高一数学必修一综合训练试卷2
- 格式:doc
- 大小:394.50 KB
- 文档页数:8
2023-2024学年高一上数学必修一第1章综合测试卷
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={-1,0,1,2},集合B={y|y=2x-3,x∈A},则A∩B=(B)
A.{-1,0,1}B.{-1,1}
C.{-1,1,2}D.{0,1,2}
解析:由题可得集合B={-5,-3,-1,1},所以A∩B={-1,1},故选B.
2.命题“对任意x∈R,都有x2≥0”的否定为(D)
A.对任意x∈R,都有x2≥0B.不存在x∈R,使得x2<0
C.存在x∈R,使得x2≥0D.存在x∈R,使得x2<0
3.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD 为菱形”是“AC⊥BD”的(A)
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
解析:若四边形ABCD为菱形,则菱形的对角线互相垂直,即“四边形ABCD为菱形”⇒“AC⊥BD”;但是“AC⊥BD”推不出“四边形ABCD为菱形”,例如对角线垂直的等腰梯形.所以“四边形ABCD 为菱形”是“AC⊥BD”的充分不必要条件,故选A.
4.设集合U={1,2,3,4,5,6},M={1,2,3},N={3,4,5},则(∁U M)∩(∁U N)=(D)
A.{1,2,3,4,5}B.{1,2,4,5,6}
C.{1,2,6}D.{6}
解析:由题意∁U M={4,5,6},∁U N={1,2,6},则(∁U M)∩(∁U N)=
第1页共9页。
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a =1.70.3,b =0.31.7,c =log 0.31.7,则 a ,b ,c 的大小关系为 ( ) A . a <b <c B . c <b <a C . c <a <b D . b <a <c2. 已知 m ∈R ,“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 已知 sin (α+β)=14,sin (α−β)=13,则 tanα:tanβ= ( )A . −17B . 17C . −7D . 74. 根据统计,一名工人组装第 x 件某产品所用的时间(单位:分钟)为 f (x )=√x x <A√Ax ≥A (A ,c为常数),已知工人组装第 4 件产品用时 30 min ,组装第 A 件产品用时 15 min ,那么 c 和 A 的值分别是 ( ) A . 75,25 B . 75,16 C . 60,25 D . 60,165. 已知函数 f (x )={ln (x +1)+m,x ≥0ax −b +1,x <0(m <−1),对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t ,若关于 x 的方程 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,则 a 的取值范围是 ( ) A . (−4,−2) B . (−1,0)C . (−2,−1)D . (−4,−1)∪(−1,0)6. 已知 a >0 且 a ≠1,下列说法中正确的是 ( ) ①若 M =N ,则 log a M =log a N ; ②若 log a M =log a N ,则 M =N ; ③若 log a M 2=log a N 2,则 M =N ; ④若 M =N ,则 log a M 2=log a N 2. A .①③B .②④C .②D .①②③④7.定义在(−1,1]上的函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若函数g(x)=∣∣f(x)−12∣∣−mx−m+1在(−1,1]内恰有3个零点,则实数m的取值范围是( )A.(32,+∞)B.(32,258)C.(32,2516)D.(23,34)8.实数α,β为方程x2−2mx+m+6=0的两根,则(α−1)2+(β−1)2的最小值为( )A.8B.14C.−14D.−2549.若a>b>0,c<d<0,则一定有( )A.ac −bd>0B.ac−bd<0C.ad>bcD.ad<bc10.一个半径为R的扇形,它的周长是4R,则这个扇形所含弓形的面积为( )A.12R2B.12R2Ssin1cos1C.12(1−sin1cos1)R2D.(1−sin1cos1)R2二、填空题(共10题)11.已知△ABC中,sin(A+B)=45,cosB=−23,则sinB=,cosA=.12.函数y=lg(x2+2x−a)的定义域为R,则实数a的取值范围是.13.已知函数y=f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内零点的个数的最小值是个.14.一个驾驶员喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,规定驾驶员血液中的酒精含量不得超过0.09mg/mL,那么这个驾驶员至少要经过小时才能开车.(精确到1小时,参考数据lg2≈0.30,lg3≈0.48)15.将函数y=√4+6x−x2−2(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则tanα的最大值为.16.设集合A为含有三个元素的集合,集合B={z∣z=x+y,x,y∈A,x≠y},若B={log 26,log 210,log 215},则集合 A = .17. 已知 p:∣x −4∣>6,q:x 2−2x +1−a 2>0(a >0),若 p 是 q 的充分不必要条件,则实数 a的取值范围为 .18. 已知 α 为第二象限角,sinα+cosα=12,则 cos2α= .19. 定义在 R 上的函数 f (x ) 满足 f (x +2)=f (x )−2,当 x ∈(0,2] 时,f (x )={x 2−x −6,x ∈(0,1]−2x−1−5,x ∈(1,2],若 x ∈(−6,−4] 时,关于 x 的方程 af (x )−a 2+2=0(a >0) 有解,则实数 a 的取值范围是 .20. 已知函数 f (x )={x +2x −3,x ≥1lg (x 2+1),x <1,则 f(f (−3))= ,f (x ) 的最小值是 .三、解答题(共10题)21. 已知一扇形的周长为 40 cm ,当它的半径和圆心角取何值时,能使扇形的面积最大,最大面积是多少?22. 已知实数 a ,b 是常数,函数 f (x )=(√1+x +√1−x +a)(√1−x 2+b).(1) 求函数 f (x ) 的定义域,判断函数的奇偶性,并说明理由;(2) 若 a =−3,b =1,设 t =√1+x +√1−x ,记 t 的取值组成的集合为 D ,则函数 f (x )的值域与函数 g (t )=12(t 3−3t 2)(t ∈D ) 的值域相同.试解决下列问题:(i )求集合 D ;(ii )研究函数 g (t )=12(t 3−3t 2) 在定义域 D 上是否具有单调性?若有,请用函数单调性定义加以证明:若没有,请说明理由.并利用你的研究结果进一步求出函数 f (x ) 的最小值.23. 对于定义域为 R 的函数 g (x ),若存在正常数 T ,使得 cosg (x ) 是以 T 为周期的函数,则称g (x ) 为余弦周期函数,且称 T 为其余弦周期.已知 f (x ) 是以 T 为余弦周期的余弦周期函数,其值域为 R .设 f (x ) 单调递增,f (0)=0,f (T )=4π. (1) 验证 g (x )=x +sin x3 是以 6π 为周期的余弦周期函数;(2) 设 a <b ,证明对任意 c ∈[f (a ),f (b )],存在 x 0∈[a,b ],使得 f (x 0)=c ;(3) 证明:“u 0 为方程 cosf (x )=1 在 [0,T ] 上的解,”的充要条件是“u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解”,并证明对任意 x ∈[0,T ],都有 f (x +T )=f (x )+f (T ).24. 已知函数 f (x )=(sinx +cosx )2+2cos 2x −1.(1) 求 f (x ) 的最小正周期;(2) 求 f (x ) 在 [0,π2] 上的单调区间.25. 已知函数 f (x )=a +b x (b >0,b ≠1) 的图象过点 (1,4) 和点 (2,16).(1) 求 f (x ) 的表达式; (2) 解不等式 f (x )>(12)3−x2;(3) 当 x ∈(−3,4] 时,求函数 g (x )=log 2f (x )+x 2−6 的值域.26. 已知函数 f (x ) 的定义域为 D ,若对任意的 x 1∈D ,都存在 x 2∈D ,满足 f (x 1)=1f (x 2),则称函数 f (x ) 为“L 函数”.(1) 判断函数 f (x )=sinx +32,x ∈R 是否为“L 函数”,并说明理由;(2) 已知“L 函数”f (x ) 是定义在 [a,b ] 上的严格增函数,且 f (a )>0,f (b )>0,求证:f (a )⋅f (b )=1.27. 记函数 f (x ) 的定义域为 D ,如果存在实数 a ,b 使得 f (a −x )+f (a +x )=b 对任意满足a −x ∈D 且 a +x ∈D 的 x 恒成立,则称 f (x ) 为 Ψ 函数. (1) 设函数 f (x )=1x −1,试判断 f (x ) 是否为 Ψ 函数,并说明理由; (2) 设函数 g (x )=12x +t ,其中常数 t ≠0,证明 g (x ) 是 Ψ 函数;(3) 若 ℎ(x ) 是定义在 R 上的 Ψ 函数,且函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称,试判断 ℎ(x ) 是否为周期函数?并证明你的结论.28. 已知函数 f (x ) 和 g (x ) 的图象关于原点对称,且 f (x )=x 2+2x .(1) 求函数 g (x ) 的解析式;(2) 若 ℎ(x )=g (x )−λf (x )+1 在区间 [−1,1] 上是增函数,求实数 λ 的取值范围.29. 解答题.(1) 已知 cosα=17,cos (α+β)=−1114,α,β 都是锐角,求 cosβ 的值;(2) 已知 π2<β<α<34π,cos (α−β)=1213,sin (α+β)=−35,sin2α.30.用五点法作出下列函数在[−2π,0]上的图象.(1) y=1−sinx;(2) y=sin(π+x)−1.答案一、选择题(共10题) 1. 【答案】B【知识点】指数函数及其性质、对数函数及其性质2. 【答案】B【解析】若函数 y =f (x )=2x +m −1 有零点,则 f (0)=1+m −1=m <1, 当 m ≤0 时,函数 y =log m x 在 (0,+∞) 上为减函数不成立,即充分性不成立,若 y =log m x 在 (0,+∞) 上为减函数,则 0<m <1,此时函数 y =2x +m −1 有零点成立,即必要性成立,故“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的必要不充分条件. 【知识点】指数函数及其性质、充分条件与必要条件、对数函数及其性质3. 【答案】C【解析】 sin (α+β)=sinαcosβ+cosαsinβ=14,sin (α−β)=sinαcosβ−cosαsinβ=13, 所以 sinαcosβ=724,cosαsinβ=−124,所以 tanα:tanβ=sinαcosβcosαsinβ=−7. 【知识点】两角和与差的正切4. 【答案】D【知识点】函数的模型及其实际应用5. 【答案】A【解析】由题意可知 f (x ) 在 [0,+∞) 上单调递增,值域为 [m,+∞),因为对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t , 所以 f (x ) 在 (−∞,0) 上是减函数,值域为 (m,+∞), 所以 a <0,且 −b +1=m ,即 b =1−m . 因为 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,所以 0<f (m2)<−m ,又 m <−1,所以 0<am 2<−m ,即 0<(a2+1)m <−m ,所以 −4<a <−2,所以则 a 的取值范围是 (−4,−2).【知识点】对数函数及其性质、函数的零点分布6. 【答案】C【解析】对于①,当 M =N ≤0 时,log a M ,log a N 都没有意义,故不成立; 对于②,log a M =log a N ,则必有 M >0,N >0,M =N ,故成立;对于③,当 M ,N 互为相反数且不为 0 时,也有 log a M 2=log a N 2,但此时 M ≠N ,故不成立; 对于④,当 M =N =0 时,log a M 2,log a N 2 都没有意义,故不成立. 综上,只有②正确. 【知识点】对数的概念与运算7. 【答案】C【解析】当 x ∈(−1,0) 时,x +1∈(0,1),f (x )=1f (x+1)−1=1x+1−1,若函数 g (x )=∣∣f (x )−12∣∣−mx −m +1 在 (−1,1] 内恰有 3 个零点,即方程 ∣∣f (x )−12∣∣−mx −m +1=0 在 (−1,1] 内恰有 3 个根,也就是函数 y =∣∣f (x )−12∣∣ 与 y =mx +m −1 的图象有三个不同交点,作出函数图象如图:由图可知,过点 (−1,−1) 与点 (−13,0) 的直线的斜率为 32;设过点 (−1,1),且与曲线 y =1x+1−1−12=−3x−12(x+1) 相切的切点为 (x 0,y 0), 则 yʹ∣x=x 0=−1(x 0+1)2=y 0−1x0−(−1), 又因为 y 0=−3x 0−12(x 0+1),解得 {x 0=−15,y 0=−14,则切点为 (−15,−14).所以切线的斜率为 k =1+14−1−(−15)=−2516,由对称性可知,过点 (−1,−1) 与曲线 ∣∣f (x )−12∣∣ 在 (−1,0) 上相切的切线的斜率为 2516.所以使函数 y =∣∣f (x )−12∣∣与 y =mx +m −1 的图象有三个不同交点的 m 的取值范围为(32,2516).【知识点】函数的零点分布、利用导数求函数的切线方程8. 【答案】A【解析】因为 Δ=(2m )2−4(m +6)≥0, 所以 m 2−m −6≥0, 所以 m ≥3 或 m ≤−2.而(α−1)2+(β−1)2=α2+β2−2(α+β)+2=(α+β)2−2αβ−2(α+β)+2=(2m )2−2(m +6)−2(2m )+2=4m 2−6m −10=4(m −34)2−494,因为 m ≥3,或 m ≤−2,所以当 m =3 时,(α−1)2+(β−1)2 的最小值为 8,故选A . 【知识点】函数的最大(小)值9. 【答案】D【解析】因为 c <d <0,所以 0<−d <−c , 又 0<b <a ,所以 −bd <−ac ,即 bd >ac , 又因为 cd >0,所以 bdcd >accd ,即 bc >ad . 【知识点】不等式的性质10. 【答案】D【解析】 l =4R −2R =2R ,α=lR =2R R=2,可得:S 扇形=12lR =12×2R ×R =R 2,可得:S 三角形=12×2Rsin1×Rcos1=sin1⋅cos1⋅R 2,可得:S弓形=S扇形−S三角形=R2−sin1⋅cos1⋅R2 =(1−sin1cos1)R2.【知识点】弧度制二、填空题(共10题)11. 【答案】√53;6+4√515【知识点】两角和与差的余弦12. 【答案】a<−1【知识点】函数的定义域的概念与求法、对数函数及其性质13. 【答案】7【知识点】函数的零点分布、函数的周期性14. 【答案】5【解析】设经过n小时后才能开车,由题意得0.3(1−0.25)n≤0.09,所以(34)n≤0.3,所以nlg34≤lg310<0,所以n≥lg3−1lg3−2lg2=0.48−10.48−0.6=133,解得n≥133,故至少经过5小时才能开车.故答案为:5.【知识点】函数模型的综合应用15. 【答案】23【解析】将函数变形为方程,可得(x−3)2+(y+2)2=13,x∈[0,6],y≥0,其图象如图所示.过点O作该图象所在圆M的切线OA,将该函数的图象绕原点逆时针旋转时,其最大的旋转角为∠AOy,此时曲线C都是一个函数的图象,因为k OA=−1k OM =32,所以tan∠AOy=23.【知识点】函数的相关概念16. 【答案】 {1,log 23,log 25}【解析】设 A ={a,b,c }(a <b <c ),则 {a +b =log 26,b +c =log 215,c +a =log 210,所以 a +b +c =log 230,所以 a =1,b =log 23,c =log 25, 所以 A ={1,log 23,log 25}. 【知识点】元素和集合的关系17. 【答案】 0<a ≤3【知识点】充分条件与必要条件18. 【答案】 −√74【解析】因为 sinα+cosα=12,所以 1+2sinαcosα=14,所以 2sinαcosα=−34,则 (cosα−sinα)2=1−2sinαcosα=74. 又因为 α 为第二象限角,所以 cosα<0,sinα>0, 则 cosα−sinα=−√72,所以cos2α=cos 2α−sin 2α=(cosα+sinα)(cosα+sinα)=12×(−√72)=−√74. 【知识点】二倍角公式19. 【答案】 1≤a ≤√2【解析】因为函数 f (x ) 满足 f (x +2)=f (x )−2,所以若 x ∈(−6,−4] 时,则 x +2∈(−4,−2],x +4∈(−2,0], 若 x +6∈(0,2],即若 x ∈(−6,−5] 时, 则 x +2∈(−4,−3],x +4∈(−2,−1], 若 x +6∈(0,1],则f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6+(x +6)2−(x +6)−6=x 2+11x +30,若 x ∈(−5,−4] 时,则 x +2∈(−3,−2],x +4∈(−1,0], 若 x +6∈(1,2],则 f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6−2x+6−1−5=1−2x+5,由 af (x )−a 2+2=0(a >0) 得 af (x )=a 2−2(a >0), 即 f (x )=a −2a (a >0).作出函数 f (x ) 在 x ∈(−6,−4] 的图象如图. 在函数的值域为 −1≤f (x )≤0, 由 −1≤a −2a≤0,得 {a −2a ≥−1,a −2a ≤0,即 {a 2+a −2≥0,a 2−2≤0, 即 {a ≥1 或 a ≤−2,−√2≤a ≤√2,因为 a >0,所以 1≤a ≤√2.【知识点】函数的零点分布20. 【答案】 0 ; 2√2−3【解析】因为 f (−3)=lg [(−3)2+1]=lg10=1,所以 f(f (−3))=f (1)=1+2−3=0.当x ≥1 时,x +2x −3≥2√x ⋅2x −3=2√2−3,当且仅当 x =2x ,即 x =√2 时等号成立,此时 f (x )min =2√2−3<0;当 x <1 时,lg (x 2+1)≥lg (02+1)=0,此时 f (x )min =0.所以f(x)的最小值为2√2−3.【知识点】函数的最大(小)值、分段函数三、解答题(共10题)21. 【答案】设扇形的圆心角为θ(0<θ<2π),半径为r,弧长为l,面积为S,则l+2r=40,所以l=40−2r.S=12lr=12(40−2r)r=20r−r2=−(r−10)2+100.所以当r=10cm时,扇形的面积最大,最大值为100cm2,此时θ=lr =40−2×1010=2.【知识点】弧度制22. 【答案】(1) 因为实数a,b是常数,函数f(x)=(√1+x+√1−x+a)(√1−x2+b),所以由{1+x≥0,1−x≥0,1−x2≥0.解得−1≤x≤1.所以函数的定义域是[−1,1].对于任意x∈[−1,1],有−x∈[−1,1],且f(−x)=(√1+(−x)+√1−(−x)+a)(√1−(−x)2+b)=(√1−x+√1+x+a)(√1−x2+b)=f(x),即f(−x)=f(x)对x∈[−1,1]都成立.(又f(x)不恒为零)所以,函数f(x)是偶函数.(该函数是偶函数不是奇函数也可以)(2) 因为a=−3,b=1,所以f(x)=(√1+x+√1−x−3)(√1−x2+1).设t=√1+x+√1−x(−1≤x≤1),则t2=2+2√1−x2.所以0≤√1−x2≤1,2≤t2≤4(t≥0),即√2≤t≤2.所以D=[√2,2].于是,g(t)=12(t3−3t2)的定义域为D=[√2,2].对于任意的t1,t2∈D,且t1<t2,有g(t1)−g(t2)=12[t13−3t12−(t23−3t22)]=12[(t1−t2)(t12+t1t2+t22)−3(t1−t2)(t1+t2)]=12(t1−t2)[(t12−2t1)+(t22−2t2)+(12t1t2−t1)+(12t1t2−t2)]=12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)].又t1>0,t2>0,t1−t2<0,且t1−2≤0,t2−2≤0(这里二者的等号不能同时成立),所以12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)]>0,即g(t1)−g(t2)>0,g(t1)>g(t2).所以函数g(t)在D上是减函数.所以(g(t))min =g(2)=12×(23−3×22)=−2.又因为函数f(x)的值域与函数g(t)=12(t3−3t2)的值域相同,所以函数f(x)的最小值为−2.【知识点】函数的值域的概念与求法、函数的奇偶性23. 【答案】(1) g(x)=x+sin x3,所以cosg(x+6π)=cos(x+6π+sin x+6π3)=cos(x+sin x3)=cosg(x),所以g(x)是以6π为周期的余弦周期函数.(2) 因为f(x)的值域为R;所以存在x0,使f(x0)=c;又c∈[f(a),f(b)],所以f(a)≤f(x0)≤f(b),而f(x)为增函数;所以a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3) 若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;所以cosf(u0)=1,且0≤u0≤T;所以u0为方程cosf(x)=1在[0,T]上的解;所以“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,所以显然成立;②当x=T时,cosf(2T)=cosf(T)=1;所以f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,所以k1>2;(1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;所以f(T)<f(x0+T)<f(2T);所以4π<2k2π<6π;所以2<k2<3,无解;(2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;(3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),⋯,f(x n),(x1<x2<⋯<x n);则f(x1+T),f(x2+T),⋯,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,⋯,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;所以f(x i+T)=f(x i)+4π=f(x i)+f(T);所以综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【知识点】Asin(ωx+ψ)形式函数的性质、二倍角公式24. 【答案】(1) 由已知得,f(x)=sin2x+cos2x+1=√2sin(2x+π4)+1.函数的最小正周期T=2π2=π.(2) 由2kπ−π2≤2x+π4≤2kπ+π2(k∈Z)得,kπ−3π8≤x≤kπ+π8(k∈Z),又x∈[0,π2],所以x∈[0,π8],所以f(x)的单调递增区间为[0,π8],由2kπ+π2−≤2x+π4≤2kπ+3π2(k∈Z)得,kπ+π8≤x≤kπ+5π8(k∈Z),又x∈[0,π2],所以x∈[π8,π2 ],所以f(x)的单调递减区间为[π8,π2 ].【知识点】Asin(ωx+ψ)形式函数的性质25. 【答案】(1) 由题意知 {4=a +b,16=a +b 2,解得 {a =0,b =4 或 {a =7,b =−3(舍去), 所以 f (x )=4x . (2) f (x )>(12)3−x2,所以 4x>(12)3−x2,所以 22x >2x 2−3, 所以 2x >x 2−3, 解得 −1<x <3,所以不等式的解集为 (−1,3). (3) 因为g (x )=log 2f (x )+x 2−6=log 24x +x 2−6=2x +x 2−6=(x +1)2−7,因为 x ∈(−3,4],所以当 x =−1 时,g (x )min =−7, 当 x =4 时,g (x )max =18,所以函数 g (x )=log 2f (x )+x 2−6 的值域为 [−7,18].【知识点】函数的解析式的概念与求法、指数函数及其性质、函数的值域的概念与求法26. 【答案】(1) 不是; (2) 反证法,略.【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) f (x ) 的定义域为 {x∣ x ≠0}.设 f (x )=1x −1 是为 Ψ 函数,则存在实数 a ,b ,使得 f (a −x )+f (a +x )=b 对任意满足 a −x ∈D 且 a +x ∈D 的 x 恒成立, 即 1a−x +1a+x −2=b ,所以 (b +2)(a 2−x 2)=2a 恒成立,所以 a =0,b =−2. 所以存在 a =0,b =−2,使得 f (a −x )+f (a +x )=b 对任意 x ≠±a 恒成立. 所以 f (x )=1x −1 是 Ψ 函数.(2) 若 g (a +x )+g (a −x )=12a−x +t +12a+x +t =b 恒成立, 则 2a+x +2a−x +2t =b (2a+x +t )(2a−x +t ) 恒成立, 即 (1−bt )(2a+x +2a−x )=b (22a +t 2)−2t 恒成立,所以 1−bt =0,b (22a +t 2)−2t =0,又 t ≠0,所以 b =1t ,a =log 2∣t∣. 所以存在实数 a ,b 使得 g (x ) 是 Ψ 函数.(3) 因为函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称, 所以 ℎ(m −x )=ℎ(m +x ),所以当 m ≠a 时, ℎ(x +2m −2a )=ℎ[m +(x +m −2a )]=ℎ[m −(x +m −2a )]=ℎ(2a −x )=ℎ(a +(a −x )),又 ℎ(a +x )+ℎ(a −x )=b ,所以 ℎ(a +(a −x ))=b −ℎ[a −(a −x )]=b −ℎ(x ),所以 ℎ(x +2m −2a )=b −ℎ(x ),ℎ(x )=b −ℎ(x +2m −2a )=ℎ(x +2m −2a +2m −2a )=ℎ(x +4m −4a ).所以 ℎ(x ) 为周期函数,周期为 4m −4a .若 m =a ,则 ℎ(a −x )=ℎ(a +x ),且 ℎ(a −x )=b −ℎ(a +x ), 所以 ℎ(a +x )=b2,显然 ℎ(x ) 是周期函数. 综上,ℎ(x ) 是周期函数.【知识点】函数的对称性、函数的周期性、幂函数及其性质、指数函数及其性质28. 【答案】(1) g (x )=−x 2+2x ,(2) ℎ(x )=−(1+λ)x 2+2(1−λ)x +1,当 λ=−1 时,ℎ(x )=4x +1 在 [−1,1] 上显然为增函数,当 λ≠−1 时,可得 {1+λ>0,1−λ1+λ≥1, 或 {1+λ>0,1−λ1+λ≤−1,⇒−1<λ≤0 或 λ<−1,综上所述,所求 λ 的取值范围是 λ=−1 或 −1<λ≤0 或 λ<−1,即 λ≤0.【知识点】函数的解析式的概念与求法、函数的单调性29. 【答案】(1) 由题知,sinα=4√37,sin (α+β)=5√314,所以,cosβ=cos (α+β−α)=cos (α+β)cosα+sin (α+β)sinα=12. (2) 因为 0<α−β<π4,cos (α−β)=1213,所以 sin (α−β)=513,因为 π<α+β<3π2,sin (α+β)=−35,所以 cos (α+β)=−45,所以 sin2α=sin [(α−β)+(α+β)]=sin (α−β)cos (α+β)+cos (α−β)sin (α+β)=−5665. 【知识点】两角和与差的正弦、两角和与差的余弦30. 【答案】(1) 找出关键的五个点,列表如下: x −2π−3π2−π−π2y =sinx 010−10y =1−sinx10121描点作图,如图所示.(2) 由于 y =sin (x +π)−1=−sinx −1,找出关键的五个点,列表如下: x −2π−3π2−π−π20y =sinx 010−10y =−sinx −1−1−2−10−1描点作图,如图所示. 【知识点】正弦函数的图象。
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a 1,a 2,b 1,b 2 均为非零实数,不等式 a 1x +b 1<0 与不等式 a 2x +b 2<0 的解所组成的集合分别为集合 M 和集合 N ,则“a 1a 2=b 1b 2”是“M =N ”的 ( )A .充分不必要条件B .既不充分也不必要条件C .充要条件D .必要不充分条件2. 下面各组角中,终边相同的是 ( ) A . 390∘,690∘ B . −330∘,750∘ C . 480∘,−420∘D . 3000∘,−840∘3. 若对于任意实数 x 总有 f (−x )=f (x ),且 f (x ) 在区间 (−∞,−1] 上是增函数,则 ( ) A . f (−32)<f (−1)<f (2) B . f (−1)<f (−32)<f (2) C . f (2)<f (−1)<f (−32)D . f (2)<f (−32)<f (−1)4. 函数 f (x )=(x +sinx )cosx 的部分图象大致为 ( )A .B .C.D.5.集合A={x∣ −1<x<3},B={x∣ x2+x−6<0,x∈Z},则A∩B=( )A.(−1,2)B.(−3,3)C.{0,1}D.{0,1,2}6.已知集合A={x∣ 1≤x<3},B={x∣ x2≤4},则A∩B=( )A.{x∣ 1≤x<2}B.{x∣ −2≤x<1}C.{x∣ 1≤x≤2}D.{x∣ 1<x≤2}7.已知cos(π2+α)=√33(−π2<α<π2),则sin(α+π3)=( )A.3√2−√36B.3√2+√36C.√6−36D.√6+368.设集合M={x∈R∣ 0≤x≤2},N={x∈R∣ −1<x<1},则M∩N=( )A.{x∣ 0≤x≤1}B.{x∣ 0≤x<1}C.{x∣ 1<x≤2}D.{x∣ −1<x≤2}9. 式子 a√−1a 经过计算可得 ( ) A . √−a B . √a C . −√a D . −√−a10. 设集合 A ={x∣ −1<x ≤1},B ={−1,0,1,2},则 A ∩B = ( )A . {−1,0,1}B . {−1,0}C . {0,1}D . {1,2}二、填空题(共10题)11. 已知集合 A =(−2,3),B =[−1,4],则集合 A ∩B = .12. 已知 a >0,b >0,则 a 2+4+4ab+4b 2a+2b的最小值为 .13. 若 (3−2m )12>(m +1)12,则实数 m 的取值范围为 .14. 若 cosα=13,则 sin (α−π2)= .15. 若角 α 终边经过点 P (−1,2),则 tanα= .16. 二次函数 y =ax 2+bx +c (x ∈R ) 的部分对应值如表:x−3−2−101234y 60−4−6−6−406则不等式 ax 2+bx +c >0 的解集是 .17. 已知 a >b >0,则 a +4a+b +1a−b 的最小值为 .18. 若 π2<α<π 且 cosα=−13,则 tanα= .19. 如果 α∈(π2,π),且 sinα=45,那么 sin (α+π4)+cos (α+π4)= .20. 已知函数 f (x )=1+∣x∣−x 2(−2<x ≤2).用分段函数的形折表示该函数为 ; 该函数的值域为 .三、解答题(共10题)21.画出下列函数的图象,并根据图象说出函数y=f(x)的单调区间及在每一单调区间上的单调性.(1) y=x2−5x−6;(2) y=9−x2.22.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1) 对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a>0,且a≠1,M>0,那么log a M n=nlog a M(n∈R).(2) 请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值.(3) 因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注:lg2019≈3.305).23.回答下列问题:(1) 将log232=5化成指数式;(2) 将3−3=127化成对数式;(3) 已知log4x=−32,求x;(4) 已知log2(log3x)=1,求x.24.写出下列命题的否定,并判断其否定的真假:(1) p:不论m取何实数,方程x2+mx−1=0必有实根;(2) ∀x,y∈R,x2+y2+2x−4y+5=0.25.已知集合A={x∣2−a≤x≤2+a},B={x∣∣x≤1或x≥4}.(1) 当a=3时,求A∩B;(2) 若A∩B=∅,求实数a的取值范围.26.已知函数f(x)=log a(x+2)−1,其中a>1.(1) 若f(x)在[0,1]上的最大值与最小值互为相反数,求a的值.(2) 若f(x)的图象不经过第二象限,求a的取值范围.27.求2π3的六个三角比的值.28.子集(1)对于两个集合A和B,如果集合A中都属于集合B(若a∈A,则a∈B),那么集合A叫做集合B的子集,记作或,读作“ ”或“ ”.可用文氏图表示为(2)子集的性质:①A⊆A,即任何一个集合是它本身的子集;②∅⊆A,即空集是任何集合的子集.问题:集合A是集合B的子集的含义是什么?,b},Q={0,a+b,b2},且P=Q.求a2018+b2019的值.29.已知集合P={1,ab30.已知集合A={x∣ 1≤x≤2},B={x∣ 1≤x≤a,a≥1}.(1) 若A⫋B,求a的取值范围;(2) 若B⊆A,求a的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】取 a 1=b 1=1,a 2=b 2=−1,则可得 M =(−∞,−1),N =(−1,+∞),M ≠N ,因此不是充分条件,而由 M =N ,显然可以得到 a 1a 2=b 1b 2,所以是必要条件.故选D .【知识点】充分条件与必要条件2. 【答案】B【解析】因为 390∘=360∘+30∘,690∘=720∘−30∘, 所以 390∘ 与 690∘ 终边不同,A 错误;因为 −330∘=−360∘+30∘,750∘=720∘+30∘, 所以 −330∘ 与 750∘ 终边相同,B 正确; 因为 480∘=360∘+120∘,−420∘=−360∘−60∘, 所以 480∘ 与 −420∘ 终边不同,C 错误;因为 3000∘=2880∘+120∘,−840∘=−720∘−120∘, 所以 3000∘ 与 −840∘ 终边不同,D 错误. 故选B .【知识点】任意角的概念3. 【答案】D【解析】由 f (−x )=f (x ) 可得 f (x ) 为偶函数,且在 (−∞,1] 上单增, 由偶函数性质可知其在区间 [1,+∞) 上, 因为 f (−32)=f (32),f (−1)=f (1), 所以 f (2)<f (−32)<f (−1). 【知识点】函数的单调性4. 【答案】D【解析】因为函数 f (x ) 为奇函数,故排除B ,又因为当 x ∈(0,π2) 时,f (x )>0,当 x ∈(π2,π)时,f (x )<0,故排除C ,A . 【知识点】函数的奇偶性、函数图象5. 【答案】C【解析】 B ={x∣ x 2+x −6<0,x ∈Z }={x∣ −3<x <2,x ∈Z }={−2,−1,0,1},又 A ={x∣ −1<x <3}, 所以 A ∩B ={0,1},故选C .【知识点】交、并、补集运算6. 【答案】C【知识点】二次不等式的解法、交、并、补集运算7. 【答案】A【解析】因为cos(π2+α)=−sinα=√33,所以sinα=−√33,所以−π2<α<0,所以cosα=√63,所以sin(α+π3)=sinαcosπ3+cosαsinπ3 =−√33×12+√63×√32=3√2−√36,故选A.【知识点】两角和与差的正弦8. 【答案】B【解析】因为M={x∈R∣ 0≤x≤2},N={x∈R∣ −1<x<1},所以M∩N={x∣ 0≤x<1}.【知识点】交、并、补集运算9. 【答案】D【解析】因为√−1a 成立,所以a<0,所以a√−1a=−√−a2a=−√−a.故选D.【知识点】幂的概念与运算10. 【答案】C【解析】A∩B={0,1}.【知识点】交、并、补集运算二、填空题(共10题)11. 【答案】[−1,3)【知识点】交、并、补集运算12. 【答案】 4【解析】由a 2+4+4ab+4b 2a+2b=(a+2b )2+4a+2b=(a +2b )+4a+2b ,因为 a >0,b >0, 所以 a +2b >0,4a+2b >0, 所以 (a +2b )+4a+2b≥2√(a +2b )⋅4a+2b=4,当且仅当 a +2b =2 时取等号,即a 2+4+4ab+4b 2a+2b的最小值为 4.【知识点】均值不等式的应用13. 【答案】 [−1,23)【知识点】幂函数及其性质14. 【答案】 −13【知识点】诱导公式15. 【答案】 −2【知识点】任意角的三角函数定义16. 【答案】 (−∞,−2)∪(3,+∞)【知识点】二次不等式的解法17. 【答案】 3√2【解析】 4a+b +1a−b =22a+b +12a−b ≥(2+1)2(a+b )+(a−b )=92a , 所以 a +4a+b +1a−b≥a +92a≥2√a ⋅92a=3√2,当且仅当 {2a+b=1a−b,a =92a,即 a =3√22,b =√22时等号成立.【知识点】均值不等式的应用18. 【答案】 −2√2【知识点】同角三角函数的基本关系19. 【答案】 −3√25【知识点】两角和与差的余弦、两角和与差的正弦20. 【答案】 f(x)={1−x,−2<x ≤01,0<x ≤2; [1,3)【解析】 f (x )=1+∣x∣−x 2(−2<x ≤2),当 −2<x ≤0 时,f (x )=1−x ; 当 0<x ≤2 时,f (x )=1.所以函数 f (x )={1−x,−2<x ≤01,0<x ≤2,函数 f (x ) 的图象如图所示:根据图象,得函数 f (x ) 的值域为 [1,3).【知识点】分段函数、函数的值域的概念与求法三、解答题(共10题) 21. 【答案】(1) 图略.函数 y =x 2−5x −6 在 (−∞,52] 上单调递减,在 [52,+∞) 上单调递增. (2) 函数 y =9−x 2 在 (−∞,0] 上单调递增,在 [0,+∞) 上单调递减. 【知识点】函数的单调性22. 【答案】(1) (a m )n =a mn , log a (a m )n =log a a mn , log a (a m )n =mn ,令 a m =M ,则 m =log a M , 则 log a M n =nlog a M .(2) lg3lg4(lg8lg9+lg16lg27)=lg32lg2(3lg22lg3+4lg23lg3)=34+23=1712. (3) lg20192020=2020lg2019≈2020×3.305=6676.1,所以20192020≈106676.1∈(106676,106677),所以20192020位数为6677.【知识点】对数的概念与运算23. 【答案】(1) 因为log232=5,所以25=32.(2) 因为3−3=127,所以log3127=−3.(3) 因为log4x=−32,所以x=4−32=22×(−32)=2−3=18.(4) 因为log2(log3x)=1,所以log3x=2,即x=32=9.【知识点】对数的概念与运算24. 【答案】(1) ¬p:存在一个实数m,使方程x2+mx−1=0没有实数根.因为该方程的判别式Δ=m2+4>0恒成立,所以¬p为假命题.(2) ¬p:∃x,y∈R,x2+y2+2x−4y+5≠0.因为x2+y2+2x−4y+5=(x+1)2+(y−2)2,当x=0,y=0时,x2+y2+2x−4y+5≠0成立,所以¬p为真命题.【知识点】全(特)称命题的概念与真假判断、全(特)称命题的否定、复合命题的概念与真假判断25. 【答案】(1) 当a=3时,A={x∣−1≤x≤5},B={x∣∣x≤1或x≥4},所以A∩B={x∣∣−1≤x≤1或4≤x≤5}.(2) ①若A=∅,则2−a>2+a,解得a<0,满足A∩B=∅;②若A≠∅,则2−a≤x≤2+a,所以a≥0.因为A∩B=∅,所以{2−a>1,2+a<4,解得0≤a<1.综上,实数a的取值范围是(−∞,1).【知识点】交、并、补集运算26. 【答案】(1) 函数f(x)=log a(x+2)−1的定义域是(−2,+∞).因为a>1,所以f(x)=log a(x+2)−1是[0,1]上的增函数.所以f(x)在[0,1]上的最大值是f(1)=log a3−1;最小值是f(0)=log a2−1.依题意,得log a3−1=−(log a2−1),解得a=√6.(2) 由(1)知,f(x)=log a(x+2)−1是(−2,+∞)上的增函数.在f(x)的解析式中,令x=0,得f(0)=log a2−1,所以,f(x)的图象与y轴交于点(0,log a2−1).依题意,得f(0)=log a2−1≤0.解得a≥2.【知识点】函数的最大(小)值、对数函数及其性质27. 【答案】sin2π3=√32,cos2π3=−12,tan2π3=−√3,cot2π3=−√33,sec2π3=−2,csc2π3=23√3.【知识点】任意角的三角函数定义28. 【答案】(1)任何一个元素;A⊆B;B⊇A;A包含于B;B包含A(2)集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{−1,0,1},则由0∈{0,1}能推出0∈{−1,0,1}.【知识点】包含关系、子集与真子集29. 【答案】−1.【知识点】集合相等30. 【答案】(1) 若A⫋B,由下图可知,a>2.(2) 若B⊆A,由下图可知,1≤a≤2.【知识点】包含关系、子集与真子集11。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。
人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④2. 设全集为 R ,A ={x ∣x 2−5x −6>0},B ={x ∣−2<x <12},则 ( ) A . (∁R A )∪B =R B . A ∪(∁R B )=R C . (∁R A )∪(∁R B )=RD . A ∪B =R3. 已知函数 f (x )={log 2(x +1),x ≥11,x <1,则满足 f (2x +1)<f (3x −2) 的实数 x 的取值范围是( ) A . (−∞,0] B . (3,+∞) C . [1,3) D . (0,1)4. 已知函数 f (x )={x 2+4a,x >01+log a ∣x −1∣,x ≤0(a >0,且 a ≠1)在 R 上单调递增,若关于 x 的方程 ∣f (x )∣=x +3 恰好有两个互异的实数解,则 a 的取值范围是 ( ) A . (34,1316]B . (0,34]∪{1316}C . [14,34)∪{1316}D . [14,34]∪{1316}5. 已知 cosα+cosβ=12,sinα+sinβ=√32,则 cos (α−β)= ( ) A . −12B . −√32C . 12D . 16. 已知函数 f (x )=m 2x 2−2mx −√x +1−m 区间 [0,1] 上有且只有一个零点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,√2]∪[3,+∞)C . (0,√2]∪[2√3,+∞)D . (0,1]∪[3,+∞)7. 已知函数 f (x )=sin2x ,x ∈[a,b ],则“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的 ( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 已知函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,则实数 a 的取值范围是( ) A . [25,12)B . (0,25]C . (0,12)D . (0,15]9. 函数 f (x )=lnx +2x −6 的零点一定位于区间 ( ) A . (1,2) B . (2,3) C . (3,4) D . (4,5)10. 已知 a =log 0.92019,b =20190.9,c =0.92019,则 ( ) A . a <c <b B . a <b <c C . b <a <c D . b <c <a二、填空题(共10题) 11. 已知函数 f (x )=3x −13x +1,若不式 f (kx 2)+f (2x −1)<0 对任意 x ∈R 恒成立,则实数 k 的取值范围是 .12. 已知函数 f (x )=lg 1−x 1+x ,若 f (a )=b ,则 f (−a )= .13. 已知一次函数 f (x ) 满足 f [f (x )]=4x +3,且 f (x ) 在 R 上为单调递增函数,则 f (1)= .14. 已知 f (x ) 是以 2e 为周期的 R 上的奇函数,当 x ∈(0,e ),f (x )=lnx ,若在区间 [−e,3e ],关于 x 的方程 f (x )=kx 恰有 4 个不同的解,则 k 的取值范围是 .15. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .16. 用二分法求函数 y =f (x ) 在区间 [2,4] 上零点的近似解,经验证有 f (2)f (4)<0.取区间的中点 x 1=2+42=3,计算得 f (2)f (x 1)<0,则此时零点 x 0∈ (填区间).17. 函数 f (x )=2x 与 g (x )=x 2 的图象交点个数是 个.18. 若某种参考书每本 2.5 元,则购书 x 本这种参考书的费用 y 关于 x 的函数表达式为 .19.已知13≤k<1,函数f(x)=∣2x−1∣−k的零点分别为x1,x2(x1<x2),函数g(x)=∣2x−1∣−k2k+1的零点分别为x3,x4(x3<x4),则(x4−x3)+(x2−x1)的最小值为.20.已知函数f(x)=∣∣x+1x∣∣,给出下列命题:①存在实数a,使得函数y=f(x)+f(x−a)为奇函数;②对任意实数a,均存在实数m,使得函数y=f(x)+f(x−a)关于x=m对称;③若对任意非零实数a,f(x)+f(x−a)≥k都成立,则实数k的取值范围为(−∞,4];④存在实数k,使得函数y=f(x)+f(x−a)−k对任意非零实数a均存在6个零点.其中的真命题是.(写出所有真命题的序号)三、解答题(共10题)21.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP=π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b).(1) 当θ=π6时,求ab的值;(2) 设θ∈[π4,π2],求b−a的取值范围.22.化简:(1) 1+sin(α−2π)sin(π+α)−2cos2(−α);(2) sin(−1071∘)sin99∘+sin(−171∘)sin(−261∘).23.已知f(x)=e x−ae x是奇函数(e为自然对数的底数).(1) 求实数a的值;(2) 求函数y=e2x+e−2x−2λf(x)在[0,+∞)上的值域;(3) 令g(x)=f(x)+x,求不等式g((log2x)2)+g(2log2x−3)≥0的解集.24. 已知 α,β 为锐角,tanα=43,cos (α+β)=−√55. (1) 求 cos2α 的值; (2) 求 tan (α−β) 的值.25. 设函数 f (x )=∣x −a ∣,a ∈R .(1) 当 a =2 时,解不等式:f (x )≥6−∣2x −5∣;(2) 若关于 x 的不等式 f (x )≤4 的解集为 [−1,7],且两正数 s 和 t 满足 2s +t =a ,求证:1s+8t ≥6.26. 已知 a ≥1,函数 f (x )=sin (x +π4),g (x )=−sinxcosx −1+√2af (x ).(1) 若 f (x ) 在 [−b,b ] 上单调递增,求正数 b 的最大值; (2) 若函数 g (x ) 在 [0,3π4] 内恰有一个零点,求 a 的取值范围.27. 对于函数 f (x )=ax 2+(b +1)x +b −2,(a ≠0),若存在实数 x 0,使 f (x 0)=x 0 成立,则称x 0 为 f (x ) 的不动点.(1) 当 a =2,b =−2 时,求 f (x ) 的不动点;(2) 当 a =2 时,函数 f (x ) 在 (−2,3) 内有两个不同的不动点,求实数 b 的取值范围; (3) 若对于任意实数 b ,函数 f (x ) 恒有两个不相同的不动点,求实数 a 的取值范围.28. 用适当的方法表示下列集合:(1) 二次函数 y =x 2−4 的函数值组成的集合; (2) 反比例函数 y =2x 的自变量组成的集合; (3) 不等式 3x ≥4−2x 的解集.29. 已知定义在 R 上的奇函数 f (x ),当 x ≤0 时,f (x )=x 2+4x .(1) 求出 f (x ) 的解析式,并直接写出 f (x ) 的单调区间. (2) 求不等式 f (x )>3 的解集.30. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2016 年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量 p 万件与促销费用 x 万元满足 p =3−2x+1(其中 0≤x ≤a,a为正常数).已知生产该产品还需投入成本10+2p万元(不含促销费用),每一件产品的)元,假定厂家的生产能力完全能满足市场的销售需求.销售价格定为(4+20p(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.答案一、选择题(共10题) 1. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即 1x 2=2−1x 1,当 x 1=12 时,2−1x 1=2−2=0,此时 1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件. 故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质2. 【答案】D【知识点】交、并、补集运算3. 【答案】B【解析】法一:由 f (x )={log 2(x +1),x ≥11,x <1可得当 x <1 时,f (x )=1;当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (1)=log 22=1, 要使得 f (2x +1)<f (3x −2),则 {2x +1<3x −2,3x −2>1, 解得 x >3,即不等式 f (2x +1)<f (3x −2) 的解集为 (3,+∞). 法二:当 x ≥1 时,函数 f (x ) 在 [1,+∞) 上单调递增,且 f (x )≥f (1)=1, 要使 f (2x +1)<f (3x −2) 成立,需 {2x +1≥1,2x +1<3x −2 或 {2x +1<1,3x −2>1,解得 x >3.【知识点】函数的单调性4. 【答案】D【解析】由函数的解析式可知函数在区间(0,+∞)上单调递增,当x≤0时,函数y=∣x−1∣单调递减,由复合函数的单调性法则可知:0<a<1,且函数在x=0处满足:02+4a≥1+log a∣0−1∣,解得:a≥14,故14≤a<1,方程∣f(x)∣=x+3恰有两个不相等的实数解,则函数∣f(x)∣与函数y=x+3的图象有且仅有两个不同的交点,绘制函数∣f(x)∣的图象如图中虚线所示,令1+log a∣x−1∣=0可得:x=1±1a,由14≤a<1可知1+1a>1,1−1a≥−3,则直线y=x+3与函数∣f(x)∣的图象在区间(−∞,0]上存在唯一的交点,原问题转化为函数y=x+3与二次函数y=x2+4a(14≤a<1)在区间(0,+∞)上存在唯一的交点,很明显当4a≤3,即a≤34时满足题意,当直线与二次函数相切时,设切点坐标为(x0,x02+4a),亦即(x0,x0+3),由函数的解析式可得:yʹ=2x,故2x0=1,x0=12,则x0+3=72,故切点坐标(12,72),从而x02+4a=72,即14+4a=72,a=1316.据此可得:a的取值范围是[14,34]∪{1316}.【知识点】函数的零点分布5. 【答案】A【解析】由 cosα+cosβ=12,sinα+sinβ=√32, 两边平方相加得,(cosα+cosβ)2+(sinα+sinβ)2=(12)2+(√32)2=1,所以 2+2cosαcosβ+2sinαsinβ=1, 即 2(cosαcosβ+sinαsinβ)=−1, 所以 cos (α−β)=−12. 故选A .【知识点】两角和与差的余弦6. 【答案】D【解析】由 f (x )=m 2x 2−2mx −√x +1−m =0, 得 m 2x 2−2mx +1=√x +m ,令 g (x )=m 2x 2−2mx +1=(mx −1)2,ℎ(x )=√x +m ,问题等价于函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. 又函数 g (x )=(mx −1)2 的图象为经过点 (0,1),对称轴为 x =1m 的抛物线,函数 ℎ(x )=√x +m 在区间 [0,1] 上单调递增,且图象经过点 (0,m ) 和 (1,1+m ). ①当 0<m ≤1 时,1m ≥1,所以函数 g (x )=(mx −1)2 在区间 [0,1] 上单调递减, 又当 0<m ≤1 时,g (1)=(m −1)2<1,ℎ(1)=1+m >1, 所以 g (1)<ℎ(1),所以函数 g (x )=(mx −1)2 和 ℎ(x )=√x +m 的图象在区间 [0,1] 上有且只有一个交点. ②当 m >1 时,0<1m<1,在同一坐标系内做出两个函数的图象,如图所示. 由图形可得,要使两个函数的图象有且只有一个交点, 则需满足当 m >1 时,g (1)≥ℎ(1), 即 {m >1,m 2−3m ≥0,解得 m ≥3.综上,正实数 m 的取值范围是 (0,1]∪[3,+∞).【知识点】函数的零点分布7. 【答案】B【解析】 f (x ) 的最小正周期 T =2π2=π,所以当 x ∈[a,b ] 时,f (x )∈[−1,1],则 b −a ≥π2 恒成立, 而当 a =0,b =π2时,a −b ≥π2,此时 f (x )∈[0,1],故“b −a ≥π2”是“f (x ) 的值域为 [−1,1]”的必要而不充分条件.故B 选项符合题意.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】B【解析】因为函数 f (x )={(2a −1)x +a,x ≥2log a (x −1),1<x <2 是 (1,+∞) 上的减函数,所以 {2a −1<0,0<a <1,log a 1≥2(2a −1)+a,即 {a <12,0<a <1,a ≤25,解得 0<a ≤25.【知识点】函数的单调性9. 【答案】B【知识点】零点的存在性定理10. 【答案】A【解析】因为 a <0,b >1,0<c <1, 所以 a <c <b .【知识点】对数函数及其性质、指数函数及其性质二、填空题(共10题) 11. 【答案】 (−∞,−1)【解析】易证 f (x )=3x −13x +1 为奇函数,所以 f (kx 2)+f (2x −1)<0⇒f (kx 2)<f (1−2x ). 因为 f (x )=3x −13x +1=1−23x +1,所以 f (x ) 在 R 上单调递增,所以 f (kx 2)<f (1−2x )⇒kx 2<1−2x ⇒kx 2+2x −1<0 在 R 上恒成立, 所以 {k <0,Δ=4+4k <0, 解得 k <−1,所以实数 k 的取值范围是 (−∞,−1).【知识点】函数的奇偶性、函数的单调性12. 【答案】 −b【解析】由 1−x1+x >0,得 {1−x >0,1+x >0, 或 {1−x <0,1+x <0,所以 −1<x <1.故 f (x ) 的定义域为 (−1,1),而 f (−x )=lg 1+x1−x =lg (1−x 1+x )−1=−lg 1−x1+x =−f (x ),所以 f (x ) 为奇函数,所以 f (−a )=−f (a )=−b . 【知识点】对数函数及其性质13. 【答案】 3【解析】根据题意,函数 f (x ) 是一次函数,设 f (x )=ax 十b ,则 f [f (x )]=a (ax +b )+b =a 2x +ab +b =4x +3,则有 {a 2=4,ab +b =3.解得:{a =2,b =1, 或 {a =−2,b =−3.又由 f (x ) 在 R 上为单调递增函数,则 f (x )=2x +1, 故 f (1)=2+1=3. 【知识点】函数的单调性14. 【答案】 (−∞,−1e]∪[13e ,1e)【知识点】函数的零点分布15. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点, 此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象16. 【答案】 (2,3)【解析】因为 x 1=3,且 f (2)⋅f (3)<0,所以 x 0∈(2,3). 【知识点】零点的存在性定理17. 【答案】 3【知识点】函数的零点分布18. 【答案】 y =2.5x ,x ∈N ∗【知识点】函数的解析式的概念与求法19. 【答案】log23【解析】f(x)=∣2x−1∣−k=0⇒2x1=1−k,2x2=1+k⇒x1=log2(1−k),x2=log2(1+k),g(x)=∣2x−1∣−k2k+1=0⇒2x3=k+12k+1,2x4=3k+12k+1⇒x3=log2k+12k+1,x4=log23k+12k+1,由(1)(2)得(x4−x3)+(x2−x1)=log23k+11−k =log2(41−k−3),因为13≤k<1,故(x4−x3)+(x2−x1)≥log23.【知识点】函数的零点分布20. 【答案】②③④【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 由三角函数的定义,可得P(cosπ4,sinπ4),Q(cos(π4+θ),sin(π4+θ)).当θ=π6时,Q(cos5π12,sin5π12),即a=cos5π12,b=sin5π12,所以ab=cos5π12sin5π12=12×2×cos5π12sin5π12=12×sin5π6=14.(2) 因为Q(cos(π4+θ),sin(π4+θ)),所以a=cos(π4+θ),b=sin(π4+θ),由三角恒等变换的公式,化简可得:b−a=sin(π4+θ)−cos(π4+θ)=√2[sin(π4+θ)cosπ4−cos(π4+θ)sinπ4]=√2sinθ,因为θ∈[π4,π2],所以1≤√2sinθ≤√2.即b−a的取值范围为[1,√2].【知识点】任意角的三角函数定义、Asin(ωx+ψ)形式函数的性质22. 【答案】(1) −cos2a.(2) 0.【知识点】诱导公式23. 【答案】(1) 因为f(x)的定义域为R,f(x)为奇函数,所以f(0)=0,故1−a=0,即a=1.经检验,满足题意.(2) 设e x−1e x =t(t≥0),则e2x+1e2x=t2+2,设y=ℎ(t)=t2−2λt+2=(t−λ)2+2−λ2,t∈[0,+∞).①当λ≤0时,ℎ(t)≥ℎ(0),所以函数的值域为[2,+∞);②当λ>0时,ℎ(t)≥ℎ(λ),所以函数的值域为[2−λ2,+∞).(3) 因为g(x)的定义域为R,f(x)为奇函数,所以g(−x)=f(−x)+(−x)=−f(x)−x=−(f(x)+x)=−g(x),故g(x)为奇函数.任取x1,x2,且x1<x2,则g(x1)−g(x2)=(e x1−e x2)−(1e x1−1e x2)+(x1−x2)=(e x1−e x2)(1+1e x1+x2)+(x1−x2),因为x1<x2,所以(e x1−e x2)(1+1e x1+x2)<0,x1−x2<0,所以g(x1)−g(x2)<0,所以g(x1)<g(x2),故g(x)在R上单调递增.由g((log2x)2)+g(2log2x−3)≥0,得g((log2x)2)≥−g(2log2x−3),即g((log2x)2)≥g(−2log2x+3),所以(log2x)2≥−2log2x+3,所以(log2x)2+2log2x−3≥0,解得log2x≥1或log2x≤−3,故x≥2或0<x≤18.故原不等式的解集为(0,18]∪[2,+∞).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性24. 【答案】(1) 因为 tanα=43,tanα=sinαcosα, 所以 sinα=43cosα,因为 sin 2α+cos 2α=1,所以 cos 2α=925, 因此,cos2α=2cos 2α−1=−725.(2) 因为 α,β 为锐角,所以 α+β∈(0,π), 因为 cos (α+β)=−√55, 所以 sin (α+β)=√1−cos 2(α+β)=2√55.因此 tan (α+β)=−2, 因为 tanα=43,所以 tan2α=2tanα1−tan 2α=−247,因此tan (α−β)=tan [2α−(α+β)]=tan2α−tan (α+β)1+tan2αtan (α+β)=−211.【知识点】两角和与差的正切、二倍角公式25. 【答案】(1) 当 a =2 时,不等式:f (x )≥6−∣2x −5∣,可化为 ∣x −2∣+∣2x −5∣≥6. ① x ≥2.5 时,不等式可化为 x −2+2x −5≥6,所以 x ≥133;② 2≤x <2.5,不等式可化为 x −2+5−2x ≥6,所以 x ∈∅; ③ x <2,不等式可化为 2−x +5−2x ≥6,所以 x ≤13,综上所述,不等式的解集为 (−∞,13]∪[133,+∞).(2) 不等式 f (x )≤4 的解集为 [a −4,a +4]=[−1,7], 所以 a =3,所以 1s +8t =13(1s +8t )(2s +t )=13(10+ts +16s t)≥6,当且仅当 s =12,t =2 时取等号.【知识点】绝对值不等式的求解、均值不等式的应用26. 【答案】(1) 由2kπ−π2≤x+π4≤2kπ+π2,k∈Z,得2kπ−3π4≤x≤2kπ+π4,k∈Z.因为f(x)在[−b,b]上单调递增,令k=0,得−3π4≤x≤π4是f(x)的一个单调递增区间,所以{b≤π4,−b≥−3π4,解得b≤π4,可得正数b的最大值为π4.(2) g(x)=−sinxcosx+√2af(x)−1=−sinxcosx+a(sinx+cosx)−1,设t=sinx+cosx+√2sin(x+π4),当x∈[0,3π4]时,t∈[0,√2].它的图形如图所示.又sinxcosx=12(t2−1),则−sinxcosx+a(sinx+cosx)−1=12t2+at−12,t∈[0,√2],令ℎ(t)=−12t2+at−12,则函数g(x)在[0,3π4]内恰有一个零点,转化为ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点.①当t=0时,ℎ(t)无零点.②当t=√2时,由√2a−32=0,得a=3√24,把a=3√24代入−12t2+at−12=0中,得−12t2+3√24t−12=0,解得t1=√2,t2=√22,不符合题意.③当0<t<√2时,若Δ=a2−1=0,得a=1,此时t=1,由t=√2sin(x+π4)的图象可知不符合题意;若Δ=a2−1>0,即a>1,设−12t2+at−12=0的两根分别为t1,t2,由t1t2=1,且抛物线的对称轴为t=a≥1,要使ℎ(t)=−12t2+at−12在[0,√2]内恰有一个零点,则两同时为正,且一个根在(0,1)内,另一个根在(√2,+∞)内,所以{ℎ(1)>0,ℎ(√2)>0,解得a>3√24.综上,a的取值范围为(3√24,+∞).【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) 当a=2,b=−2时,f(x)=2x2−x−4,所以由 f (x )=x 得 x 2−x −2=0,所以 x =−1 或 x =2, 所以 f (x ) 的不动点为 −1,2.(2) 当 a =3 时,f (x )=2x 2+(b +1)x +b −2, 由题意得 f (x )=x 在 (−2,3) 内有两个不同的不动点,即方程 2x 2+bx +b −2=0 在 (−2,3) 内的两个不相等的实数根, 设 g (x )=2x 2+bx +b −2,所以只须满足 {g (−2)=8−2b +b −2>0,g (3)=18+3b +b −2>0,−2<−b4<3,b 2−8(b −2)>0, 所以 {b <6,b >−4,−12<b <8,b ≠4, 所以 −4<b <4 或 4<b <6.(3) 由题意得:对于任意实数 b ,方程 ax 2+bx +b −2=0 总有两个不相等的实数解, 所以 {a ≠0,Δ=b 2−4a (b −2)>0,所以 b 2−4ab +8a >0 对 b ∈R 恒成立, 所以 16a 2−32a <0,所以 0<a <2.【知识点】函数的零点分布28. 【答案】(1) {y∣ y ≥−4}. (2) {x∣ x ≠0}. (3) {x∣ x ≥45}.【知识点】集合的表示方法29. 【答案】(1) 当 x >0 时,−x <0,f (−x )=(−x )2+4(−x )=x 2−4x , 因为 f (x ) 是定义在 R 上的奇函数, 所以 f (x )=−f (x )=−x 2+4x , 所以 f (x )={x 2+4x,x ≤0−x 2+4x,x >0,f (x ) 的单调减区间为 (−∞,−2) 和 (2,+∞),单调增区间为 (−2,2).(2) 当 x ≤0 时,x 2+4x >3,即 x 2+4x −3>0, 即 x <−2−2√7 或 x >−2+2√7, 因为 x ≤0,所以 x <−2−2√7, 当 x >0 时,−x 2+4x >3,即 x 2−4x +3<0,即 (x −1)(x −3)<0,解得 1<x <3.综上,不等式f(x)>3的解集为(−∞,−2−2√7)∪(1,3).【知识点】函数的奇偶性、函数不等式的解法30. 【答案】(1) 由题意知,t=(4+20p)p−x−(10+2p),将p=3−2x+1代入化简得:y=16−4x+1−x(0≤x≤a).(2) y=17−(4x+1+x+1)≤17−2√4x+1×(x+1)=13,当且仅当4x+1=x+1,即x=1时,上式取等号,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,y=17−(4x+1+x+1)在[0,a]上单调递增,所以x=a时,函数有最大值,即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元时,厂家的利润最大.【知识点】均值不等式的实际应用问题、建立函数表达式模型。
高一数学试卷时量:100分钟 总分:120分一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A CC .()()AB BCD .()A B C4.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或26.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,57.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D 8.函数lg y x = ( )A .是偶函数,在区间(,0)-∞ 上单调递增; B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增; D.是奇函数,在区间(0,)+∞上单调递减9..函数12+=-x ay (0>a ,且1≠a )的图象必经过点( ) A.(0,1) B.(1,1) C. (2, 0) D. (2,2)10.已知不等式为27331<≤x ,则x 的取值范围( )A.321<≤-x B.321<≤x C. R D.3121<≤x 11.下列函数中值域为()∞+,0的是( ) A.xy -=215B.xy -⎪⎭⎫⎝⎛=131 C.121-⎪⎭⎫ ⎝⎛=xy D.xy 21-=12.甲乙二人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快若某人离开A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只可能是( )A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④二、填空题(本大题共6小题,每小题4分,共24分。
新版高一数学必修第一册第二章全部配套练习题(含答案和解析)2.1 等式性质与不等式性质基 础 练巩固新知 夯实基础1.若1a <1b <0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |2.已知a >b >0,则下列不等式一定成立的是( ) A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a3.下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若1a >1b,则a <bC .若b >c ,则|a |b ≥|a |cD .若a >b ,c >d ,则a -c >b -d 4.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化 5.一辆汽车原来每天行驶x km ,如果这辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写成不等式为________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.6.已知三个不等式①ab >0;①c a >db ;①bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.7.若x ①R ,则x 1+x2与12的大小关系为________. 8.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.9.已知a >b ,1a <1b ,求证:ab >0.10.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围.(1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养11.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |12.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <013.实数a ,b ,c ,d 满足下列三个条件:①d >c ;①a +b =c +d ;①a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知|a |<1,则11+a 与1-a 的大小关系为________.15.已知a ,b ①R ,a +b >0,试比较a 3+b 3与ab 2+a 2b 的大小.16.已知0<a <b 且a +b =1,试比较: (1)a 2+b 2与b 的大小; (2)2ab 与12的大小.17.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.18.建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件就越好,试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.【参考答案】1. D 解析: ①1a <1b <0,①b <a <0,①b 2>a 2,ab <b 2,a +b <0,①A 、B 、C 均正确,①b <a <0,①|a |+|b |=|a +b |,故D 错误.2. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.3. C 解析 A 项:a ,b ,c ,d 的符号不确定,故无法判断;B 项:不知道ab 的符号,无法确定a ,b 的大小;C 项:|a |≥0,所以|a |b ≥|a |c 成立;D 项:同向不等式不能相减.4. C 解析y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.5. 8(x +19)>2 200 8x >9(x -12) 解析:①原来每天行驶x km ,现在每天行驶(x +19)km.则不等关系“在8天内的行程超过2 200 km”,写成不等式为8(x +19)>2 200.①若每天行驶(x -12)km ,则不等关系“原来行驶8天的路程现在花9天多时间”, 写成不等式为8x >9(x -12). 6. 3 解析:①①①①,①①①①.(证明略)由①得bc -ad ab >0,又由①得bc -ad >0.所以ab >0①①.所以可以组成3个正确命题.7. x 1+x 2≤12 解析:①x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,①x 1+x 2≤12. 8. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:①1<α<3,①12<12α<32,又-4<β<2,①-2<-β<4.①-32<12α-β<112,即-32<z <112. 9.证明:①1a <1b ,①1a -1b <0,即b -a ab<0,而a >b ,①b -a <0,①ab >0. 10. 解:(1)|a |①[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,①由1≤b <2得-6<-3b ≤-3,①由①+①得,-10<2a -3b ≤3. 11. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .12. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又①b >c ,①0<c <b 或c <b <0. 13. a <c <d <b 解析:由①得a =c +d -b 代入①得c +d -b +d <b +c ,①c <d <b .由①得b =c +d -a 代入①得a +d <c +d -a +c ,①a <c .①a <c <d <b . 14.11+a≥1-a 解析:由|a |<1,得-1<a <1. ①1+a >0,1-a >0.即11+a 1-a =11-a 2①0<1-a 2≤1,①11-a 2≥1,①11+a≥1-a . 15.解:因为a +b >0,(a -b )2≥0,所以a 3+b 3-ab 2-a 2b =a 3-a 2b +b 3-ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )(a -b )(a +b )=(a -b )2(a +b )≥0,所以a 3+b 3≥ab 2+a 2b .16.解:(1)因为0<a <b 且a +b =1,所以0<a <12<b ,则a 2+b 2-b =a 2+b (b -1)=a 2-ab =a (a -b )<0,所以a 2+b 2<b .(2)因为2ab -12=2a (1-a )-12=-2a 2+2a -12=-2⎝⎛⎭⎫a 2-a +14=-2⎝⎛⎭⎫a -122<0,所以2ab <12.17.解:令4a -2b =m (a -b )+n (a +b ),①⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又①1≤a -b ≤2,①3≤3(a -b )≤6,又①2≤a +b ≤4,①5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.18.解:设住宅窗户面积、地板面积分别为a ,b ,同时增加的面积为m ,根据问题的要求a <b ,且ab ≥10%.由于a +mb +m -a b =m (b -a )b (b +m )>0,于是a +m b +m >a b .又a b ≥10%,因此a +m b +m >ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.2.2 第1课时 基本不等式的证明基 础 练巩固新知 夯实基础1.已知a ,b ①R ,且ab >0,则下列结论恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2 2.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =03.对x ①R 且x ≠0都成立的不等式是( )A .x +1x ≥2B .x +1x ≤-2C.|x |x 2+1≥12D.⎪⎪⎪⎪x +1x ≥2 4.已知x >0,y >0,x ≠y ,则下列四个式子中值最小的是( )A.1x +yB.14⎝⎛⎭⎫1x +1yC. 12(x 2+y 2)D.12xy5.给出下列不等式:①x +1x ≥2; ①⎪⎪⎪⎪x +1x ≥2; ①x 2+y 2xy ≥2; ①x 2+y 22>xy ; ①|x +y |2≥|xy |.其中正确的是________(写出序号即可).6.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1; ①a +b ≤2; ①a 2+b 2≥2; ①a 3+b 3≥3; ①1a +1b≥2.7.设a ,b ,c 都是正数,求证:bc a +ac b +abc≥a +b +c .能 力 练综合应用 核心素养8.若0<a <b ,a +b =1,则a ,12,2ab 中最大的数为( )A .aB .2ab C.12D .无法确定9.已知a >0,b >0,则a +b2,ab ,a 2+b 22,2aba +b中最小的是( ) A.a +b 2B.abC.a 2+b 22D.2aba +b10.设a >0,b >0,则下列不等式中不一定成立的是( )A .a +b +1ab≥22 B.2ab a +b ≥abC.a 2+b 2ab ≥a +b D .(a +b )⎝⎛⎭⎫1a +1b ≥4 11.已知a ,b ①(0,+∞),且a +b =1,则下列各式恒成立的是( )A.1ab≥8 B.1a +1b≥4C.ab ≥12D.1a 2+b2≤12 12.若a <1,则a +1a -1与-1的大小关系是________.13.给出下列结论:①若a >0,则a 2+1>a .①若a >0,b >0,则⎝⎛⎭⎫1a +a ⎝⎛⎭⎫b +1b ≥4. ①若a >0,b >0,则(a +b )⎝⎛⎭⎫1a +1b ≥4. ①若a ①R 且a ≠0,则9a +a ≥6.其中恒成立的是________.14.已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.15.已知a >0,b >0,a +b =1,求证⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.【参考答案】1. D 解析:选D.对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,虽然ab >0,只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误;对于D ,因为ab >0,所以b a >0,a b >0,所以b a +ab ≥2b a ·a b ,即b a +a b≥2成立.2. B [解析] a 2+1-2a =(a -1)2≥0,①a =1时,等号成立.3. D [解析] 因为x ①R 且x ≠0,所以当x >0时,x +1x ≥2;当x <0时,-x >0,所以x +1x =-⎝⎛⎭⎫-x +1-x ≤-2,所以A 、B 都错误;又因为x 2+1≥2|x |,所以|x |x 2+1≤12,所以C 错误,故选D. 4. C [解析] 解法一:①x +y >2xy ,①1x +y <12xy,排除D ;①14⎝⎛⎭⎫1x +1y =x +y 4xy =14xy x +y >1(x +y )2x +y =1x +y ,①排除B ;①(x +y )2=x 2+y 2+2xy <2(x 2+y 2),①1x +y>12(x 2+y 2),排除A.解法二:取x =1,y =2.则1x +y =13;14⎝⎛⎭⎫1x +1y =38;12(x 2+y 2)=110;12xy =122=18.其中110最小. 5. ① 解析:当x >0时,x +1x ≥2;当x <0时,x +1x≤-2,①不正确;因为x 与1x 同号,所以⎪⎪⎪⎪x +1x =|x |+1|x |≥2,①正确; 当x ,y 异号时,①不正确; 当x =y 时,x 2+y 22=xy ,①不正确;当x =1,y =-1时,①不正确.6. ①①① [解析] 令a =b =1,排除①①;由2=a +b ≥2ab ①ab ≤1,①正确;a 2+b 2=(a +b )2-2ab =4-2ab ≥2,①正确;1a +1b =a +b ab =2ab≥2,①正确.7.[证明] 因为a ,b ,c 都是正数,所以bc a ,ac b ,ab c 也都是正数.所以bc a +ac b ≥2c ,ac b +ab c ≥2a ,bc a +abc≥2b ,三式相加得2⎝⎛⎭⎫bc a +ac b +ab c ≥2(a +b +c ),即bc a +ac b +abc ≥a +b +c ,当且仅当a =b =c 时取等号. 8. C 解析:选C.因为0<a <b ,a +b =1,所以a <12,因为ab <⎝⎛⎭⎫a +b 22=14,所以2ab <12,则a ,12,2ab 中最大的数为12,故选C.9. D [解析] 因为a >0,b >0,所以2ab a +b ≤2ab2ab =ab ,a +b 2≥ab ,a 2+b 22=2(a 2+b 2)4≥(a +b )24=a +b2(当且仅当a =b >0时,等号成立).所以a +b2,ab ,a 2+b 22,2ab a +b 中最小的是2aba +b,故选D. 10. B 解析:选B.因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22,当且仅当a =b 且2ab =1ab即a =b =22时取等号,故A 一定成立.因为a +b ≥2ab >0,所以2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时取等号,所以2ab a +b ≥ab 不一定成立,故B 不成立.因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b ≥2ab -ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,所以a 2+b 2ab≥a +b ,故C 一定成立.因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥4,当且仅当a =b 时取等号,故D 一定成立,故选B. 11. B [解析] ①当a ,b ①(0,+∞)时,a +b ≥2ab ,又a +b =1,①2ab ≤1,即ab ≤12.①ab ≤14.①1ab ≥4.故选项A 不正确,选项C 也不正确.对于选项D ,①a 2+b 2=(a +b )2-2ab =1-2ab ,当a ,b ①(0,+∞)时,由ab ≤14可得a 2+b 2=1-2ab ≥12.所以1a 2+b 2≤2,故选项D 不正确.对于选项B ,①a >0,b >0,a +b =1,①1a +1b =⎝⎛⎭⎫1a +1b (a +b )=1+b a +ab+1≥4,当且仅当a =b 时,等号成立.故选B.12. a +1a -1≤-1 解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a≥2(1-a )·11-a=2.即a +1a -1≤-1.13.①①① [解析] 因为(a 2+1)-a =⎝⎛⎭⎫a -122+34>0,所以a 2+1>a ,故①恒成立. 因为a >0,所以a +1a ≥2,因为b >0,所以b +1b ≥2,所以当a >0,b >0时,⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,故①恒成立. 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ,又因为a ,b ①(0,+∞),所以b a +ab ≥2,所以(a +b )⎝⎛⎭⎫1a +1b ≥4,故①恒成立. 因为a ①R 且a ≠0,不符合基本不等式的条件,故9a+a ≥6是错误的.14.证明:因为x >0,y >0,z >0,所以y x +z x ≥2yz x >0,x y +z y ≥2xz y >0,x z +y z ≥2xyz >0,所以⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8yz ·xz ·xyxyz=8,当且仅当x =y =z 时等号成立. 15.[证明] 证法一:因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a ,同理1+1b =2+a b,故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时取等号).证法二:因为a ,b 为正数,a +b =1.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2ab , ab ≤⎝⎛⎭⎫a +b 22=14,于是1ab ≥4,2ab ≥8,因此⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥1+8=9⎝⎛⎭⎫当且仅当a =b =12时等号成立.2.2 第2课时 基本不等式的综合应用基 础 练巩固新知 夯实基础1.(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.3222.设x >0,则y =3-3x -1x的最大值是( )A .3B .3-22C .3-2 3D .-1 3.若0<x <12,则函数y =x 1-4x 2的最大值为( )A .1 B.12 C.14D.184.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件5.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .56.已知y =4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.7.已知y =x +1x.(1)已知x >0,求y 的最小值;(2)已知x <0,求y 的最大值.8.已知a >0,b >0,且2a +b =ab .(1)求ab 的最小值; (2)求a +2b 的最小值.能 力 练综合应用 核心素养9.已知a <b ,则b -a +1b -a+b -a 的最小值为( )A .3B .2C .4D .110.已知实数x ,y 满足x >0,y >0,且2x +1y=1,则x +2y 的最小值为( )A .2B .4C .6D .811.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B.12C .1D.3212.已知x ≥52,则y =x 2-4x +52x -4有( )A .最大值54B .最小值54za C .最大值1D .最小值113.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .814.已知x >0,y >0,2x +3y =6,则xy 的最大值为________.15.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.16.设a>b>c,且1a-b+1b-c≥ma-c恒成立,求m的取值范围.17.(1)若x<3,求y=2x+1+1x-3的最大值;(2)已知x>0,求y=2xx2+1的最大值.【参考答案】1. B 解析:选B.因为-6≤a ≤3,所以3-a ≥0,a +6≥0,所以(3-a )(a +6)≤(3-a )+(a +6)2=92.即(3-a )(a +6)(-6≤a ≤3)的最大值为92.2. C 解析:y =3-3x -1x=3-⎝⎛⎭⎫3x +1x ≤3-2 3x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号. 3. C 解析:因为0<x <12,所以1-4x 2>0,所以x 1-4x 2=12×2x 1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x=1-4x 2,即x =24时等号成立,故选C. 4. B 解析:设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.5. C 解析:可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2ab =2ba时等号成立,所以9m ≤54,即m ≤6,故选C. 6. 36 解析:y =4x +ax≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时y 取得最小值4a . 又由已知x =3时,y 的最小值为4a ,所以a2=3,即a =36. 7. 解:(1)因为x >0,所以x +1x≥2x ·1x =2,当且仅当x =1x,即x =1时等号成立.所以y 的最小值为2. (2)因为x <0,所以-x >0.所以f (x )=-⎣⎡⎦⎤(-x )+1-x ≤-2(-x )·1-x =-2,当且仅当-x =1-x,即x =-1时等号成立.所以y 的最大值为-2. 8. 解:因为2a +b =ab ,所以1a +2b=1;(1)因为a >0,b >0, 所以1=1a +2b≥22ab ,当且仅当1a =2b =12,即a =2,b =4时取等号,所以ab ≥8,即ab 的最小值为8;(2)a +2b =(a +2b )⎝⎛⎭⎫1a +2b =5+2b a +2ab ≥5+22b a ·2ab=9, 当且仅当2b a =2ab ,即a =b =3时取等号,所以a +2b 的最小值为9.9. A 解析:因为a <b ,所以b -a >0,由基本不等式可得b -a +1b -a +b -a =1+1b -a+(b -a )≥1+21b -a·(b -a )=3, 当且仅当1b -a =b -a (b >a ),即当b -a =1时,等号成立,因此,b -a +1b -a +b -a 的最小值为3,故选A.10. D 解析:因为x >0,y >0,且2x +1y =1,所以x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +xy≥4+24y x ·xy=8, 当且仅当4y x =xy时等号成立.故选D.11. A 解析:选A.因为x >0,所以x +12>0,所以y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立,所以函数的最小值为0. 12. D 解析:y =x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎡⎦⎤(x -2)+1x -2,因为x ≥52,所以x -2>0,所以12⎣⎡⎦⎤(x -2)+1x -2≥12·2(x -2)·1x -2=1,当且仅当x -2=1x -2,即x =3时取等号.故y 的最小值为1.13. B 解析 (x +y )⎝⎛⎭⎫1x +a y =1+a +ax y +y x ≥1+a +2a =(a +1)2⎝⎛⎭⎫当且仅当y x =a 时取等号 .①(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,①(a +1)2≥9.①a ≥4.14. 32 解析:因为x >0,y >0,2x +3y =6,所以xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32.当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.15. 8 解析:因为点A (-2,-1)在直线mx +ny +1=0上,所以2m +n =1, 所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 16.解 由a >b >c ,知a -b >0,b -c >0,a -c >0.因此,原不等式等价于a -c a -b +a -c b -c≥m .要使原不等式恒成立,只需a -c a -b +a -cb -c的最小值不小于m 即可. 因为a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ×a -bb -c=4, 当且仅当b -c a -b =a -b b -c,即2b =a +c 时,等号成立.所以m ≤4,即m ①{m |m ≤4}.17.解:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x .因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1.2.3 第1课时 二次函数与一元二次方程、不等式基 础 练巩固新知 夯实基础1.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}2.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6.设集合A={x|(x-1)2<3x+7,x①R},则集合A∩Z中有________个元素.7.不等式-1<x2+2x-1≤2的解集是________.8.解关于x的不等式:x2+(1-a)x-a<0.9. 解不等式:x 2-3|x |+2≤0.能 力 练综合应用 核心素养10. 若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是( )A.⎩⎨⎧⎭⎬⎫x |1t <x <tB.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t11.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)①(3,+∞)B .(-3,1)①(2,+∞)C .(-1,1)①(3,+∞)D .(-∞,-3)①(1,3)12.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________.14.方程x 2+(m -3)x +m =0的两根都是负数,则m 的取值范围为________.15.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 16.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.17.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1. A 解析 ①M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3},①M ∩N ={x |-4≤x <-2或3<x ≤7}.2. D 解析 由题意知,-b a =1,ca =-2,①b =-a ,c =-2a ,又①a <0,①x 2-x -2≤0,①-1≤x ≤2.3. D 解析 由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又①a <0,①函数y =ax 2+bx +c 的图象是开口向下的抛物线,①不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析 由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析 因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. 6 解析 由(x -1)2<3x +7,解得-1<x <6,即A ={x |-1<x <6},则A ∩Z ={0,1,2,3,4,5},故A ∩Z 共有6个元素.7. {x |-3≤x <-2或0<x ≤1} 解析 ①⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,①-3≤x <-2或0<x ≤1.8. 解 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以(1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为①; (3)当a >-1时,原不等式解集为{x |-1<x <a }. 9. 解 原不等式等价于|x |2-3|x |+2≤0,即1≤|x |≤2.当x ≥0时,1≤x ≤2;当x <0时,-2≤x ≤-1. ①原不等式的解集为{x |-2≤x ≤-1或1≤x ≤2}.10. D 解析 ①0<t <1,①1t >1,①1t >t .①(t -x )(x -1t )>0①(x -t )(x -1t )<0①t <x <1t .11. A 解析 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0. 所以f (x )>f (1)的解集是(-3,1)①(3,+∞).12. B [解析] 易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.13. k ≤2或k ≥4 解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.14. {m |m ≥9} 解析 ①⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,①m ≥9.15. -3 -3 解析 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, ①⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 16.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,①⎩⎨⎧-13+2=-b a-13×2=c a,①b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.17.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.①当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2;①当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};①当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式x +5(x -1)2≥2的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -3≤x ≤12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x <1或1<x ≤3 D.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1 2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13 D.⎩⎨⎧⎭⎬⎫x | x <-123.不等式2-xx +1<1的解集是( )A .{x |x >1}B .{x |-1<x <2} C.⎩⎨⎧⎭⎬⎫x | x <-1或x >12 D.⎩⎨⎧⎭⎬⎫x | -1<x <124. 若集合A ={x |ax 2-ax +1<0}=①,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}5. 若关于x 的不等式x 2-4x -m ≥0对任意x ①(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .36.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .15≤x ≤30B .12≤x ≤25C .10≤x ≤30D .20≤x ≤307. 若关于x 的不等式x -a x +1>0的解集为(-∞,-1)①(4,+∞),则实数a =________.8.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.9.解下列分式不等式:(1)x +12x -3≤1; (2)2x +11-x <0.10. 当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养11. 不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .①D .{x |x <-2或x >2}12.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A.(-2,2) B.(-2,2]C.(-∞,-2)①[2,+∞) D.(-∞,2)13.对任意a①[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是() A.1<x<3 B.x<1或x>3C.1<x<2 D.x<1或x>214.在R上定义运算①:x①y=x(1-y).若不等式(x-a)①(x+a)<1对任意的实数x都成立,则a的取值范围是________.15.已知2≤x≤3时,不等式2x2-9x+a<0恒成立,则a的取值范围为________.16.方程x2+(m-3)x+m=0有两个正实根,则m的取值范围是________.17.已知关于x的一元二次方程x2+2mx+2m+1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.18.某地区上年度电价为0.8元/kW·h,年用电量为a kW·h,本年度计划将电价降低到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价).【参考答案】1. D 解析①原不等式等价于⎩⎪⎨⎪⎧ x +5≥2(x -1)2,x ≠1,①⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1,①⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,即⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1. 2. A 解析4x +23x -1>0①(4x +2)(3x -1)>0①x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.3. C 解析原不等式等价于2-x x +1-1<0①1-2x x +1<0①(x +1)·(1-2x )<0①(2x -1)(x +1)>0,解得x <-1或x >12.4. D 解析 a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.5. C 解析 由已知可得m ≤x 2-4x 对一切x ①(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,①f (x )min =f (1)=-3,①m ≤-3.6. C 解析 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,①y =40-x ,①xy ≥300,①x (40-x )≥300,①x 2-40x +300≤0,①10≤x ≤30. 7. 4 解析x -ax +1>0①(x +1)(x -a )>0 ①(x +1)(x -4)>0,①a =4. 8. -2<m <2 解析 由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.9. 解 (1)①x +12x -3≤1,①x +12x -3-1≤0,①-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, ①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1.10.解 ①当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.①当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 11. A 解析①x 2+x +1>0恒成立,①原不等式①x 2-2x -2<2x 2+2x +2①x 2+4x +4>0①(x +2)2>0,①x ≠-2. ①不等式的解集为{x |x ≠-2}.12. B 解析 ①mx 2+2mx -4<2x 2+4x , ①(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x ①R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x ①R . 综上所述,-2<m ≤2.13. B 解析 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ①[-1,1]①⎩⎪⎨⎪⎧ g1=x 2-3x +2>0g-1=x 2-5x +6>0①⎩⎪⎨⎪⎧x <1或x >2x <2或x >3①x <1或x >3. 14. -12 <a <32 解析 根据定义得(x -a )①(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )①(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.15. a <9 解析 ①当2≤x ≤3时,2x 2-9x +a <0恒成立,①当2≤x ≤3时,a <-2x 2+9x 恒成立.令y =-2x 2+9x .①2≤x ≤3,且对称轴方程为x =94,①y min =9,①a <9.①a 的取值范围为a <9.16. (0,1] 解析 由题意得⎩⎪⎨⎪⎧Δ=m -32-4m ≥0x 1+x 2=3-m >0x 1x 2=m >0, 解得0<m ≤1.17. 解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组⎩⎪⎨⎪⎧ f 0=2m +1<0f -1=2>0f 1=4m +2<0f 2=6m +5>0解得-56<m <-12. 18. 解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至k x -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a (x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2ax -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧ x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.①当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.。
题习集合练1.设集合A={x|2 ≤x<4} ,B={x|3x -7≥8-2x} ,则A∪B 等于( )A.{x|x ≥3} B.{x|x ≥2} C .{x|2 ≤x<3} D .{x|x ≥4}2.已知集合A={1,3,5,7,9} ,B={0,3,6,9,12} ,则A∩B=( )A.{3,5} B .{3,6} C .{3,7} D .{3,9}3. 已知集合A={x|x>0} ,B={x| -1≤x≤2} ,则A∪B=( )A.{x|x ≥-1} B .{x|x ≤2 } C .{x|0<x ≤2} D .{x| -1≤x≤2} 4. 满足M?{ ,,,} ,且M∩{ ,,} ={ ,} 的集合M的个数是( ) A.1 B .2 C .3 D .45.集合A={0,2 ,a} ,B={1 ,} .若A∪B={0,1,2,4,16} ,则 a 的值为()A.0 B .1 C .2 D .46.设S={x|2x +1>0} ,T={x|3x -5<0} ,则S∩T=( )A.? B .{x|x< -1/2} C .{x|x>5/3} D .{x| -1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足{1,3} ∪A={1,3,5} 的所有集合 A 的个数是________.9.已知集合A={x|x ≤1} ,B={x|x ≥a} ,且A∪B=R,则实数 a 的取值范围是________.10. 已知集合A={ -4,2a -1,} ,B={a -5,1 -a,9} ,若A∩B={9} ,求a 的值.11.已知集合A={1,3,5} ,B={1,2 ,-1} ,若A∪B={1,2,3,5} ,求x 及A∩B. 12.已知A={x|2a ≤x≤a+3} ,B={x|x< -1 或x>5} ,若A∩B=? ,求 a 的取值范围.13.(10 分) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组人?的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少试集合测大题共10 小题,每小题 5 分,共50 分。
函数单元测试一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c∈R+,则3a =4b=6c ,则ﻩﻩ( )A.b a c 111+= ﻩB.b ac 122+= ﻩC.ba c 221+= ﻩﻩD.ba c 212+=2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射共有ﻩﻩ( )A .60个ﻩ B.45个C.27个D.11个3.已知()1a x f x x a -=--的反函数...f -1(x )的图像的对称中心是(—1,3),则实数a 等于ﻩ( )ﻩA.2ﻩB.3ﻩC .-2 D.-44.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是ﻩ( )A.11()(2)()43f f f >> ﻩB.11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>5.函数f (x )=1-x +2 (x ≥1)的反函数是ﻩﻩ( )A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C.y =(x-2)2+1 (x ≥2) ﻩD .y=(x -2)2+1 (x ≥1)6.函数y=l g(x 2-3x +2)的定义域为F ,y=lg(x -1)+l g(x -2)的定义域为G ,那么( )A.F ∩G=∅ B.F=GC .FG ﻩﻩD.GF7.已知函数y=f (2x )的定义域是[-1,1],则函数y =f (lo g2x )的定义域是ﻩ( )A.(0,+∞)B .(0,1)C.[1,2]ﻩﻩD.[2,4]8.若()()25log 3log 3x x -≥()()25log 3log 3yy---,则ﻩ( ) A .x y -≥0ﻩB .x y +≥0C .x y -≤0 ﻩD.x y +≤0 9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是ﻩ( )A.0≥b ﻩB .0≤b C.0<b ﻩD.0>b10.函数)2()(||)(x x x g x x f -==和的递增区间依次是ﻩﻩﻩ( )ﻩA .]1,(],0,(-∞-∞ ﻩﻩB .),1[],0,(+∞-∞ﻩ C .]1,(),,0[-∞+∞ ﻩﻩD),1[),,0[+∞+∞11.将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为 ( ) A .92元B.94元C.95元ﻩD.88元12.某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元 ﻩ( )A .2004年ﻩB.2005年ﻩC.2006年D.2007年二、填空题:(本题共4小题,每小题4分,满分16分) 13.函数x xy +=12[),1((+∞-∈x ]图象与其反函数图象的交点坐标为 . 14.若4log 15a<(0a >且1)a ≠,则a的取值范围是 . 15.lg 25+32lg8+lg5·lg20+lg 22= . 16.已知函数221)(xx x f +=,那么 =⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛++41)4(31)3(21)2()1(f f f f f f f ____________. 三、解答题:(本题共6小题,满分74分) 17.(本题满分12分)设A ={x ∈R|2≤ x ≤ π},定义在集合A 上的函数y =log a x (a>0,a ≠1)的最大值比最小值大1,求a 的值.18.(本题满分12分)已知f(x)=x2+(2+lg a)x+lg b,f(-1)=-2且f(x)≥2x恒成立,求a、b的值.19.(本题满分12分)“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?20.(本题满分12分)设函数f (x) =21+x +lg xx +-11 . (1)试判断函数f (x )的单调性 ,并给出证明;(2)若f (x )的反函数为f -1 (x ) ,证明方程f -1 (x )= 0有唯一解.21.(本题满分13分)某地区上年度电价为0.80元/kW· h,年用电量为a kW· h .本年度计划将电价降到0.55元/kW·h至0.75元/kW·h 之间,而用户期望电价为0.4元/k W·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本为0.3元/kW·h. (1) 写出本年度电价下调后,电力部门的收益y与实际电价x 的函数关系式. (2) 设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价)).22.(本小题满分13分)已知.0>c 设P :函数xc y =在R 上单调递减.Q:不等式1|2|>-+c x x 的解集为R,如果P 和Q 有且仅有一个正确,求c 的取值范围.参考答案三、解答题:(本题共6小题,满分74分)17.解析: a >1时,y =log ax 是增函数,log a π-log a 2=1,即lo ga2π=1,得a =2π. 0<a <1时,y =log ax 是减函数,log a2-log a π=1,即l og aπ2=1,得a =π2. 综上知a 的值为2π或π2.18.解析:由f(-1)=-2得:1-(2+lg a )+l gb=-2即lg b =l ga-1 ﻩ ﻩ ﻩ ﻩ ﻩ ①101=a b 由f (x )≥2x恒成立,即x 2+(l ga)x +lg b ≥0, ∴lg2a -4lg b≤0, 把①代入得,l g2a-4l ga +4≤0,(lg a -2)2≤0 ∴lg a =2,∴a =100,b =1019.解:(1)依税率表,有[[13.)0,0(,14.4(0,)(1,)5+∞,15.3,16.27]] 第一段:x ·5% 第二段:(x-500)·10%+500·5% 第三段:(x -2000)·15%+1500·10%+500·5%即:f (x )=⎪⎩⎪⎨⎧≤<+-≤<+-≤<)50002000( 175)2000(15.0)2000500(25)500(1.0)5000(05.0x x x x x x(2)这个人10月份纳税所得额 x =4000-800=3200f(3200)=0.15(3200-2000)+175=355(元) BB ACC DDBAC C C 答:这个人10月份应缴纳个人所得税355元.20.解析:(1)由).1,1()(02011-⎪⎩⎪⎨⎧≠+>+-的定义域为解得函数x f x x x)11lg 11(lg )2121()()(,11:1122122121x x x x x x x f x f x x +--+-++-+=-<<<-则设 )1)(1()1)(1(lg)2)(2(21212121x x x x x x x x +--++++-=.又∵,0,0)2)(2(2121<->++x x x x ).()(0)()(.0)1)(1()1)(1(lg 111)1)(1()1)(1(0,0)1)(1(,0)1)(1(,0)2)(2(1212212121122121212121212121x f x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x <<-∴<+--+⇒<--+--+=+--+<∴>+->-+<++-∴即又故函数f(x )在区间(-1,1)内是减函数.(2)这里并不需要先求出f(x)的反函数f -1(x),再解方程f -1(x )=0∵0)(21,0)21(,21)0(11===∴=--x f x f f 是方程即的一个解. 若方程f -1(x )=0还有另一解x 021≠,则.0)(1=-x f)0(f 又由反函数的定义知21≠,这与已知矛盾.故方程f-1(x)=0有唯一解.21.解析:(1)设下调后的电价为x 元/k W·h,用电量增至(4.0-x k+a)依题意知,y=(4.0-x k+a )(x -0.3),(0.55≤x ≤0.75)(2)依题意有⎪⎩⎪⎨⎧≤≤+⨯-⨯≥-+-75.055.0%)201()]3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-75.055.003.01.12x x x 解此不等式得0.60≤x ≤0.75答:当电价最低定为0.60元/kW·h ,仍可保证电力部门的收益比去年至少增长20%. 22.解析:函数xc y =在R上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ ∵⎩⎨⎧<≥-=-+,2,2,2,22|2|c x c c x c x c x x ).,1[]21,0(.1,,.210,,.21121|2|.2|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y。
高一数学必修第一二章测试题及答案The Standardization Office was revised on the afternoon of December 13, 2020第一.二章《三角函数》单元检测试卷一、选择题:(本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在平行四边形ABCD 中,BD CD AB +-等于()A .B .C .D .2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值()A .13B .3C .42D .73.函数sin(2)3y x π=+图像的对称轴方程可能是()A .6x π=-B .12x π=-C .6x π=D .12x π=5.点A(x,y)是300°角终边上异于原点的一点,则xy值为() 333333函数)32sin(π-=x y 的单调递增区间是()A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin(-310π)的值等于() A .21B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是() A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是()A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是()A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是()A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是() A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D .5sin )5sin(3sin >->二、填空题(每小题5分,共20分)13.终边在坐标轴上的角的集合为_________.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P(-5,12),则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:(本大题共6小题,共70分。
第 1 页 共 8 页
高一数学必修一综合训练试卷2
班级: 姓名: 学号:
本试卷分选择题和非选择题两部分,共7页,满分为150分.考试用时120分
钟.
第一部分选择题(共70分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项
中,只有一个是符合题目要求的.
1.下列函数中,在其定义域内既是奇函数又是增函数的是( )
A.Rxxy, B.Rxyx,2
C.Rxxy,3 D.23,yxRx
2.已知全集UZ,}3,2,1,0{A,}2{2xxxB,则UACB为( )
A.}3,1{ B.}2,0{ C.}3,1,0{ D.}2{
3.设5log31a,513b,3.051c,则有( )
A.abc B.cba
C.cab D.bca
4 已知函数yfx()1的定义域是[]23,,则()yfx的定义域是( )
A [1,2] B []14, C ,4[3] D ,2[3]
5.已知定义域为R的函数)(xf在),4(上为减函数,且函数()yfx的对
称轴为4x,则( )
A.)3()2(ff B.)5()2(ff
C.)5()3(ff D.)6()3(ff
6.函数xxxf2ln)(的零点所在的大致区间是( )
A.)1,1(e B.(1,2) C.),2(e D.),(e
7.函数lgyx 的图象是( )
第 2 页 共 8 页
8.函数213()log(6)fxxx的单调递增区间是( )
A.),21[ B.)2,21[ C.]21,( D.(﹣3, ]21
二、填空题:本大题共6小题, 每小题5分,满分30分.
9.已知32()logfxx,那么)8(f等于 .
10.函数2)3lg(xxy的定义域是 .
11.若函数()(0,1)xfxaaa的反函数记为()ygx,(16)2g,
则1()2f .
12.已知f(x)= )0(2)0(12xxxx若()10fx,则x .
13 若1xx,则x的取值范围是____________
14.关于函数()lg1()fxxxR有下列命题:
①函数)x(fy的图象关于y轴对称;
②在区间)0,(上,函数)x(fy是增函数;
③函数)x(f的最小值为0.
其中正确命题序号为_______________.
第二部分非选择题(共80分)
三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证
过程.
15.计算下列各题(本题每小题7分,满分14分)
C
第 3 页 共 8 页
(1)220.533342(3)(5)(0.008)8925
(2)计算1.0lg21036.0lg21600lg)2(lg8000lg5lg23.
16 (本题满分13分)
已知函数()fx的定义域为1,1,且同时满足下列条件:
(1)()fx是奇函数;
(2)()fx在定义域上单调递减;
(3)2(1)(1)0,fafa求a的取值范围
第 4 页 共 8 页
17.(本题满分13分)
函数2()21fxxaxa在区间0,1上有最大值2,求实数a的值
18.(本题满分13分)
已知集合{25},Axx{1,21}Bxxmxm且,
且ABA,求实数m的取值范围.
19.(本题满分14分)
已知函数()22421,xxfx,求函数)(xf的定义域与值域.
第 5 页 共 8 页
20.(本题满分13分)
集合A是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈4,2 且
f(x)在(0,+∞)上是增函数.
(1)试判断f1(x)= 2x及f2(x)=4﹣6(21)
x
(x≥0)是否在集合A中,若不在
集合A中,试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)
对于任意x≥0总成立.
第 6 页 共 8 页
答案
一、选择题:(满分40分)
1. C. 2.A. 3. D. 4 B 5. D. 6. C. 7. B 8. B.
二.填空题:(满分30分)
9. 1 10.)3,2()2,(
11. 2 12. -3或5
13.(0,1] 14. ① ③
三、解答题:
15.解:
(1)原式=22133284910002()()()279825
472171
252932599
7分
(2)分子=3)2lg5(lg2lg35lg3)2(lg3)2lg33(5lg2;
分母=41006lg26lg101100036lg)26(lg;
原式=43.
14分
16.解:22(1)(1)(1)fafafa,
2分
则2211111111aaaa,
11分
第 7 页 共 8 页
01a
. 13
分
17 解:对称轴xa,
2分
当0,0,1a是()fx的递减区间,
max
()(0)121fxfaa
; 6分
当1,0,1a是()fx的递增区间,max()(1)22fxfaa;
9分
当01a时2max15()()12,,2fxfaaaa与
01a
矛盾; 12分
所以1a或2
13分
18.解:∵ABA,∴AB.
4分
若B,则2121mmm,满足AB;
6分
若B,则3233251221121mmmmmmmm.
12分
综上,m的取值范围是2m或32m,即3m.
13分
19.解:由420x,得24x.
3分
解得2x 定义域为2xx
第 8 页 共 8 页
8分
令42xt, 9分 则4)1(12422ttty.
11分
∵20t,∴35y,
∴值域为]3,5(.
14分
20.(1)时当49x 4,25)49(1f
)(1xf
不在集合A中
3分
又)(2xf的值域4,2,4,2)(2xf
当0x时)(2xf为增函数
)(2xf
在集合A
中. 7分
(2))1(2)2()(222xfxfxf
12)21(642)21(64)21(64
xxx
)0(0)21(6)21()21()21(26221x
xxxx
)(2xf
对任意0x,不等式)1(2)2()(222xfxfxf总成
立. 13分