两个窗口,则需15分钟就可使排队的学生全部买到晚餐.(1)写出开放一个窗口时,开始卖晚餐后窗口卖晚餐的速度y(人/分钟)与每分钟新增加的学生人数x(人)之间的关系.(2)食堂为了提高服务质量,减少学生排队的时间,计划在8分钟内让排队等候的学生全部买到晚餐,以使后到的学生能随到随买,求至少要同时开放几个窗口?(2)设至少要同时开放n个窗口.依题意得由①得x=a/60.代入②得即a+8×a/60≤8n×a/24,即n≥17/5.n取不小于17/5的最小正整数,所以n=4.∴至少要同时开放4个窗口.例7 某校七年级春游,现有36座和42座两种客车可供选择.若只租36座客车若干辆,则正好坐满;若只租42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人.已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解:(1)设租36座的车x辆.据题意得:解得:由题意x应取8,参加春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元);方案②:租42座车7辆的费用:7×440=3080(元);方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元).所以方案③:租42座车6辆和36座车1辆最省钱.例8 大别山中学七年级的(1)(2)(3)(4)(5)五个班分在同一小组进行单循环的篮球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,(1)班的积分为9分,你知道(1)班的成绩是几胜,几平,几负吗?如果(4)班积10分,它能出线吗?解:(1)设(1)班积9分时胜x场,平y场,则解得5/2≤x<4.又x为正整数,所以x=3,y=0.故可知(1)班的成绩是3胜0平1负.(2)设(4)班积10分时胜x场,平y场,则解得3≤x<4.又x为整数,所以x=3,y=1.故(4)班3胜1平0负.经分析易知另外四个班中最多只有一个班,也能达到3胜1平0负,即积分为10分,又因小组中名次在前的两个队出线,故(4)班一定出线.【教学说明】例1~例5可让学生自主探究,交流,达成共识,得出结论;例7~例8是关于一元一次不等式组解决实际问题的综合应用,有一定的典型性与难度,教师要引导学生分析题意中隐含的相等关系与不等关系,并将其转化为数学式.四、师生互动,课堂小结一元一次不等式(组)的解法及应用是中考的必考知识点,不仅在所有的题型中都可出现,而且还渗透到其它知识点之中实行考查,所以同学们一定要重视本节的基础知识及综合演练,只有这样,才能确保后续学习顺利进行.1.布置作业:从教材“复习题9”中选取.2.完成练习册中本课时的练习.本课时的重点是让学生在充分交流的基础上建立本章的知识框架图,并反思如何运用一元一次不等式及一元一次不等式组来解决实际问题,引导学生在练习中体验本章知识的运用.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
《一元一次不等式组》教学反思七年级下册数学第九章的内容是一元一次不等式组。
在七年级上学期学生已经学习过一元一次方程的内容,且我们类比着一元一次方程的学习模式又学习了一元一次不等式,学生已经掌握了一元一次不等式的概念,解的概念,解集的概念,如何解一元一次不等式以及一元一次不等式的应用。
现在在此基础上开始学习一元一次不等式组。
我国最早的教育著作《学记》中说:“学然后知不足,教然后知困。
知不足,然后能自反也;知困,然后能自强也。
”从学习方面提出反思在学习活动中的作用。
在本周的教学过程中,系统地学习了一元一次不等式以及一元一次不等式的解法,最后利用了3节课的时间讲述了利用不等式解决实际问题的方法。
第一节课具体讲述了不等式的概念,解与解集的概念等,为本章下面的讲解打下基础,为一元一次不等式与一元一次不等式组的解法做好铺垫。
但在本节的教学内容,我觉得将表示不等式的语句转化成不等式要强化训练,如“至多“、“至少”、“不超过”,“剩余”、“不够”等等,为后面的应用题作准备,我们知道在列一元一次方程或方程组解应用题,学生学握起来非常困难,主要是等量关系难找。
而在不等式的应用题中,不等关系将更难找,很多表示不等关系的语句隐藏得较深,所以我们要提前作好这方面的准备。
接着我用两节课的时间讲解了一元一次不等式的解法。
由于一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前老师先口头复习了等式的性质,然后通过对两个不等式“7>5”、“―7<―5”左右两边同时加上、减去、乘以、除以某一个相同有数,让学生自己归纳出不等式的性质,同时和前面刚复习的等式的性质比较,对比掌握。
类比一元一次方程的解法学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后系数化为1不同,其它的步骤是相同的,强调最后一步“负变,正不变”并在这一节重视用数轴表示不等式的解集。
不等式问题的应用教案反思教案标题:不等式问题的应用教案反思教案反思:教案目标:1. 学生能够理解不等式的概念及其在实际问题中的应用。
2. 学生能够解决与不等式相关的实际问题,并能正确地表示和解释其解决过程。
3. 学生能够运用不等式解决实际问题的能力得到提升。
教学内容:1. 不等式的基本概念和性质。
2. 不等式的解法和解释。
3. 不等式在实际问题中的应用。
教学步骤:步骤一:引入在引入部分,我设计了一个引人入胜的问题,以激发学生对不等式问题的兴趣和思考。
我通过提问学生如何解决一个实际问题来引导他们思考不等式的应用。
步骤二:概念讲解和示例演示在这一步骤中,我详细讲解了不等式的定义和性质,并通过示例演示了如何解决不等式问题。
我使用了图表、图像和具体的实际问题来帮助学生理解不等式的概念和解决方法。
步骤三:练习与讨论在这一步骤中,我设计了一系列的练习题,让学生通过实际操作来巩固所学的知识。
我鼓励学生在小组中进行合作讨论,并在解答问题后进行解释和讨论。
这样可以帮助学生加深对不等式的理解,并提高他们的解决问题的能力。
步骤四:应用拓展在这一步骤中,我设计了一些更具挑战性的问题,让学生将所学的不等式知识应用到更复杂的实际问题中。
我鼓励学生独立思考和解决问题,并提供必要的指导和支持。
步骤五:总结与反思在这一步骤中,我帮助学生总结所学的知识,并引导他们思考不等式问题的应用。
我鼓励学生分享他们的思考和解决问题的方法,以促进他们的思维能力和表达能力的发展。
教学反思:通过本次教学,我发现学生对不等式问题的应用有了更深入的理解和掌握。
他们能够灵活运用不等式解决实际问题,并能够清晰地表达和解释自己的解决过程。
在教学过程中,我注重启发学生的思考和培养他们的合作能力,这有助于提高他们的学习兴趣和学习效果。
然而,我也发现一些需要改进的地方。
首先,我可以在教学设计中增加更多的实际问题,以帮助学生更好地理解不等式的应用。
其次,我可以更多地引导学生进行探究和发现,培养他们的自主学习能力。
《不等式与不等式组》教学反思
教不等式这一章,起步时总会小看它,认为只要加强和等式及方程的类比,学好这一章应该是易如反掌的事情。
每每都没有忘记采用二者类比的方法来进行教学,岂不都还算顺利,而进行到不等式的应用,解决不等式中的参数问题和不等式组与实际问题时,学生总会出现比较大面积的学困现象,平时学习不错的孩子,一考试也会成绩平平。
往往是老师讲得激情澎湃,以为把解决问题的方法和思考问题的规律都很透彻地讲清楚了,谁知学生并没有明白。
什么原因,这里面肯定出了什么问题。
首先,教师总是主观上认为学生应该学好了等式性质,能很熟练解一元一次方程,能熟练地用方程解决实际问题了,其实,很多学生淡忘了,或者学方程时根本就没有学好,由于没有坚实的“一”,老师希望能从二者的类比中反出“三”来,显然为难了学生,必然会出现让老师失望的结果。
其次,老师心情过于急切,总想一下子把自己多年的经验积累尽快传授给学生,往往会在学生缺少足够的训练,缺少自己对问题规律性的感性认识的基础上,教者就急匆匆地将解不等式、解不等式组、求特殊解,解决参数问题,解决实际问题的方法抛了出来,变成了活生生地灌输,往往教师课堂讲得多,学生实践少,好学的也只是生硬记住了方法和规律,老师希望学生能结合具体问题情境灵活应用,谈何容易?更何况,大批学生对灌注的方法理论还没留下多少痕迹呢?
其三,课堂教学和考试在标高上出现了较大差异,所学到的解决比较浅显的问题的经验,一下子解决问题条件更隐蔽,信息更复杂,知识考查更灵活,难度更深的问题显得力不从心,总会造成思考中这样或者那样的失误,考不出好成绩自在情理之中了。
其实,不等式这一章主要目标是要求学生会解决以下几类问题,教师在教学中,从第一节课起,就要结合新课讲授,有意识进行相关问题的范例讲授,并要有意识地安排针对训练,不要指望学生自己能利用基本的知识去悟到解决问题的办法。
一是不等式性质的应用。
关键点都明白是性质三的理解和应用,怎样将这一重点和难点强化肯定要讲究方法。
我想不管有多么多的方法,有效途径无外乎强化记忆,针对性强化训练,尤其是对含有字母的不等式进行变形的能力训练。
数字向字母的拓展在哪一个数学内容的学习上都是一个难点,老师说字母就是表示数的,和数字一样的处理,课学生就是认为太不一样了。
常常是具体数字的问题一学就会,一变成字母就傻眼。
知识传授时及时对规律进行字母化的符号表示,多组织几轮训练可能对问题突破有一定帮助。
字母的抽象性是一道横在小学和初中学习过渡中一道坎。
这个问题怎样突破很有研究的价值,我目前是没有找到很好的解决这一难点的好方法。
二是不等式和不等式组的解法和求它们的特殊解。
这个属于纯粹的解法问题,求特殊解只是在求出解集后将特殊对象罗列出来即可,这一类问题主要看计算功底,是全章学习的基础,要不厌其烦地进行当堂当面的过关训练,力求人人过关,计算能力薄弱的要贯穿始终,
甚至可以不分白天黑夜专门突破,解法不能过关,谈其他问题都是空谈,即使方法会了,下笔一算就错,也做不出有效工来。
三是求参数的值或者参数取值范围的问题。
常见的类型主要是三种,一是方程(组)和不等式的联姻问题。
常常是已知一个含有字母系数的方程(组)的解满足什么不等关系,求其中字母的取值范围或者字母的特殊值;它的解决是套路化的,先解方程(组),然后由题意列不等式(组),解之可得结果。
这里的难点依然是对字母的处理问题,学生往往不会解字母系数的方程(组),导致第一步就进行不下去,在这里老师要分散难点,专门进行一下这类方程的解法指导和专项训练。
二是告诉含有字母系数的不等式(组)的解集,求字母参数的值,让学生明白其中的相等关系就行了。
举几个例子,针对练习一下,这个容易解决。
三是已知含有字母系数的不等式组有几个整数解,求参数的取值范围。
这里面涉及数形结合理解题意,确定出整数解,然后在确定出解集左端点或者右端点的范围,进而列出不等式求出解集。
当含有参数的不等式解出来,解集是一个比较复杂的代数式,这就要求学生能把它看成一个字母,也就是要有整体思想,这个有点难,总是会受到原不等式未知数取值范围的影响,这是不等式问题中的一个难点。
一般的解题规律是,由于此类问题中不等式组解集的数轴表示一定是一条线段,并且一般会告诉你左端点或者右端点,另一个端点值用所含参数表示,如果是是求右端点的范围,不等式的最大整数解是a,那么右端点值得范围就在a和a+1之间,只能等于其中的一个值,如果是实心点则等于a,是空心点则包含a+1,这个值可
以通过验证的方法确定,从而列出关于不等式组求出参数的取值范围,结果一定是一个半开半闭区间。
同样,如果是是求左端点值的范围,不等式的最小整数解是a,那么右端点值得范围就在a和a-1之间,只能等于其中的一个值,如果是实心点则等于a,是空心点则包含a-1,这个值可以通过验证的方法确定,从而列出关于不等式组求出参数的取值范围,结果也一定是一个半开半闭区间。
解决这一问题需要学生会解含有参数的不等式,会确定整数解的对象,能准确确定所列不等式中那个该包含等号。
四是不等式(组)和实际问题,这是全掌知识学习的落脚点,也是不等式知识应用价值的最佳体现。
常见类型有不等式的应用,常常问题中只有一个不等关系,如选择消费方式更省钱问题,考试分数达标问题,只要能列出代数式表示相关量,读懂表示不等关系的关键词的意思,不能解决,当然检验时别忘了结合实际确定所设对象自己的取值要求,以免造成疏漏。
其次是不等式组的应用问题。
两种材料生产两种产品问题、两种运输工具运送两种货物问题、两不等关系限制问题如两种商品进价不超过多少,获利不少于多少,数量又怎样的不等关系,这样的问题一般都会有两个或以上的不等关系;分物品问题,就是要辨析清楚关键句的含义,一般情况下,分得的物品个数只能是自然数,只要是说“不到或不足a个”就含有个数大于或等于零的隐含条件,往往学生会在等号上面纠结。
其三是方程和不等式的混合组问题,涉及二元一次不等式时,一定要善于利用两个未知数之间的相
等关系进行消元处理转化为一元一次不等式来解决,这就要求学生能够将二元一次方程组的知识进行有效迁移。
应用问题有一个根子上的问题,就是能熟练用含有所设的未知数的代数式表示问题中相关的量,而这个问题显然在整式这一章没引起足够的重视,训练力度欠缺,不能讲实际问题中的文字语言用数学式子“翻译”成为很多不会解应用题学生的共同障碍。
不等式这一章难度比较大,需要教师做好充分准备后再去上课,因为课本明显高度不够,宽度也不够,需要教师在心中有数的情况下,进行有效拓展,力求讲解不含糊,归类要明晰,方法要具体,可操作性强,只要指导得法,难点是可以有效突破的。