倒立摆论文
- 格式:doc
- 大小:3.18 MB
- 文档页数:61
倒立摆系统的设计摘要倒立摆是一个非线性、强耦合、多变量和自然不稳定的系统。
通过它能有效地反映控制过程中诸如可镇定性、鲁棒性、随动性以及跟踪等多种关键问题,是检验各种控制理论的理想模型。
对倒立摆系统的研究不仅具有很重要的理论意义,而且在航天科技和机器人学领域中也有现实指导性意义。
本文以直线二级倒立摆模型为控制对象,阐述了倒立摆稳定控制的研究现状以及倒立摆系统的控制系统及机械结构组成。
在数学模型的基础上,重点分析基于Lagrange方程进行数学模型的方法,以及系统的能控性和能观测性。
接着进行了倒立摆系统的LQR控制方法研究。
运用最优控制理论,探讨了加权矩阵Q 和R的选取方法。
然后利用Matlab软件建立倒立摆系统模型,对二级倒立摆的LQR控制器进行了设计与仿真,利用Simulink建立了二级倒立摆的LQR控制模型,实现了二级倒立摆系统的稳定控制。
结果表明本文所给出的控制策略是有效的。
最后对倒立摆系统时滞问题进行了分析,给出了系统稳定性的判别公式。
关键词:倒立摆;Lagrange方程;数学模型;最优控制;SIMULINKDesign of Inverted Pendulum SystemABSTRACTInverted pendulum is a nonlinear,coupling,variable and natural unsteadiness system.During the controlprocess,pendulum can effectively reflect many pivotal problems such as equanimity, robust,follow-up and track.Therefore,it is a perfect model used to testing various control theories.Studying on inverted pendulum not only has a very important theory significance,but also has a realistic directory meaning in aerospace science and technology and robotics.In this paper,we establish mathematical models of double inverted pendulum system,and analyze the controllability and observability of these models.According to the theoretical analysis,this paper puts forward a solution that it is found by Linear Quadratic Optimal Control Theory.In the following,we design a double inverted pendulum’s controller based on the theory.Based on introducing the present established mathematical model,the method of the Mathematical model was done by analyzing the Lagrange equation. And the system characteristic was briefly analyzed.Next we do research on LQR control algorithm of inverted pendulum system.By using optimization control theory,the selection of matrix Q and R is dicussed.It is introduced how to realize the simulation of the inverted pendulum system by the Matlab.Double inverted pendulum LQR controller is designed and emulated.LQR control model is programmed by Simulink, control of double inverted pendulum hardware system is realized.And it indicates that the control strategy proposed in this paper is effctive.Finally,we analysis the time-delay problem of double inverted pendulum system, get the giscriminant formula of the Stability of the system.Keywords: inverted pendulum;Lagrange equation;mathematical model;optimization control theory;Simulink目录1绪论 (1)1.1倒立摆系统研究的意义和前景 (1)1.2倒立摆系统的研究现状 (1)1.3课题任务 (2)2倒立摆系统建模与性能分析 (3)2.1系统数学模型的建立 (3)2.1.1倒立摆系统的运动分析 (3)2.1.2模型建立的基本方法 (4)2.1.3模型的建立 (4)2.2倒立摆系统性能分析 (8)2.2.1系统稳定性原理 (8)2.2.2系统能控性和能观性 (9)2.2.3二级倒立摆系统性能 (9)3 倒立摆系统控制与仿真 (11)3.1 LQR理论基础 (11)3.1.1 线性二次型问题 (11)3.1.2无限时间状态调节器问题 (12)3.2矩阵黎卡提方程的求解 (12)3.3 Simulink概述 (12)3.4二级倒立摆最优控制器的设计 (13)3.4.1最优控制器的设计 (13)3.4.2二级倒立摆系统仿真 (14)4倒立摆系统的实时控制 (17)4. 1硬件在回路仿真技术 (17)4.2系统实现方案介绍 (17)4.3系统实时性分析 (18)4.4系统实现方案确定 (20)4.5本章小结 (20)5摆系统时滞问题 (21)5.1 系统的稳定性 (21)5.2小结 (23)6 结论 (24)谢辞 (25)参考文献 (26)附录A (27)附录B (34)1 绪论1.1倒立摆系统研究的意义和前景倒立摆系统是一个非线性程度严重的高阶不稳定系统,也是一个典型的多变量系统。
摘要倒立摆是进行控制理论研究的典型实验平台,许多抽象的控制理论概念,如系统的稳定性、可观性及可控性等都可以通过该系统直观地表示出来。
倒立摆系统是一个典型的非线性、强耦合、多变量的不稳定系统,在控制研究领域有着代表性的意义,难以用经典的控制理论建立其控制器。
倒立摆作为控制系统的被控对象,许多抽象的控制概念都可以通过它直观的表现出来。
本毕业设计以直线倒立摆为研究对象,对直线一级倒立摆模型控制算法的仿真,并得出了相应的结论。
首先对倒立摆的分类、特性、控制目标、控制方法等以及倒立摆控制研究的发展及其现状进行了分析。
然后利用动力学原理推导了直线一级倒立摆的数学模型,求出其传递函数及状态空间方程。
利用现代控制理论方法,借助MATLAB程序分析了直线倒立摆系统的稳定性、可控性和可观性。
在建立系统模型的基础上,研究了倒立摆系统的控制策略。
对直线一级倒立摆控制采用经典控制方法,设计了常规PID控制器、双路PID控制器及基于倒立摆系统的状态空间方程PID控制器,并利用MATALAB/Simulink软件进行仿真,取得不同的控制效果。
对直线一级倒立摆控制采用现代控制方法,设计了LQR控制器,得出直线一级倒立摆LQR控制仿真图,通过改变Simulink的LQR模块及状态空间模块中的参数得到最好的控制效果。
关键词:倒立摆;PID控制;最优控制;系统仿真;SIMULINKAbstractThe inverted pendulum is put to go on in the typical experiment platform which controls the theoretical research, a lot of abstract control theory concepts,such as instance systematic stability, considerable and controllability,etc. can all show ocularly thought this system.The inverted pendulum system is characterized as a fast multi-variable nonlinear essentially unsteady system. Control research fieldrepresentative meaning, set up his controller with the classical control theory while being difficult. The handstand is put as the target of accusing of of the control system, a lot of abstract control concepts can all show ocularly through it.Graduation project this wave, for research object, wave model emulation to control algorithm with straight line handstand to straight line first class handstand have drawn the corresponding conclusionhas made the modelings, control algorithm simulations and experiments on the 1-stage inverted pendulum, and has drawn the corresponding conclusion.At first to classification, characteristic, control goal that handstand wave, control method,etc. and handstand wave development and current situation studied to control analyze. Then utilize the dynamics principle to derive the mathematical model that the straight line first class handstand puts, ask it out and transmit the function and state space equation. Utilize the modern control theory.The control stategies of inverted pendulum system have been studied on the basis of building system model. By taking classic control methods to the linear 1-stage inverted pendulum, designed have been the conventional PID controller and double closed loop controller and the PID controller based on state space equation of inverted pendulum system. And by making MATALAB/Simulink simulation, different effects have been acquired By taking modern control methods to the linear1-stage inverted pendulum, the LRQ controller has been devised, the LRQ control simulation figure of the linear 1-stage inverted pendulum has been obtained. And by altering the parameters of Simulink LRQ model and state space model, the best control result has been achieved.Key words: Stand upside down swaying; PID controls; Optimal control; System simulates; SIMULINK目录摘要 (I)Abstract (II)目录............................................................................................................................................... I II 第一章绪论.. (1)1.1 倒立摆的简单分析 (1)1.2 倒立摆的分类 (1)1.3倒立摆的特性 (2)1.4倒立摆的控制方法 (3)1.5国内外对于倒立摆的研究现状 (3)1.6本章小结 (5)第二章直线倒立摆数学模型的建立 (7)2.1 直线一级倒立摆系统的数学模型 (7)2.1.1 直线一级倒立摆系统运动方程的推导 (7)2.1.2直线一级倒立摆系统分析 (11)2.2本章小结 (15)第三章直线一级倒立摆系统PID控制与仿真 (16)3.1PID控制系统设计原理 (16)3.2 PID参数调整 (17)3.3 直线一级倒立摆PID控制器设计 (18)3.3.1 直线一级倒立摆摆杆角度控制 (18)3.3.2直线一级倒立摆小车位置控制 (19)3.4直线一级倒立摆PID控制算法仿真 (20)3.4.1直线一级倒立摆杆角度控制算法仿真 (20)3.4.2直线一级倒立摆小车位置控制算法仿真 (22)3.5直线一级倒立摆双闭环PID控制算法仿真 (24)3.6本章小结 (26)第四章直线倒立摆系统LQR控制与仿真 (28)4.1线性二次型最优控制LQR控制原理简介 (28)4.2倒立摆LQR控制器的设计 (29)4.3直线一级倒立摆LQR控制算法仿真 (31)4.4 本章小结 (35)第五章总结与展望 (36)参考文献 (37)致谢 (38)第一章绪论1.1 倒立摆的简单分析倒立摆是处于倒置不稳定状态、通过人为控制使其处于动态平衡的一种摆,是一个复杂的快速、非线性、多变量、强祸合、自然不稳定系统,是重心在上、支点在下控制问题的抽象。
摘要毕业论文倒立摆智能控制算法的研究摘要倒立摆是典型的多变量、非线性、强耦合的自然不稳定系统。
本设计选用单级旋转倒立摆,采用模糊控制的智能算法进行倒立摆的稳定控制研究。
为了克服模糊控制中存在的不足之处,引入了线性二次最优控制和状态变量融合函技术。
论文主要工作如下:采用用拉格朗日方程建模法建立旋转式倒立摆系统数学模型,并对其线性化得到系统的状态方程。
首先利用线性二次最优控制对倒立摆进行了稳定控制仿真研究,求得最优状态反馈阵;为了解决控制中的“规则爆炸”问题,引入了融合技术。
本文所使用的融合技术是根据线性二次最优控制原理,计算出倒立摆系统的状态反馈矩阵,生成转换状态向量的融合函数,采用融合技术设计“线性融合函数”将最优控制理论与模糊控制算法的结合起来设计模糊控制器。
用Matlab/Simulink工具对旋转倒立摆模糊控制系统进行仿真研究,最后结果证明:所设计的模糊控制器可以实现对倒立摆系统的稳定控制。
关键词单级旋转倒立摆;线性二次最优控制;状态融合函数;模糊控制燕山大学本科生毕业设计(论文)AbstractInverted pendulum is a typical,multi-variable. inverted pendulum non-liner,Intelligent algorithm based on fuzzy control research on stability of Inverted Pendulum control. In order to overcome the deficiencies in the fuzzy control,and introduces linear quadratic optimal control and status variables fusion technology. Main work of the thesis is as follows:The mathematical model of the inverted pendulum with Lagrange equation is deduced.First,by using linear quadratic optimal control Simulation Study on stability control of Inverted Pendulum,find the optimal State Feedback matrix ; The fusion techniques used in this article is based on the linear quadratic optimal control theory, to calculate the Inverted Pendulum System State Feedback matrix, the resulting conversion integration of the state vector functions. And then uses the fusion design " linear combination of functions " The combination of fuzzy control algorithm of optimal control theory and design of fuzzy controller.With matlab/simulink tool Simulation Study on fuzzy control system of Rotary Inverted Pendulum,the final results proved that the design of fuzzy controller can be achieved on stability control of Inverted Pendulum systems.Keywords rotational inverted pendulum;linear quadratic optimal control;State Fusion function;fuzzy control目录摘要 (I)Abstract ................................................................................................................ I I 第1章绪论.. (1)1.1课题背景 (1)1.2倒立摆研究发展现状 (1)1.3倒立摆系统的控制算法 (2)1.3.1 经典控制理论的方法 (2)1.3.2现代理论控制方法 (2)1.3.3 智能控制方法 (3)1.4本课题研究的主要内容 (5)第2章倒立摆系统的定性分析和数学建模 (6)2.1倒立摆系统的特性分析 (6)2.2倒立摆系统的建模 (7)2.2.1 旋转倒立摆的控制结构分析 (7)2.2.2 数学模型的建立 (8)2.3本章小结 (11)第3章倒立摆LQR控制器的设计与仿真 (12)3.1LQR控制器的设计与调节 (12)3.2LQR控制器的仿真研究 (14)3.3本章小结 (17)第4章模糊控制原理与模糊控制器设计 (18)4.1模糊控制理论的基本知识 (18)4.1.1模糊控制的数学基础 (18)4.1.2模糊控制系统的特点 (19)4.2模糊控制器基本原理 (20)4.3模糊控制器设计 (21)4.3.1 模糊控制器的结构设计 (22)4.3.2 精确量的模糊化方法 (23)4.3.3 模糊推理 (24)4.3.4 模糊量的去模糊化 (26)4.4本章小结 (27)第5章倒立摆系统模糊控制器的设计与仿真 (29)5.1状态变量融合设计 (29)5.1.1状态变量融合技术 (29)5.1.2.最优状态变量合成函数的设计 (29)5.2基于变量融合模糊控制器的设置 (31)5.3量化因子和比例因子 (35)5.4基于变量融合模糊控制器的仿真 (36)5.5本章小结 (39)结论 (41)参考文献 (42)致谢 (45)附录1 开题报告 (46)附录2 文献综述 (50)附录3 中期报告 (52)附录4 外文译文及其复印件 (55)第1章绪论第1章绪论1.1 课题背景杂技演员顶杆表演是人们熟悉的一种表演形式,不仅需要精湛的技艺,更重要的是它的物理机制与控制系统的稳定性密切相关。
倒立摆的仿真与实时控制摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真DESIGN AND RESEARCH OF INVERTEDPENDELUMabstractInverted pendulum system is a typical fast, multivariable, nonlinear and unstable system, the control of the inverted pendulum research both in theory and methods on have far-reaching significance. This paper by laboratory original straight line level inverted pendulum experiment device as a platform, focuses on the PID control method, designed the corresponding PID controller, and the control process simulation in MATLAB. This article main research content is: first Outlines the development of automatic control and the present situation of the inverted pendulum system research; Introduces the composition of hardware of inverted pendulum system, modeling of single-stage inverted pendulum model, and analyze its stability; Study several kinds of inverted pendulum system control strategy, the corresponding controller is designed, based on the MATLAB, do a lot ofsimulationKey words: primary inverted pendulum, PID, the MATLAB simulation毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
简易旋转倒立摆设计论文摘要:该系统有一个非常重要的性质——它是非线性不稳定的。
不稳定系统的控制问题是目前大多数控制系统需要克服的难点,有必要在实验室中研究,但是由于绝大多数的不稳定控制系统都存在着危险性,因此成了实验室研究的主要障碍。
而倒立摆系统却能很好地解决这一矛盾,它简单、安全并且具备了一个非稳定系统所具有的重要的动态特性,因此,本系统对控制系统的设计而言可以说是一个比较理想的研究模型。
倒立摆控制系统是一个复杂的、不稳定的非线性系统,是进行控制理论研究和实验的理想平台。
目前,亚洲、日本、韩国、俄罗斯、美国等多个国家都在进行这个领域的研究。
对于倒立摆控制的研究有着非常重大的现实意义,机器人的站立与行走类似双倒立摆系统,而机器人的行走控制至今仍未很好地解决。
对倒立摆系统的研究能有效地反应控制中的许多问题:如非线性问题、鲁棒性问题[1]、镇定问题及跟踪问题等。
通过对倒立摆的控制,可用来检测新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天和一般工业过程领域中都有着广泛的用途,如火箭发射中的垂直度控制和卫星飞行过程中十分重要的姿态控制等。
倒立摆的种类很多,有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆等;根据级数也可以将其分为一级、二级、三级乃至多级。
本文主要就旋转平面的一级倒立摆系统进行研究,采用MC9S12XS128微控制器通过速度闭环和DIP算法控制使该倒立摆系统完成包括往复摆动直至完成圆周运动、保持倒立、倒立状态下的圆周运动以及抗干扰测试等一系列动作,主题思想是对摆杆的姿态进行实时的、精确的调整。
1 系统方案设计1.1 系统设计总方案本倒立摆系统主要由三大部分组成:电机驱动电路、倒立摆装置和微控制器。
倒立摆的工作原理为:通过数字电位计得到反馈电压,经转化得到摆杆的实际角度,微分后得到其速度,连杆的位置和速度可以通过电机编码器(200p/r)转换得到,MCU(微控制器)根据上述四个输入使用增量式PID算法,预调节PWM波脉宽以及驱动端口信号,来分别调节电机转速和转向,实现倒立摆的稳定控制。
倒立摆控制器的设计与研究摘要倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统,是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合。
在控制过程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。
控制器的设计是倒立摆系统的核心内容。
目前典型的控制器设计理论有PID控制、根轨迹以及频率响应法、状态空间法、最优控制理论等。
本文详细介绍了一级倒立摆系统的控制器设计过程,首先概述了倒立摆系统的数学模型,其次,分别采用PID控制算法和状态空间极点配置法对倒立摆系统进行了控制器设计。
在设计控制器的过程中,采用Matlab软件对控制系统进行编程仿真,并用M文件以及Simulink工具箱对所采用的设计方法进行仿真。
仿真结果验证了算法的有效性,同时表明采用状态空间极点配置法所设计的控制器能够同时控制摆杆的角度以及小车的位置,较经典的PID控制算法好。
关键词:倒立摆;PID控制;极点配置;状态空间DESIGN AND RESEARCH OF INVERTED PENDELUMABSTRACTInverted Pendulum is a nonlinear, coupling, variable and natural unsteadiness system, which includes robot technology, control theory, computer control and so on. During the control process, pendulum can effectively reflect many pivotal problems such as equanimity, robust, follow-up and track. Therefore, it is a perfect model used to testing various control theories.The design of controller is a main work of pendulum system. At present, the methods of controller design include: PID control, root locus and frequency respond, state-space method, optimal control theory and so on.The process of a controller design for the first-level inverted pendulum system is introduced.In this paper, a PID control and a pole assignment with state-space design are proposed.The Matlab software is used to carring out a program and simulation in the process of the controller design. The M-file and simulink tool box are applied, and the result shows that these methods are effective. Form this paper, the controller designed by pole assignment with state-space is able to control the angle of pendulum bar and the location of handcart at the same time. The simulation shows that the method of state-space is better than traditional PID control algorithm.Key words:Inverted pendulum; PID control; Pole assignment; State-space第1章绪论1.1 引言杂技顶杆表演之所以为人们熟悉,不仅是其技术的精湛引人入胜,更重要的是其物理本质与控制系统的稳定性密切相关。
线性系统倒立摆实验(5篇材料)第一篇:线性系统倒立摆实验直线倒立摆控制及一级正摆位移和角度控制一、实验目的(1)在Matlab Simulink环境下实现控制伺服电机;(2)完成直线倒立摆建模、仿真与分析;(3)通过控制器设计使倒立摆系统稳定运行(摆角保持零度附近):二、实验内容及要求(1)状态空间极点配置控制实验(一组极点为书上指定,任选另一组,但保证控制效果要好于前者)具体记录要求:在稳定后(先截一张图),叠加一扰动(仅角度扰动),记录消除扰动的过程(再截一张图),同时记录你所选择的期望极点组。
(2)线性二次最优控制LQR 控制实验(R,Q选择为书上指定,任选另一组,但保证控制效果要好于前者)具体记录要求:在稳定后(先截一张图),叠加一扰动(仅角度扰动),记录消除扰动的过程(再截一张图),同时记录你所选择的R,Q取值。
(3)一级正摆位移和角度控制借助于正摆实验平台,构思、设计控制策略和控制算法,并编程实现,通过实验设备将物体快速、准确地运输到指定的位置,且在吊运的整个过程(起吊,运输,到达目的地)保持较小的摆动角。
要求:系统启动后,在当前位置给正摆施加一角度扰动,当平衡(摆角为零)后,让小车直线运行30厘米,并快速保证平衡(摆角为零)。
三、实验过程1.实验方法(1)Matlab Simulink仿真环境下精确控制电机在MATLAB Simulink仿真环境中,建立模型,然后进行仿真并分析结果。
(2)直线倒立摆建模、仿真与分析利用牛顿力学进行受力分析,然后建立直线一级倒立摆系统的数学模型;进行仿真分析。
(3)状态空间极点配置控制实验进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted PendulumLinear Inverted PendulumLinear 1-Stage IP Experiment PolesExperiments”中的“Poles Control M File1”。
直线一级倒立摆控制方法研究毕业论文目录前言 (1)第1章倒立摆系统 (2)1.1 倒立摆的简介 (2)1.2 倒立摆的分类 (3)1.3 倒立摆的特性 (5)1.4 控制器的设计方法 (6)1.5 倒立摆系统研究的背景及意义 (6)1.6 直线倒立摆控制系统硬件框图 (8)第2章倒立摆的数学模型 (9)2.1 数学模型概述 (9)2.2 拉格朗日建模法 (9)2.3 倒立摆系统参数 (11)2.4 实际数学模型 (12)第3章MATLAB工具软件 (13)3.1 MATLAB简介 (13)3.2 SIMULINK仿真 (14)3.3 SIMULINK仿真建模方法 (15)第4章PID控制 (17)4.1 PID控制简述 (17)4.2 国内外的研究现状和发展趋势 (18)4.3 PID控制器设计 (20)4.4 PID控制器参数的整定 (21)第5章直线一级倒立摆的PID控制 (22)5.1 直线一级倒立摆的PID控制Simulink仿真 (22)5.2 直线一级倒立摆的PID仿真程序 (25)5.3 直线一级倒立摆的PID实时控制 (26)第6章直线一级倒立摆LQR控制 (29)6.1 线性二次最优控制LQR基本原理及分析 (29)6.2 LQR控制参数调节及仿真 (30)6.3 直线一级倒立摆LQR控制simulink仿真 (32)6.4 直线一级倒立摆LQR控制 (34)结论 (37)谢辞 (38)参考文献 (39)附录 (41)外文资料翻译 (45)MATLAB (45)MATLAB简介 (51)前言倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备]2[。
二级直线倒立摆的滑模控制器的设计与仿真摘要直线倒立摆是我国高校控制实验室里的经典设备,对这样一个多变量、高度非线性、强藕合的自然不稳定系统所进行的稳定控制性能研究,既有着重要的理论意义,又有很实际的工程实践指导价值。
滑模变结构控制具有独特的鲁棒性能以及对匹配不确定性和外干扰的完全适应性等特点,本文在掌握滑模变结构控制理论的国内外研究现状的基础上,理论联系实际,将滑模变结构控制理论应用于二级直线倒立摆中,对小车和摆杆进行了稳定控制和实时控制的相关研究。
引入饱和函数对变结构控制器加以改进,结果表明,采用饱和函数的控制律虽能有效地削弱系统抖振,提高了系统的控制品质,但其鲁棒性能不强。
在直线倒立摆控制系统仿真平台上将这两种控制方案编写C-MEX文件S-Function程序,均成功地实现了二级倒立摆系统的变结构实时控制。
分别将指数趋近律的滑模变结构控制、基于饱和函数和连续函数的准滑模变结构控制和模糊趋近律的滑模变结构控制策略应用于二级直线倒立摆系统中。
结果表明,单一的变结构控制器能够对直线倒立摆系统起到稳定控制的作用,但系统会出现强烈的抖振。
即使在此基础上引入饱和函数或连续函数等改进控制器方案,使抖振得到抑制,但系统的控制品质将会有所下降。
而结合模糊控制后的模糊变结构控制策略,不但可以通过削弱抖振改善系统的控制品质,而月还可以维持系统的强鲁棒性。
关键词:变结构控制;抖振;模糊趋近律;倒立摆系统;实时控制Two linear inverted pendulum sliding controller design andsimulationABSTRACThe linear inverted pendulum is a classical equipment of university's control laboratory in our country, research the stability control performance which such as multivariable, highly nonlinear, strong coupling and natural unstable systems, not only has the important theoretical significance, but also has a very practical guidance value to the engineering practice.The sliding mode variable structure control has excellent robustness and complete adaptability to the uncertainties and external disturbance, On the basis of the current research of the developed sliding mode variable structure control theory at home and abroad, linking theory with practice, sliding mode variable structure control theory is presented to double linear inverted pendulum, stability control and real-time control research about the car and the pendulum have done in this paper.The sliding mode variable structure control based on sign function is presented to deal with the single inverted pendulum system, the violent chatting problem have appeared in the simulation results. Introducing saturation function to improve controller, the results show that it can effectively reduce the system chattering and improve the control quality of system based on reaching law of by saturation function, but the robustness isn't strong. On the simulation platform of linear inverted pendulum system,it successfully realized the variable structure real-time control of the single inverted pendulum based on the C一MEX S一Function programs of two control scheme.The double linear inverted pendulum system is balanced by the sliding mode variable structure control based on exponential velocity reaching law,the sliding mode variable structure control based on reaching law of by saturation function and continuous function,and the sliding mode variable structure control based on fuzzy reaching law results show that a single variable structure controller although able to accomplish the stability control the linear pendulum, but the system has strong chattering. Even in this basis through the saturation function and continuous function to improve controller can reduce the chattering, but the quality of control system will bining the fuzzy logic control in variable structure control strategy, not only can through reduce chattering to improve the control quality of system,and still can keep the strong robustness of system.Key words: Variable structure control; Chattering; Fuzzy reaching law;Inverted pendulum system; Real-time control目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1. 1倒立摆控制的研究现状 (1)1.1.1倒立摆的起摆控制研究 (1)1. 1. 2倒立摆的稳定控制研究 (1)1.2变结构控制 (2)1. 2. 1变结构控制理论的起源与研究热点 (2)1.2.2滑模变结构控制理论的应用 (4)1.3课题研究目的及意义 (5)1.4研究的具体内容 (6)1.4.1倒立摆系统变结构控制研究实施的具体方案 (6)1.4.2论文主要内容 (6)第2章滑模变结构控制方法 (8)2.1 滑模变结构控制系统简介 (8)2.1.1滑模变结构控制系统的定义 (8)2.1.2滑动模态的到达条件 (9)2.2 滑模变结构系统的不变性 (9)2.3滑模变结构控制器综合设计方法 (11)2.4抖振的研究 (11)第3章二级直线倒立摆的滑模变结构控制 (14)3.1 二级直线倒立摆系统的硬件组成及工作原理 (14)3.2 二级直线倒立摆系统建模 (15)3.3二级直线倒立摆系统的变结构控制仿真 (17)第4章模糊趋近律的滑模变结构控制研究 (26)4.1模糊控制基础理论 (26)4.1.1模糊控制器的工作原理 (26)4.1.2模糊控制器的设计 (27)4.2模糊滑模变结构控制简介 (30)4.3基于模糊趋近律的二级倒立摆变结构控制 (30)4.3.1趋近律性质分析 (30)4.3.2基于模糊控制律的变结构控制器设计 (31)4.3.3仿真结果及分析 (33)第5 章总结 (36)参考文献 (37)谢辞 (39)第1章绪论1. 1倒立摆控制的研究现状研究倒立摆控制最早始于美国麻省理工学院,那是20世纪50年代,研究者根据火箭发射中的助推器工作原理设计出了一级倒立摆。
直线倒立摆论文**: ***班级:13自动化一班学号:***********日期:2015.05.22摘要倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
第一章绪论1.1 引言杂技顶杆表演之所以为人们熟悉,不仅是其技术的精湛引人入胜,更重要的是其物理本质与控制系统的稳定性密切相关。
它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控制对象,通过控制手段可使之具有良好的稳定性。
由此不难看出杂技演员顶杆表演的物理机制可简化为一个倒置的倒立摆装置,也就是人们常称的倒立摆或一级倒立摆系统。
早在上世纪60年代人们就开始了对倒立摆系统的研究。
倒立摆作为一个典型的不稳定、严重非线性的例证,用来检验控制方法对不稳定、非线性和快速性系统的控制能力。
而用不同的控制方法控制不同类型的倒立摆受到世界各国许多科学家的重视,成为目前具有挑战性的课题之一。
1 实验意义在控制理论发展的过程中,某一理论的正确性及实际应用中的可行性需要一个按其理论设计的控制器去控制一个典型对象来验证。
倒立摆就是这样一个被控制对象倒立摆系统是一个多变量、快速、非线性和自然不稳定系统。
在控制过程中能有效地反映控制中的许多关键问题,如非线性问题系统的鲁棒性问题,随动问题镇定问题,及跟踪问题等。
倒立摆系统作为一个实验装置形象直观结构简单,构件组成参数和形状易于改变,成本低廉,倒立摆系统的控制效果可以通过其稳定性直观地体现,也可以通过摆杆角度小车位移和稳定时间直接度量,其实验效果直观显著,当新的控制理论与方法出现后,可以用倒立摆对其正确性和实用性加以物理验证,并对各种方法进行快捷有效生动的比较。
早在60 年代人们就开始了对倒立摆系统的研究1966 年Schaefer 和Cannon 应用Bang Bang控制理论将一个曲轴稳定于倒置位置在60 年代后期作为一个典型的不稳定严重非线性证例提出了倒立摆的概念并用其检验控制方法对不稳定非线性和快速性系统的控制能力受到世界各国许多科学家的重视从而用不同的控制方法控制不同类型的倒立摆成为具有挑战性的课题之一倒立摆的种类很多有悬挂式倒立摆平行倒立摆环形倒立摆平面倒立摆倒立摆的级数可以是一级二级三级四级乃至多级倒立摆的运动轨道可以是水平的还可以是倾斜的(这对实际机器人的步行稳定控制研究更有意义) 控制电机可以是单电机也可以是多级电机。
倒立摆的研究具有重要的工程背景:(1) 机器人的站立与行走类似双倒立摆系统尽管第一台机器人在美国问世至今已有三十年的历史机器人的关键技术机器人的行走控制至今仍未能很好解决(2) 在火箭等飞行器的飞行过程中为了保持其正确的姿态要不断进行实时控制(3) 通信卫星在预先计算好的轨道和确定的位置上运行的同时要保持其稳定的姿态使卫星天线一直指向地球使它的太阳能电池板一直指向太阳(4) 侦察卫星中摄像机的轻微抖动会对摄像的图像质量产生很大的影响为了提高摄像的质量必须能自动地保持伺服云台的稳定消除震动(5) 为防止单级火箭在拐弯时断裂而诞生的柔性火箭(多级火箭) 其飞行姿态的控制也可以用多级倒立摆系统进行研究。
由于倒立摆系统与双足机器人火箭飞行控制和各类伺服云台稳定有很大相似性因此对倒立摆控制机理的研究具有重要的理论和实践意义。
2 倒立摆控制理论研究现状对倒立摆这样的一个典型被控对象进行研究无论在理论上和方法上都具有重要意义不仅由于其级数增加而产生的控制难度是对人类控制能力的有力挑战更重要的是实现其控制稳定的过程中不断发现新的控制方法探索新的控制理论并进而将新的控制方法应用到更广泛的受控对象中各种控制理论和方法都可以在这里得以充分实践并且可以促成相互间的有机结合当前倒立摆的控制方法可分为以下几类:1 经典控制理论的方法一级倒立摆系统的控制对象是一个单输入两输出的非最小相位系统,它提供了用经典控制理论解决单输入多输出系统的控制方法。
根据对系统的力学分析,应用牛顿第二定律,建立倒立摆非线性的运动方程,并进行线性化,拉氏变换,得出传递函数,从而得到零、极点分布情况,根据使闭环系统能稳定工作的思想设计控制器。
为此,需引入适当的反馈,使闭环系统特征方程的根都位于左平面上。
用经典控制理论的频域法设计非最小相位系统的控制器并不需要十分精确的对象数学模型,因为只要控制器使系统具有充分大的相位裕量,就能获得系统参数很宽范围内的稳定性。
但是,由于经典控制理论本身的局限性,它只能用来控制一级倒立摆,对于复杂的二级、三级倒立摆却无能为力。
2 现代控制理论的方法用现代控制理论控制倒立摆的平衡,主要是用H 状态反馈来实现的。
H 状态反馈控制是通过对倒立摆物理模型的分析,建立倒立摆的数学模型,再用状态空间理论推出状态方程,然后利用H 状态反馈和Kalman滤波相结合的方法,实现对倒立摆的控制。
而文献[4]中采用三种状态反馈的方法来设计倒立摆的控制器,即极点配置调节器的方法、LQR最优调节器的方法和LQY最优调节器的方法,并对其实验结果进行了比较,结果表明,三种方法来控制一级倒立摆都是有效的。
现代控制理论的方法控制倒立摆,不仅对一级倒立摆可以成功地控制,二级倒立摆的控制效果也不错。
3 智能控制理论的方法由于倒立摆是一个多变量、非线性、不稳定、强藕合的复杂系统,尽管理论上的一级、二级倒立摆数学模型已经推导出来,但其数学模型很难精确地反应实际系统,所以用经典控制理论和现代控制理论的方法控制倒立摆都不是特别理想,国内外学者对倒立摆的研究集中在智能控制领域。
4 用模糊控制理论控制倒立摆用模糊控制理论控制倒立摆是智能控制算法中研究最多的一种。
大量的实验表明,用模糊控制的方法控制一级、二级倒立摆是非常成功的。
模糊控制是采用模糊化、模糊推理、解模糊等运算的模糊控制方法,其主要工作是模糊控制器的设计.5 用神经网络控制理论控制倒立摆业已证明,神经网络(Neural Network, NN)能够任意充分地逼近复杂的非线性关系,NN能够学习与适应严重不确定性系统的动态特性,所有定量与定性的信息都等势分布存贮于网络内的各种神经元,故有很强的鲁棒性和容错性。
用神经网络方法来实现倒立摆的平衡控制,迄今已经取得了不少成果。
6 模糊控制与神经网络控制相结合控制倒立摆模糊神经网络控制器控制倒立摆,主要是利用网络的自学习功能,不断修正模糊神经网络控制器的隶属函数和权值,实现模糊控制规则的自动更新,从而解决了模糊控制的自学习、自调整问题,提高了控制精度。
7 神经网络与遗传算法结合控制倒立摆基于遗传算法学习的神经网络方法在控制倒立摆,以神经网络为基础,用遗传算法来学习神经网络的权系数,既保留了遗传算法的强全局随机搜索能力,又具有神经网络的鲁棒性和自学习能力,能够取得较好的控制效果。
8 神经网络与预测控制算法相结合控制倒立摆预测控制是工业过程控制领域发展起来的一种计算机控制算法。
该算法不基于对象的精确的数学模型,而是建立在对象非参数模型基础上,既具有优化功能又引入了系统的反馈信息。
基于神经网络模型的预测控制算法用于倒立摆的平衡控制,首先用前向神经网络描述对象的输入输出关系,根据此关系可计算预测出系统在未来某时刻的输出值,从而得到未来某时刻系统的误差,根据此误差确定系统的目标函数,然后设计在线的优化算法实时解决下一时刻的控制量。
9 用拟人智能控制的方法控制倒立摆拟人智能控制的核心是“广义归约”和“拟人”。
“归约”是人工智能中的一种问题求解方法。
这种方法是将待求解的复杂问题分解成复杂程度较低的若干问题集合,再将这些集合分解成更简单问题的集合,依此类推,最终得到一个本原问题集合,即可以直接求解的问题。
另一核心概念是“拟人”,其含义是直接利用人的控制经验直觉以及推理分析形成控制规律。
10 用云模型控制倒立摆用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。
这种方法不要求给出对象的精确的数学模型,而仅依据人的经验、感受和逻辑判断,将人用自然语言表达的控制经验,通过语言原子和云模型转换到语言控制规则器中,就能解决非线性问题和不确定性问题。
3 一阶二阶倒立摆系统介绍倒立摆作为一种自动控制教学实验设备,能够全面地满足自动控制教学的要求。
许多抽象的控制概念如系统稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆直观的表现出来。
倒立摆的控制技巧,极富趣味性,很适合学习自动控制课程的学生使用它来验证所学的控制理论和算法,加深对所学课程的理解。
基于DSP的旋转式倒立摆系统的最大特点是机械结构简单、可*,成本低廉、体积小,是高等院校理想的自动控制教学的实验设备。
3.1 直线倒立摆系统直线倒立摆系统如图1所示,它由四个部分组成:倒立摆、小车、轨道和电机。
小车受电机的操纵,可以自由地在限定的轨道上左右移动,轨道有水平轨道和倾斜轨道两种。
倒立摆一端通过铰链连在小车顶部,可以在一个平面内自由摆动。
对电机的控制是通过控制电压使在水平方向产生控制力。
在倒立摆的另一端再铰链摆杆2、摆杆3、摆杆4,即可构成二级、三级、四级倒立摆。
控制目的是:小车和摆组成的系统在受到干扰后,小车处于轨道的中心位置,摆杆保持垂直位置。
图3- 1二级倒立摆系统运动分析示意图如图2所示。
其机械部分主要由小车,下摆,上摆,导轨,皮带轮,传动皮带等构成,控制对象由小车!下摆!上摆组成,电气部分由电机!晶体管直流动率放大器!传感器以及保护电路组成。
假设条件,上下摆及小车都是刚体,皮带轮与皮带之间无相对滑动,传动皮带无伸长现象,小车的驱动力与直流放大器的输入成正比,且无滞后,忽略电机电枢绕组中的电感,小车运动时所受的摩擦力正比于小车的速度,下摆转动时所受的摩擦力矩正比于下摆的转动速度,上摆速度所受的摩擦力矩正比于上摆对下摆的相对角速度。
图3- 24 固高倒立摆系统试验平台介绍及相关参数固高科技有限公司开发的直线运动倒立摆系列产品采用开放的控制解决方案和模块化的实验平台,以直线运动模块为基础平台,可以轻松的构建10多种控制教学实验平台,全方位满足控制教学和研究的需要。
在自动控制领域中,倒立摆仿真或实物控制实验,已成为检验一个新的控制理论是否有效的试金石,同时也是产生一个新的控制方法必须依据的基础实验平台。
为全方位满足控制教学和研究的需要,固高科技采用开放的控制解决方案和工业化、模块化的机械结构研发出了一系列倒立摆实验设备。
图4- 1非常好的用户开放功能,用户可以根据自己设计实现其他控制方法。
图4- 2系统物理模型和参数图4- 3 图4- 4表4-1:一阶直线倒立摆的参数符号,数值和含义符号数值意义M 1.096 Kg 小车质量m 0.109 Kg 摆杆质量b 0 .1N/m/sec 小车摩擦系数l 0.2 5m 摆杆转动轴心到杆质心长度I 0.0034 kgm2摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(摆杆初始位置为竖直向下)符号数值意义M 1.096 Kg 小车质量m 10.109 Kg 摆杆1的质量m 2摆杆2的质量m 3质量块的质量1 10.2 5m 摆杆1中心到转动中心距离1 2摆杆2中心到转动中心距离θ1摆杆1与竖直方向的夹角θ2摆杆2与竖直方向的夹角F 作用在系统上的外力5 一二阶直线倒立摆的建模分析倒立摆建模的方法一般有两种,牛顿力学和拉格朗日法。
牛顿力学主要采用受力分析的原理,二拉格朗日主要是通过对能量含输球偏导得到系统的空间状态方程。
下面我们用牛顿法对一阶倒立摆进行建模分析,用拉格朗日法对二阶直线倒立摆进行建模分析。
并且对其状态方程进行稳定性,可观性,可控性进行分析判断,为后面采取不同的控制方法做好准备工作。
5.1 一阶直线倒立摆的建模分析5.1.1 一阶直线倒立摆的状态方程的建立图5- 1 图5- 2忽略掉一些次要因素后,倒立摆系统就是一个典型的运动刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程,对倒立摆系统进行机理建模。