2016年春季新版沪科版八年级数学下学期期中复习试卷3
- 格式:doc
- 大小:2.68 MB
- 文档页数:8
09---10学年八年级下学期数学期中测试卷温馨提示:各位同学,本试卷共21大题,时间120钟,满分150分 请认真审题,仔细答卷,不可以使用计算器,相信你一定能考出 线 满意的成绩!一、选择题(每小题4分,共40分)1、要使 .^2 有意义,则字母x 应满足的条件是 ....................... 【 ..................................................................... 】 此A 、 x :: 2B 、 x 2C 、x - 2D 、x 0且 x = 22、在△ ABC 中,AB=15, AC=13,高 AD=12,则△ ABC 的周3、下列根式中, 最简二次根式是4、下列运算正确的是 A 、42 B 、32 C 、42 或 32 D 、37 或 33 B 、 a 2 b 2 C 、D 、 . 0.5C 、 1.52 -0.52 “5-0.5 =1 .(x _5)2 =x _5 B 、 2 . 0.5 二、2 0.5 =1-xD 、5、若方程ax 2 bx ^0(^- 0),满足a b c = 0,则方程必有一根为】、C 、 -1 D_16、一元二次方程 (m-2)x 2 -4mx •2m -6=0有两个相等的实数根,则于 ...........................................................A 、 -6B 、 1C 、 -6 或 1D 、 27、若等腰三角形的腰长为10,底边长为12,则底边上的高为 .........A 、6B 、7C 、8D 、9一 1a = 2 - 2 -3,b =8、设 a ,则a 、b 大小关系是A、a=bB、a>b C.、a<b D、a>-b9、、方程(空)2—7(互)+12 =0时,设互=丫,则原方程化为关于y的方程x -1 X-1X -1是............................................................... 【..................................................................... 】2 2A、y2 7y 12 =0B、y-7y 12 = 02 2c、y 7y _12 =0 D、y _7y _12=010、、某型号的手机连续两次降价,每台售价由原来的1185元降到580元,设平均每次的降价的百分率x,则列出的方程正确的是 ......... 【】A、580(1 x)2 =1185B、1185(1 x)2 = 5802 2c、580(1 -X)2 =1185 D、1185(1-X)2 =580二、填空题(每小题5分,共25分)11、2~^的绝对值是_____________ 它的倒数_____________ .12、木工师傅要做一个长方形桌面,做好后量得长为 2.4m,宽为0.7m,对角线为2.5m,则这个桌面__________ (填“合格”或“不合格”).13、如果一元二方程(m-2)x2• 3x • m2- 4=0有一个根为0,则m= __________ .14、若最简二次根式2勺5x2 +1与—<7x2 -1是同类二次根式,则x= ___________ .口口,15、把根式' a根号外的a移到根号内,得_______________ .三、解答题(共85分)16、用适当的方法解方程(三选二,每小题6分共12分,)2 2(1)3x 7x-10=0 ( 2)(x 1)(x 3) =15 (3) (y -3) 3(y-3) 2=017、化简求值(每小题8分计16分)(1)(,5 -3 2(. 11 3 ( • 11 -3118、( 14分)已知方程x 2,2k-2x ,k 2,4=0有两个实数根,且这两个实数根 的平方和比两根的积大21,求k 的值和方程的两个根.19、( 15 分)如图,B 地在A 地的正东方向,两地相距 28.2km , A , B 两地之间有一条东北走向的高速公路, A ,B 两地分别到这条高速 公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于 A 地的正南方向P 处.至上午8:20, B 地发现该车在它的西北方向 Q 处,该段高速公路限速为110km /h ,问该车有否超速行驶?(2)已知 ,求 x 2 、、.x 2 -2x 12 X - X 的值20、(14分)先观察下列分母有理化:1 — 1 —— 1 —— 1 ——2 -1,3 -2, 4-・3, 5-:4,...■ 2 1 .3.2 4 - . 3 5.4 从计算结果中找出规律,再利用这一规律计算下列式子的值:11 1 1 ________________________________________( '... ------------------------------------------------------------------ )( 2002 1).2 1 3 、2 .4 「3 、2002 、200121、( 14分)阜阳百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元•为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存,经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?。
一、选择题1.在平面直角坐标系中,点A 为()3,2,连接OA 并把线段OA 绕原点O 逆时针旋转90°,所得到的对应点A '的坐标为( )A .()2,3B .()2,3-C .()3,2-D .()2,3- 2.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1) 5.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a << B .12a > C .4a < D .4a >6.若关于x 的一元次不等式组2324274(1)x m x x x -+⎧≤⎪⎨⎪+≤+⎩的解集为32x ≥,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的积为( ) A .2 B .7 C .11 D .107.若关于x 的不等式组5335x x x a -+⎧⎨⎩><无解,则a 的取值范围为( ) A .a <4B .a=4C .a≤4D .a≥4 8.直线1y x =+与2y x a =-+的交点在第一象限,则a 的取值可以是( )A .1-B .3C .1D .0 9.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个10.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .2411.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .2220n mn m --=B .2220m mn n +-=C .2220m mn n --=D .2220m mn n -+=12.如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 与等边△ACE ,连接BE 交DC 于点F ,下列结论:①CD =BE ;②FA 平分∠DFE ;③∠BFC =120°;④AFE EFC S AF S FC∆∆=.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题13.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 旋转得到△EDC,使点D 在AB 边上,斜边DE 交AC 边于点F ,则图中△CDF 的周长为_____.14.已知点(),1A a a +在直线122y x =+上,则点关于原点的对称点的坐标是_________ 15.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.16.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____17.若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 18.已知,在等腰ABC ∆中,AD BC ⊥于点D ,且2BC AD =,则等腰ABC ∆底角的度数为_________.19.等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是_________.20.如图,在ABC 中,AB AC =,38A ∠=︒,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则EBC ∠的度数为________.三、解答题21.已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC =BD ;②∠APB =60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为22.如图,在正方形网格中,△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1,写出B 1的坐标;(2)直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标 .23.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A型号和B型号垃圾分拣机器人共60台,其中B型号机器人不少于A型号机器人的1.4倍.(1)该垃圾处理厂最多购买几台A型号机器人?(2)机器人公司报价A型号机器人6万元/台,B型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?24.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;(3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m元,要使(2)中所有方案获利相同,则m的值应为多少?25.阅读下列材料,完成相应任务.三角形中边与角之间的不等关系学习了等腰三角形,我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.那么,不相等的边所对的角之间的大小关系怎样呢?大边所对的角也大吗?下面是奋进小组的证明过程.如图1,在△ABC中,已知AB>AC>BC.求证:∠C>∠B>∠A.证明:如图2,将△ABC折叠,使边AC落在AB上,点C落在AB上的点C′处,折痕AD交BC于点D.则∠A C′D=∠C.∵∠A C′D=∠B+∠BDC′(依据1)∴∠A C′D>∠B∴∠C>∠B(依据2)如图3,将△ABC折叠,使边CB落在CA上,点B落在CA上的点B′处,折痕CE交AB于点E.则∠CB′E=∠B.∵∠CB′E=∠A+∠AEB′∴∠CB′E>∠A∴∠B>∠A∴∠C>∠B>∠A.归纳总结:利用轴对称的性质可以把研究边与角之间的不等问题,转化为较大量的一部分与较小量相等的问题,这是几何中研究不等问题是常用的方法.类似地,应用这种方法可以证明“在一个三角形中,大角对大边,小角对小边”的问题.如图1,已知△ABC中,∠C>∠B>∠A.求证:AB>AC>BC.下面是智慧小组的证明过程(不完整).证明:如图2,在∠BCA的内部,作∠BCF=∠B,CF交AB于点F.则CF=BF(依据3)在△ACF中,AF+CF>AC,∴AF+BF>AC,∴AB>AC;…任务一:①上述材料中依据1,依据2,依据3分别指什么?依据1:;依据2:;依据3:.②上述材料中不论是由边的不等关系,推出角的不等关系,还是由角的不等关系推出边的不等关系,都是转化为较大量的一部分与较小量相等的问题,再用三角形外角的性质或三边关系进而解决,这里主要体现的数学思想是_____________;(填正确选项的代码)A.转化思想 B.方程思想 C.数形结合思想任务二:请将智慧小组的证明过程补充完整,并在备用图中作出辅助线.任务三:根据上述材料得出的结论,判断下列说法,正确的有__________(将正确的代码填在横线处).①在△ABC中,AB>BC,则∠A>∠B;②在△ABC中,AB>BC>AC,∠C=89°,则△ABC是锐角三角形;③Rt△ABC中,∠B=90°,则最长边是AC;④在△ABC中,∠A=55°,∠B=70°,则AB=BC.26.如图,ACB△和DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若55CAB CBA CDE CED ∠=∠=∠=∠=︒.填空:ACB ∠= ________︒,AEB ∠=________ ︒;(2)如图2,若60ACB DCE ∠=∠=︒,试猜想,,AE CD BE 之间的关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】如图:过点A 作AB x ⊥轴于点B ,过点'A 作D y A '⊥轴于点D ,可得'ABO ODA ∆∆≌,所以,3OD =,'2DA =,即可求解点'A 的坐标【详解】如图,过点A 作AB x ⊥轴于点B ,过点'A 作'A D x ⊥轴于点D ,∴∠ABO =∠A 'DO =90°,由题意得AO=A 'O ,∠AO A '=90°,∴∠AOD +∠A 'OD =90°,∵90AOB AOD ∠+∠=︒,∴AOB A OD '∠=∠,∴'AOB A OD ∆∆≌,∴OB=OD =3,AB=A 'D =2,∵点A '在第二象限,∴点A '坐标为(2,3)-.故选:D .【点睛】本题考查了坐标与图形变换—旋转,在平面直角坐标系中,求点的坐标,采用作x 轴或y 轴的垂线段,实现化斜为直,是一种常见方法.2.C解析:C【分析】根据平移的性质,以及点A ,B 的坐标,可知点A 的横坐标加上了1,纵坐标加上了1,所以平移方法是:先向左平移1个单位,再向上平移3个单位,根据点B 的平移方法与A 点相同,即可得到答案.【详解】∵A (-2,-1)平移后对应点A '的坐标为(-3,2),∴A 点的平移方法是:先向左平移1个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴B (0,-2)平移后B '的坐标是:(0-1,-2+3)即(-1,1).故选:C .【点睛】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.3.B解析:B【分析】观察四个选项中的图形,根据轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合;找出既是轴对称图形又是中心对称图形的那个即可得出结论.【详解】A 是中心对称图形;B 既是轴对称图形又是中心对称图形;C 是轴对称图形;D 不是轴对称图形,是中心对称图形.故选:B .【点睛】此题考查中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.C解析:C【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A (1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B (2,1)的对应点的坐标为(﹣1,﹣1),故选C .【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a >∴142a << 故选:A .【点睛】本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.6.D解析:D【分析】不等式组整理后,根据已知解集确定出m 的范围,由方程有非负整数解,确定出m 的值,求出之积即可.【详解】 不等式组整理得:31032x m x ⎧≥⎪⎪⎨⎪≥⎪⎩,由解集为32x ≥,得到33102m ≤,即5m ≤, 方程去分母得:64253y m y -=-+,即213m y -=, 由y 为非负整数,得213m k -=(k 为非负整数), 整理得:3152k m +=≤, 解得:0k ≤≤3, ∴0k =或1或2或3, ∴12m =(舍去)或2或72(舍去)或5, ∴2m =或5,∴符合条件的所有整数m 的积为2510⨯=,故选:D .【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.C解析:C【解析】解:5335x x x a -+⎧⎨⎩>①<②,由①得:x >4.∵不等式组无解,∴a ≤4.故选C . 点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 8.B解析:B【分析】联立两直线解析式,解关于x 、y 的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【详解】联立12y x y x a =+⎧⎨=-+⎩, 解得:1323a x a y -⎧=⎪⎪⎨+⎪=⎪⎩, ∵交点在第一象限,∴1323aa-⎧>⎪⎪⎨+⎪>⎪⎩,解得:1a>.只有3a=符合要求.故选:B.【点睛】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.9.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC 所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.10.A解析:A先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.11.B解析:B【分析】根据等腰三角形的性质和勾股定理可得m2+m2=(n−m)2,整理即可求解【详解】解:如图,ABD是等腰三角形,ACD是等腰直角三角形,∴AD=BD=n-m,根据勾股定理得:m2+m2=(n−m)2,∴2m2=n2−2mn+m2,m2+2mn−n2=0.故选:B.【点睛】本题主要考查等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.12.A【分析】过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,证明△ADC ≌△ABE ,可判断①,再证明AM =AN ,结合AM ⊥CD 于M ,AN ⊥BE 于N ,可判断②,证明∠ACF +∠BEC +∠ACE =120°,结合三角形的外角的性质可判断③,证明∠FAN =∠FCH =30°, 利用含30的直角三角形的性质与勾股定理可得: 33,,AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE =120°,∴∠DFA =∠EFA =60°=∠CFE .∵AN ⊥BE ,CH ⊥EF ,∴∠FAN =∠FCH =30°,∴22222,3,2,3,AF FN AN AF FN FN FC FH HC FC FH FH ==-===-=∴,,AN AF HC ==∴12.12AEF EFC EF AN AF S AN AF S CH FC EF CH ⨯⨯====⨯⨯故④正确. 故选:A .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】先根据已知条件求出AC 的长及∠B 的度数再根据图形旋转的性质及等边三角形的判定定理判断出△BCD 的形状进而得出∠DCF 的度数由直角三角形的性质可判断出DF 是△ABC 的中位线求出DF =1CF =则解析:3【分析】先根据已知条件求出AC 的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD 的形状,进而得出∠DCF 的度数,由直角三角形的性质可判断出DF 是△ABC 的中位线,求出DF =1,CF【详解】解:∵△ABC 是直角三角形,∠ACB =90°,∠A =30°,BC=2,∴∠B =60°,AB =2BC =4,AC =∵△EDC 是△ABC 旋转而成,∴BC =CD =BD =12AB =2, ∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°,∠DFC =90°,即DE ⊥AC ,∴DE ∥BC ,∵BD =12AB =2, ∴DF 是△ABC 的中位线, ∴DF =12BC=12×2=1,CF =12AC =12×∴△DCF 的周长为213DC DF CF ++=+=.故答案为:3+【点睛】本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.14.(-2-3)【分析】首先把点代入中计算出的值再根据关于原点对称的点的坐标特点可以直接得到答案【详解】解:点在直线上点关于原点的对称点的坐标是故答案为:【点睛】此题主要考查了关于原点对称的点的坐标特点解析:(-2,-3)【分析】首先把点(,1)A a a +代入122y x =+中,计算出a 的值,再根据关于原点对称的点的坐标特点可以直接得到答案.【详解】 解:点(,1)A a a +在直线122y x =+上, 1122a a ∴+=+, 2a ∴=,(2,3)A ∴,∴点A 关于原点的对称点的坐标是(2,3)--,故答案为:(2,3)--.【点睛】此题主要考查了关于原点对称的点的坐标特点,以及一次函数图象上点的坐标特征,关键是掌握两个点关于原点对称时,它们的坐标符号相反.15.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.16.【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出 解析:()142626x x ≤+--<【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.17.5≤m <6【分析】首先解不等式组求得解集然后根据不等式组恰好有三个整数解确定整数解则可以得到一个关于m 的不等式组求得m 的范围【详解】解:解不等式①得:解不等式②得:∴不等式组的解集为:∵不等式组恰有 解析:5≤m <6【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m 的不等式组求得m 的范围.【详解】解:0721x m x -≤⎧⎨-≤⎩①② 解不等式①,得:x m ≤解不等式②,得:3x ≥∴不等式组的解集为:3x m ≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.45°或15°或75°【分析】分三种情况讨论先根据题意分别画出图形当AB=AC 时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;当AB=BC时先求出∠ABD的度数再根据AB=BC求出底角解析:45°或15°或75°【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=12BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.【详解】①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=12BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=12BC,∴AD=12AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=12BC,AB=BC,∴AD=12AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°.故答案为:45°或15°或75°.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.19.60°或30°【分析】由于此高不能确定是在三角形的内部还是在三角形的外部所以要分锐角三角形和钝角三角形两种情况求解【详解】解:分两种情况:①在左图中AB=ACBD ⊥AC ∠ABD=30°∴∠A=60°解析:60°或30°【分析】由于此高不能确定是在三角形的内部,还是在三角形的外部,所以要分锐角三角形和钝角三角形两种情况求解.【详解】解:分两种情况:①在左图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=180602A ︒-∠=︒; ②在右图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故答案为:30°或60°.【点睛】 本题考查了等腰三角形的定义、直角三角形两锐角互余.由于题中没有图,要根据已知画出图形并注意要分类讨论.20.33°【分析】先根据等腰三角形的性质求出再根据垂直平分线的性质求解即可;【详解】∵在中∴∵的垂直平分线交点垂足为点∴AE=BE ∴∴;故答案是【点睛】本题主要考查了等腰三角形的判定与性质垂直平分线的性解析:33°【分析】先根据等腰三角形的性质求出71ABC C ∠=∠=︒,再根据垂直平分线的性质求解即可;【详解】∵在ABC 中,AB AC =,38A ∠=︒,∴71ABC C ∠=∠=︒,∵AB 的垂直平分线交AC 点E ,垂足为点D ,∴AE=BE ,∴38A ABE ∠=∠=︒,∴713833EBC ∠=︒-︒=︒;故答案是33︒.【点睛】本题主要考查了等腰三角形的判定与性质、垂直平分线的性质,准确计算是解题的关键.三、解答题21.(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;②由△AOC ≌△BOD ,可得∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可;(2)根据∠AOB=∠COD=α,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ,∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可.【详解】证明:(1)①∵△AOB 和△COD 都是等边三角形,∴OA=OB ,OC=OD ,∠AOB =∠COD =60°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠CAO =∠DBO ,②设AC 与BO 交于E ,∵△AOC ≌△BOD ,∴∠CAO =∠DBO ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB =∠DBO+∠APB ,∴∠APB =∠AOB =60°.(2)AC=BD ,∠APB=α,理由如下:∵∠AOB=∠COD=α,∴∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC=BD ,∠CAO=∠DBO ,设AC 与BO 交于E ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB=∠DBO+∠APB ,∴∠APB=∠AOB=α,故答案为AC=BD ,α.【点睛】本题考查三角形旋转,三角形全等判定与性质,三角形内角和,掌握三角形旋转,三角形全等判定与性质,三角形内角和是解题关键.22.(1)见解析;B 1(4,-1);(2)(1,1)或(﹣3,﹣1)或(﹣5,3)【分析】(1)根据旋转的性质即可作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)根据平移即可写出以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.【详解】解:(1)如图,△A 1B 1C 1即为所求;B 1(4,-1)(2)如图所示,将AB 向右平移2个单位,向上平移1个单位,可得平行四边形ABCD ,此时顶点D 的坐标为:(1,1)同理可求出顶点D 的其他坐标为:(﹣3,﹣1)或(﹣5,3),故答案为:(1,1)或(﹣3,﹣1)或(﹣5,3)【点睛】本题考查了作图-旋转变换和点平移坐标变化规律,解决本题的关键是掌握旋转的性质和利用平移构造平行四边形.23.(1)25台;(2)3种【分析】(1)设该垃圾处理厂购买x 台A 型号机器人,根据“B 型号机器人不少于A 型号机器人的1.4倍”列出不等式求解即可;(2)根据“总费用不超过510万元”列出不等式,结合(1)中不等式的解和x 为整数,即可得出共有3种方案.【详解】解:(1)设该垃圾处理厂购买x 台A 型号机器人.由题意得60 1.4x x -≥,解得25x ≤,∴该垃圾处理厂最多购买25台A 型号机器人;(2)610(60)510x x +-≤,解得22.5x ≥,22.525x ≤≤,且x 为整数,23x ∴=或24或25,答:共有3种购买方案.【点睛】本题考查一元一次不等式的应用.能根据题中不等关系列出不等式是解题关键. 24.(1)甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元;(2)有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台;(3)要使(2)中所有方案获利相同,则m 的值应为100元【分析】(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,然后由题意可列方程组进行求解;(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,然后根据题意可列不等式组进行求解a 的范围,然后根据a 为正整数可求解;(3)设总利润为w ,则由(2)可得()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%,进而根据题意可求解.【详解】解:(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,根据题意得:22600234400x y x y +=⎧⎨+=⎩, 解得:1000800x y =⎧⎨=⎩, 答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,由(1)及题意得: ()()1000800201800010008002017400a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:710a ≤≤,∵a 为正整数,∴a 的值为7、8、9、10,∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台.(3)设总利润为w ,则由(2)可得:()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%, ∵(2)中方案利润要相同,∴1000m -=,解得:100m =,答:要使(2)中所有方案获利相同,则m 的值应为100.【点睛】本题主要考查二元一次方程组及不等式组的应用,熟练掌握二元一次方程组及不等式组的应用是解题的关键.25.任务一:①依据1:三角形的外角等于与它不相邻的两个内角的和; 依据2:等量代换;依据3:如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边); ②A ;任务二:见解析;任务三:②③④【分析】任务一:①根据三角形的外角性质、等量代换以及三角形中等角对等边性质即可写出依据;②根据分析过程渗透的思想为转化的思想方法;任务二:仿照推导AB >AC 的方法证明AC >BC 即可证明结论正确;任务三:根据结论“在一个三角形中,大角对大边,小角对小边,等边对等角”进行判断即可解答.【详解】解:任务一:①根据推导过程可知:依据1:三角形的外角等于与它不相邻的两个内角的和;依据2:等量代换;依据3:如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边);故答案为:三角形的外角等于与它不相邻的两个内角的和;等量代换;如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边);②根据推导过程体现了转化的数学思想方法,故选:A;任务二:智慧小组的证明过程补充如下:证明:如图2,在∠BCA的内部,作∠BCF=∠B,CF交AB于点F.则CF=BF,(等边对等角)在△ACF中,AF+CF>AC,∴AF+BF>AC,∴AB>AC;同理,如图,在∠ABC的内部,作∠ABG=∠A,BG交AC于点G,如图,则AG=BG在△BCG中,BG+CG>BC,∴BG+CG>BC,∴AC>BC∴AB>AC>BC.任务三:①∵AB>BC,∴∠C>∠A,错误;②∵在△ABC中,AB>BC>AC,∠C=89°,∴∠C>∠A>∠B,又∠C=89°<90°,∴△ABC是锐角三角形,正确;③∵Rt△ABC中,∠B=90°,则最长边是斜边AC,正确;④∵在△ABC中,∠A=55°,∠B=70°,∴∠C=180°﹣∠A﹣∠B=180°﹣55°﹣70°=55°,∴∠A=∠C∴AB=BC,正确,故答案为:②③④.【点睛】本题考查三角形的边与角之间的不关系的推导及其应用,涉及三角形的外角性质、等腰三角形的等角对等边性质、三角形的内角和定理、判断三角形的形状、命题的证明等知识,掌握在一个三角形中,大角对大边,小角对小边这一性质的推导过程,会利用转化的思想进行命题的证明是解答的关键.26.(1)70°,70°;(2)AE= BE+CD.【分析】(1)利用三角形内角和定理即可求得∠ACB,证明△ACD≌△BCE,根据∠AEB=∠CEB-∠CED=∠ADC-∠CEA即可得出结果;(2)可证明△CDE为等边三角形CD=BE,再证明△ACD≌△BCE可得BE=AD,最后根据线段的和差即可证明结论.【详解】解:(1)∵∠CAB=∠CBA=55°,∴CA=CB,∠ACB=70°,∵∠CDE=∠CED=55°,∴CD=CE,∠DCE=70°,∴∠ACB=∠DCE,∴∠ACD=∠BCE,在△ACD于△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CEB=∠ADC=180°-∠CDE=125°,∴∠AEB=∠CEB-∠CED=70°,故答案为:70°,70°;(2)AE=CD+BE,理由如下:∵∠ACB=∠DCE=60°,∴等腰△ABC和等腰△COE都是等边三角形,∴CA=CB,CD=DE,同(1)可证△ACD≌△BCE,∴BE=AD,AE=AD+DE=BE+CD.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质和判定.掌握全等三角形的几种判定定理,并能结合题意灵活选取合适的定理证明全等是解题关键.。
一、选择题1.下列四个图形是word 软件中的自选图形,其中既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.如图所示图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .4.在平面直角坐标系中,点A (2, -1)向右平移3个单位,再向上平移2个单位得到点B ,则线段AB 的长度是 ( ) A .8B 34C 13D .325.不等式360+≤x 的解集是( ) A .2x -≤B .2x ≤C .12x ≥D .2x ≥-6.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m <7.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( ) A .22厘米B .23厘米C .24厘米D .25厘米8.若a b <,则下列结论不正确的是( ) A .44a b +<+B .33a b -<-C .22a b ->-D .1122a b > 9.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒=D .20,A AD BC BD ∠=︒=+10.如图,在△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点E 、F 分别在BC 、AC 上,点C 沿EF 折叠后与点O 重合,则∠BEO 的度数是( )A .26°B .32°C .52°D .58°11.下列几组数能作为直角三角形三边长的是( )A .3,4,6B .1,1,3C .5,12,14D .5,25,512.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE =C .BE AE =D .AC EC =二、填空题13.若点(,2)P m -与点(3,)Q n 关于原点对称,则n m =__________.14.在平面直角坐标系xoy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转90°得到OA′, 则点A′的坐标是____________. 15.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x⋅⋅⋅ 0 1 2 3⋅⋅⋅ 1y⋅⋅⋅ 232112⋅⋅⋅ x⋅⋅⋅ 0 1 2 3 ⋅⋅⋅ 2y⋅⋅⋅-3-113⋅⋅⋅x 16.已知:a 、b 、c 是三个非负数,并且满足326a b c ++=,231a b c +-=,设37m a b c =+-,设s 为m 的最大值.则s 的值为__________.17.若一次函数(1)2y k x k =-++的图像不经过第三象限,则k 的取值范围是_____. 18.如图,在第1个1A BC 中,30B ∠=︒,1A B CB =;在边1AB 上任取一点D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D ;在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第3个23A A E △,按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是________.19.如图,已知:30MON ︒∠=,点1A 、2A 、3A ⋯在射线ON 上,点1B 、2B 、3B ⋯在射线OM 上,112A B A ∆、223A B A ∆、334A B A ∆⋯均为等边三角形,若11OA =,则9910A B A ∆的边长为________.20.如图,在Rt △ABC 中,∠C=90°,∠A=30°,点P 在AC 上,以点P 为中心,将△ABC 顺时针旋转90°,得到△DEF ,DE 交边AC 于G ,当P 为DF 中点时,AG :DG 的值为___________三、解答题21.矩形ABCD 中,AB =4,AD =8,将矩形ABCD 绕点C 顺时针旋转,AD 交CBʹ于点E . (1)如图1,当∠BCE =60°,△CDDʹ的形状是 ; (2)如图2,当AE=CE 时,求阴影部分的面积.22.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.23.居家学习期间,小明坚持每天做运动.已知某两组运动都由波比跳和深蹲组成,每个波比跳耗时5秒,每个深蹲也耗时5秒.运动软件显示,完成第一组运动,小明花了5分钟,其中做了20个波比跳,共消耗热量132大卡;完成第二组运动,小明花了7分钟30秒,其中也做了20个波比跳,共消耗热量156大卡.每个动作之间的衔接时间忽略不计.(1)小明在第一组运动中,做了 个深蹲;小明在第二组运动中,做了 个深蹲.(2)每个波比跳和每个深蹲各消耗热量多少大卡?(3)若小明想只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,小明至少要做多少个波比跳?24.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .(1)△ACD ≌△AED ;(2)若AB =2AC ,且AC =3,求BD 的长.25.在平面直角坐标系中,已知直线经过()3,7A -,()2,3B -两点. (1)画出该一次函数的图象,求经过A ,B 两点的直线的解析式; (2)观察图象直接写出0y ≤时x 的取值范围;(3)求这个一次函数的图象与坐标轴所围成的三角形的面积.26.在等腰直角三角形ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 是平面内任意一点,连接DE .(1)如图1,当点E 在边BC 上时,过点D 作DF ⊥DE 交AC 于点F . i )求证:CE =AF ;ii )试探究线段AF ,DE ,BE 之间满足的数量关系.(2)如图2,当点E 在△BDC 内部时,连接AE ,CE ,若DB =5,DE =2∠AED =45°,求线段CE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【分析】首先确定B点坐标,然后利用勾股定理计算出线段AB的长度.【详解】点A(2,-1)向右平移3个单位,再向上平移2个单位得到点B,则B(2+3,-1+2),即B(5,1),线段AB=,故选:C.【点睛】本题主要考查了坐标与图形的变化-平移,以及勾股定理的应用,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.A解析:A【分析】利用不等式的性质即可得到不等式的解集.【详解】解:3x+6≤0,3x≤-6,x≤-2,故选:A.【点睛】本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.6.B解析:B 【分析】不等式组整理后,利用有解的条件确定出m 的范围即可. 【详解】 不等式组整理得:33x x m <⎧⎨>⎩, 由不等式组有解,得到3m <3, 解得:m <1. 故选:B . 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.7.D解析:D 【分析】设导火线的长为xcm ,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解. 【详解】设导火线的长为xcm ,由题意得:1500815.x ≥解得x≥24.3cm ,∴导火线的长至少为25厘米. 故选D . 【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键.8.D解析:D 【分析】根据不等式的基本性质对各选项分析判断后利用排除法. 【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D 、∵a <b ,∴1122a b <,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.9.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD=BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.10.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.D解析:D【分析】要能作为直角三角形三边长,需验证两小边的平方和等于最长边的平方.解:A 、32+42≠62,不符合勾股定理的逆定理,不是直角三角形,不符合题意;B 、12+12≠2,不符合勾股定理的逆定理,不是直角三角形,不符合题意;C 、52+122≠142,不符合勾股定理的逆定理,不是直角三角形,不符合题意;D 2+(2=52,符合勾股定理的逆定理,是直角三角形,符合题意; 故选:D .【点睛】本题考查了勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形. 12.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.二、填空题13.【分析】根据关于原点的对称点的特征计算即可;【详解】∵点与点关于原点对称∴∴;故答案是:9【点睛】本题主要考查了关于原点对称的点的有关计算准确计算是解题的关键解析:9【分析】根据关于原点的对称点的特征计算即可;∵点(,2)P m -与点(3,)Q n 关于原点对称,∴32m n =-⎧⎨=⎩, ∴()239n m =-=; 故答案是:9.【点睛】本题主要考查了关于原点对称的点的有关计算,准确计算是解题的关键.14.【分析】先作出图形然后写出坐标即可【详解】解:如图:则A′的坐标是故答案是【点睛】本题主要考查了坐标与图形的旋转变换根据题意正确画出图形成为解答本题的关键解析:()3,2-【分析】先作出图形,然后写出坐标即可.【详解】解:如图:则A′的坐标是()3,2-.故答案是()3,2-.【点睛】本题主要考查了坐标与图形的旋转变换,根据题意正确画出图形成为解答本题的关键. 15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1).则当x <2时,kx+b >mx+n ,故答案为:x <2.本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】根据题意先把看作已知数分别用表示出和让列式求出的取值范围再求得用表示的形式结合的取值范围即可求得的值【详解】解:3a+2b+c=62a+b-3c=1解得a=7c-4b=9-11c ;∵a≥0b 解析:611-【分析】根据题意先把c 看作已知数,分别用c 表示出a 和b ,让0a ≥,0b ≥列式求出c 的取值范围,再求得m 用c 表示的形式,结合c 的取值范围即可求得s 的值.【详解】解:3a+2b+c=6,2a+b-3c=1,解得a=7c-4,b=9-11c ;∵a≥0、b≥0,∴7c-4≥0,9-11c≥0, ∴49711c ≤≤. ∵m=3a+b-7c=3c-3,∴m 随c 的增大而增大, ∵911c ≤. ∴当c 取最大值911,m 有最大值, ∴m 的最大值为s=3×911-3=611-. 故答案为:611-. 【点睛】 本题考查解三元一次方程组以及解不等式组,把c 看作已知数,分别用c 表示a 和b 是解答本题的关键.17.【分析】根据题意直线不经过第三象限可得直线的斜率必须小于零截距项非负即可继而求解不等组解集解答本题【详解】由已知得:求解不等式组得:故公共解集:故填:【点睛】本题考查一次函数图象与系数的关系以及不等 解析:21k -≤<【分析】根据题意“直线不经过第三象限”,可得直线的斜率必须小于零,截距项非负即可,继而求解不等组解集解答本题.由已知得:1020k k -<⎧⎨+≥⎩,求解不等式组得:12k k <⎧⎨≥-⎩, 故公共解集:21k -≤<.故填:21k -≤<.【点睛】本题考查一次函数图象与系数的关系以及不等式组解集的求法,通过直线斜率确定其单调性,截距项确定具体经过的象限,求解不等式若涉及负号需要注意变号问题.18.【分析】先根据等腰三角形的性质求出∠BA1C 的度数再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1∠EA3A2及∠FA4A3的度数找出规律即可得出第n 个三角形中以An 为顶点的底角度数【详 解析:11752n -⎛⎫⨯︒ ⎪⎝⎭【分析】 先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个三角形中以A n 为顶点的底角度数.【详解】解:∵在△CBA 1中,∠B=30°,A 1B=CB ,∴∠BA 1C=1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×75°; 同理可得,∠EA 3A 2=(12)2×75°,∠FA 4A 3=(12)3×75°, ∴第n 个三角形中以A n 为顶点的底角度数是(12)n-1×75°. 故答案为:(12)n-1×75°. 【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.19.【分析】利用等边三角形的性质得到∠B1A1A2=60°A1B1=A1A2则可计算出∠A1B1O=30°所以A1B1=A1A2=OA1利用同样的方法得到A2B2=A2A3=OA2=2OA1A3B3=A解析:256利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到A n B n=A n A n+1=2n-1•OA1.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1=1,∴A1B1=A1A2=OA1=1,同理可得A2B2=A2A3=OA2=2OA1=2,∴A3B3=A3A4=OA3=2OA2=22•OA1=22,A4B4=A4A5=OA4=2OA3=23•OA1=23,…,∴A n B n=A n A n+1=2n-1•OA1=2n-1.则△A9B9A10的边长为28=256.故答案为:256.【点睛】本题考查了规律型:图形的变化类,等边三角形的性质以及等腰三角形的性质,解决本题的关键是根据图形的变化寻找规律.20.【分析】设PG=x由点P在AC上以点P为中心将△ABC顺时针旋转90°得到△DEF可得∠D=∠A=30°PD=PA∠APD=90°利用30°角所对直角边等于斜边的一半可得DG=2PG=2x在Rt△D【分析】设PG=x,由点P在AC上,以点P为中心,将△ABC顺时针旋转90°,得到△DEF,可得∠D=∠A=30°,PD=PA,∠APD=90°利用30°角所对直角边等于斜边的一半可得DG=2PG=2x,=,两线段比即在Rt△DFG中,由勾股定理=,可求GA)1x可求出AG:DG==【详解】设PG=x,点P在AC上,以点P为中心,将△ABC顺时针旋转90°,得到△DEF,∴∠D=∠A=30°,PD=PA,∠APD=90°,∴DG=2PG=2x,在Rt△DFG中,由勾股定理PG=222243DG PG x x x -=-=,GA=AP-PG=DP-PG=()331x x x -=-, AG :DG=()3131x --:2x=. 故答案为:31-.【点睛】本题考查两线段的比,图形的旋转,勾股定理,30°角直角三角形性质,线段的和差等知识,掌握图形的旋转性质,勾股定理应用,30°角直角三角形性质,线段的和差,会求两线段的比是解题关键.三、解答题21.(1)等边三角形;(2)6【分析】(1)根据旋转的性质和等边三角形的判定方法,∠BCE=60°=∠DCD′,DC=D′C 可得△CDD′为等边三角形.(2)由勾股定理得,CD 2+DE 2=CE 2,假设CE 为x ,DE=8-x ,列方程,求出DE 的长度,再根据三角形的面积公式,得出阴影面积.【详解】(1)△CDD′的形状是等边三角形,∵矩形ABCD 绕点C 顺时针旋转,∴∠BCE=60°=∠DCD′DC=D′C∴△CDD′为等边三角形(2)在△CDE 中,由勾股定理得,CD 2+DE 2=CE 2设CE 为x ,则DE=8-x∴42+(8-x )2=x 2解得,x =5,∴DE=8-5=3S 阴影=12DE CD ⋅=1342⨯⨯=6. 【点睛】本题考查了旋转的性质,和勾股定理的应用,解题的关键是掌握旋转的性质,会利用勾股定理求线段的长度.22.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC的面积;(2)依据旋转的性质,找出A、B、C的对应点A2、B2、C2,然后用线段顺次连接即可得到△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2.【详解】解:(1)△ABC的面积是2×4-12×2×2-12×4×1-12×1×2=3,故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)40;70;(2)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(3)25个【分析】(1)根据做深蹲的数量=(每组运动的时间﹣做波比跳需要的时间)÷5,即可求出结论;(2)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,根据“完成第一组运动,共消耗热量132大卡;完成第二组运动,共消耗热量156大卡”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(3)设小明要做m个波比跳,则要做(120﹣m)个深蹲,根据至少要消耗200大卡热量,即可得出关于m的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)(60×5﹣5×20)÷5=40(个),(60×7+30﹣5×20)÷5=70(个).故答案为:40;70.(2)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,依题意,得:20401322070156x y x y +=⎧⎨+=⎩, 解得:50.8x y =⎧⎨=⎩. 答:每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡. (3)设小明要做m 个波比跳,则要做601055m ⨯-=(120﹣m )个深蹲, 依题意,得:5m +0.8(120﹣m )≥200,解得:m≥241621. 又∵m 为正整数, ∴m 可取的最小值为25.答:小明至少要做25个波比跳.【点睛】本题考查了二元一次方程组,不等式及其整数解,熟练构造方程组和不等式是解题的关键.24.(1)见解析;(2)2【分析】(1)由角平分线的性质可推出CD =DE ,再利用“HL ”即可证明Rt △ACD ≌Rt △AED .(2)由(1)得AC =AE AB =AE BE ==由勾股定理可求出BC 的长,设BD =x ,则DE =CD =3-x ,在Rt △DEB 中,由勾股定理可列出关于x 的方程,求出x 即可.【详解】(1)∵AD 平分∠CAB ,DC ⊥AC ,DE ⊥AB ,∴CD =DE ,∵AD =AD ,∴Rt △ACD ≌Rt △AED (HL );(2)∵△ACD ≌△AED ,∴AC=AE∵AB =2AC , ∴AB =AE BE ==在Rt △ABC 中,3BC ===,设BD =x ,则DE =CD =3-x ,在Rt △DEB 中,由勾股定理得:222DE BE BD +=,即()2223x x -+=,解得x =2,即BD =2.【点睛】本题考查角平分线的性质、全等三角形的判定和性质以及勾股定理,根据角平分线的性质找出使三角形全等的条件是解答本题的关键.25.(1)y =−2x +1,图像见详解;(2)x≥12;(3)14【分析】(1)建立平面直角坐标系,描出A (−3,7)、B (2,−3)两点,画直线AB 即可,可设一次函数的表达式为y =kx +b ,进而利用方程组求得k 、b 的值,即可得到函数解析式; (2)由直线在x 轴下方部分所对应的y≤0,进而即可求解;(3)求出直线与x ,y 轴的交点坐标,结合三角形的面积公式,即可求解.【详解】(1)一次函数图像如图所示:设一次函数的表达式为y =kx +b ,由题意,得:3723k b k b -+⎧⎨+-⎩==,解得:21k b ==-⎧⎨⎩, ∴一次函数的表达式为y =−2x +1;(2)令y=0,代入y =−2x +1得:x=12, ∴直线与x 轴的交点坐标为(12,0), ∵直线在x 轴下方部分所对应的y≤0, ∴当0y ≤时x 的取值范围:x≥12; (3)令x=0,则y=1,∴直线与y 轴的交点坐标为(0,1),∴一次函数的图象与坐标轴所围成的三角形的面积=1111224⨯⨯=. 【点睛】 本题主要考查一次函数的图像和性质以及待定系数法,画出函数图像,理解函数图像上的点的坐标特征,是解题的关键.26.(1)i )证明见解析;ii )2222DE AF BE =+,证明见解析;(2) 1.CE =【分析】(1)i )由等腰直角三角形ABC ,∠ACB =90°,,CD AB ⊥ 证明,45,CD AD DCE A =∠=∠=︒ 由,,CD AB DF DE ⊥⊥ 证明,ADF CDE ∠=∠ 可得,CDE ADF ≌ 从而可得结论;ii )如图,连接,EF 由,CDE ADF ≌,DE DF = 证明,CF BE = 222,EF DE = 结合222,EF CF CE =+ 从而可得答案;(2)过点D 作DH AE ⊥于点H ,过点D 作DG DE ⊥交AE 于点G ,根据SAS 证明CDE ADG ≅△△,进而利用全等三角形的性质和勾股定理即可得出答案.【详解】证明:(1)i ) 等腰直角三角形ABC ,∠ACB =90°,,CD AB ⊥,45,,AC BC ACD BCD A B AD BD ∴=∠=∠=︒=∠=∠=,CD AD BD ∴==,,CD AB DF DE ⊥⊥90,ADF CDF CDF CDE ∴∠+∠=︒=∠+∠,ADF CDE ∴∠=∠在DAF △与DCE 中,45CDE ADF CD ADDCE A ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩(),CDE ADF ASA ∴≌.CE AF ∴=ii )2222.DE AF BE =+理由如下:如图,连接,EF,CDE ADF ≌,DE DF ∴=,,AC BC AF CE ==,CF BE ∴=,DE DF ⊥22222,EF DE DF DE ∴=+=22222,EF CF CE BE AF =+=+2222.DE AF BE ∴=+(2)如图,过点D 作DH AE ⊥于点H ,过点D 作DG DE ⊥交AE 于点G ,90ACB AC BC CD AB ∠=︒=⊥,,,45ACD BCD A ∴∠=∠=∠=︒,∴CD=AD ,,45DG DE AED ⊥∠=︒,45DGE AED ∴∠=︒=∠,∴DG=DE ,在CDE △和ADG 中AD CD ADG CDE DG DE =⎧⎪∠=∠⎨⎪=⎩CDE ADG ∴≅△△(SAS )∴CE=AG在Rt DEG △中,32DE DG ==6EG ∴=DH AE ⊥3DH GH EH ∴===在Rt ADH 中,AD=52222534AH AD DH ∴=--=1CE AG AH GH ∴==-=.【点睛】本题考查的是三角形全等的判定与性质,等腰直角三角形的性质,勾股定理的应用,利用平方根解方程,方程组思想,掌握以上知识是解的关键.。
沪科版数学八年级下册期中考试试题一、单选题1.下列二次根式中,最简二次根式是( )A B C D2.一元二次方程(a-3)x2-2x+a2-9=0 的一个根是0, 则a 的值是( )A.2 B.3 C.3 或-3 D.-33.下列四组线段中,可以构成直角三角形的是()A.1,2,3 B.2,3,4 C.1, D,3,54.已知,如图,长方形ABCD中,AB=5cm,AD=25cm,将此长方形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为()A.35cm2B.30cm2C.60cm2D.75cm25.设− 1,a 在两个相邻整数之间,则这两个整数是()A.0 和1 B.1 和2 C.2 和3 D.3 和46.小明搬来一架3.5 米长的木梯,准备把拉花挂在2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米7.已知一元二次方程2310--=的两个实数根分别是x1、x2则x12 x2+x1 x22的值x x为()A.-6 B.- 3 C.3 D.68.若|x 2﹣4x+4|x+y 的值为( )A .3B .4C .6D .99.若 a 、b 是一元二次方程 x 2+3x -6=0 的两个不相等的根,则 a 2﹣3b 的值是( )A .-3B .3C .﹣15D .1510.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC D二、填空题11.当 x + 1 时,式子 x 2﹣2x+2 的值为______.12 x 的取值范围是_____.13a =_____.14.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.三、解答题15.用配方法解方程:x 2+2x -2=016.计算:()11÷-)17.先观察下列等式,再回答问题:=1+1=2;1 2=212;=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n 为正整数)表示的等式,并用所学知识证明.18.今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译文:有一个边长为10 尺的正方形水池正中间长有一棵芦苇,高出水面1 尺,把芦苇拉向岸边,刚好到岸.问:池水有多深?芦苇有多高?19.关于x的方程(m-1)x2-4x-3-m=0.求证:无论m取何值时,方程总有实数根.20.某公司2018 年投入广告经费2 亿元,计划2020 年要投入广告经费比2018 年降低19%,已知2018 年至2020 年的广告经费投入以相同的百分率逐年降低,求2019 年要投入的广告经费是多少万元?21.我市茶叶专卖店销售某品牌茶叶,其进价为每千克240 元,按每千克400 元出售,平均每周可售出200 千克,后来经过市场调查发现,单价每降低10 元,则平均每周的销售量可增加40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利41600 元,请回答:(1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22.如图平面直角坐标系中,已知三点A(0,7),B(8,1),C(x,0)且0<x <8.(1)求线段AB 的长;(2)请用含x 的代数式表示AC+BC 的值;(3)求AC+BC 的最小值.23.(1)(操作发现)如图1,在边长为1 个单位长度的小正方形组成的网格中,∆ABC 的三个顶点均在格点上.现将∆ABC 绕点A 按顺时针方向旋转90°,点 B 的对应点为B′,点C 的对应点为C′,连接BB′,如图所示则∠AB′B=.(2)(解决问题)如图2,在等边∆ABC 内有一点P,且PA=2,PB,PC=1,如果将△BPC 绕点B 顺时针旋转60°得出△ABP′,求∠BPC 的度数和PP′的长;(3)(灵活运用)如图3,将(2)题中“在等边∆ABC 内有一点P 改为“在等腰直角三角形ABC 内有一点P”,且BA=BC,PA=6,BP=4,PC=2,求∠BPC 的度数.参考答案1.A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B=不是最简二次根式,本选项错误;=C2A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.2.D【解析】【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立.【详解】把x=0代入方程(a-3)x2-2x+a2-9=0,得:a2﹣9=0,解得:a=±3.∵a-3≠0,∴a=-3.故选D.【点睛】本题考查了一元二次方程的根即方程的解的定义,是一个基础题,解题时候注意二次项系数不能为0,难度不大.3.C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D.∵2+32≠52,∴,3,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.4.B【解析】【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=25=AE+DE=AE+BE,∴BE=25﹣AE,根据勾股定理可知:AB2+AE2=BE2.解得:AE=12,∴△ABE的面积为5×12÷2=30.故选B.【点睛】本题考查了勾股定理的应用.掌握勾股定理是解题的关键.5.D【解析】【分析】【详解】∵16<20<25,∴4<5,∴4﹣11<5﹣1,即31<4.故选D.【点睛】本题考查了估算无理数的大小,熟知不等式的基本性质是解答此题的关键.6.C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.7.B【解析】【分析】根据根与系数的关系得到x1+x2=3,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.【详解】根据题意得:x1+x2=3,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×3=-3.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2ba=-,x1•x2ca=.8.A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.9.D【解析】【分析】根据根与系数的关系可得a+b=﹣3,根据一元二次方程的解的定义可得a2=﹣3a+6,然后代入变形、求值即可.【详解】∵a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,∴a+b=﹣3,a2+3a﹣6=0,即a2=﹣3a+6,则a2﹣3b=﹣3a+6﹣3b=﹣3(a+b)+6=﹣3×(﹣3)+6=9+6=15.故选D.【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.10.C【分析】根据全等三角形的性质,设CD=AH=x ,DE=AG=BC=y ,由CE a =,HG b =建立方程组,求解即可得出,22a b a b CDx BC y ,然后借助勾股定理即可表示BD. 【详解】解:根据图象是由四个全等的直角三角形拼成,设CD=AH=x ,DE=AG=BC=y ,∵CE a =,HG b =,∴x y a y x b +=⎧⎨-=⎩解得:22a b x a by -⎧=⎪⎪⎨+⎪=⎪⎩, 故,22a b a b CD BC在Rt BCD ∆中,根据勾股定理得:2222222222a b a b a b BD BC CD +-+⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭, ∴BD =故选:C.【点睛】本题考查勾股定理,全等三角形的性质,能借助方程思想用含a ,b 的代数式表示CD 和BC 是解决此题的关键.11.4.【解析】【分析】根据完全平方公式以及二次根式的运算法则即可求出答案.【详解】当x1时,∴x ﹣1=∴原式=x 2﹣2x +1+1=(x ﹣1)2+1=3+1=4.故答案为:4.本题考查了二次根式的混合运算,解题的关键是熟练运用完全平方公式以及二次根式的运算法则,本题属于基础题型.12.x12≥-【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵在实数范围内有意义,∴2x+1≥0,解得:x12≥-.故答案为:x12≥-.【点睛】本题考查了二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.13.1【解析】【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】=a+1=2.解得a=1.故答案是:1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.14.4或【解析】【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2⨯=2在Rt△BAC中,BC==∴BD===③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=2⨯=2又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC==∴BD===故BD的长等于4或.故答案为4或.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,15.x1=1-+x2=1-【解析】【分析】把常数项2移项后,应该在左右两边同时加上一次项系数2的一半的平方,然后开方即可.【详解】移项得:x2+2x=2配方得:x2+2x+1=3即(x+1)2=3开方得:x∴x1=-1x2=-1.【点睛】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.16.243【解析】【分析】根据二次根式的混合运算法则计算即可.【详解】原式=+2-1 =13313-+- =243. 【点睛】本题考查了二次根式的混合运算,掌握各运算法则和平方差公式是关键.17.(1=144+=144;(2=211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)=1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2=212+=212=313+=313=414+=414,…,= 211n n n n++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.18.池水有12尺深,芦苇有13尺高.【解析】【分析】设水池深x 尺.根据勾股定理即可得出结论.【详解】设水池深x 尺.根据题意得:x 2+(102)2=( x+1) 2 解得:x =12x+1=12+1=13.答:池水有12尺深,芦苇有13尺高.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.19.见解析.【解析】【分析】结合m﹣1≠0或m﹣1=0,进而利用根的判别式△=b2﹣4ac直接进行判断即可.【详解】分两种情况讨论:(1)当m≠1时,△=(-4)2-4(m-1)(-m-3)=4m2+8m+4=4(m+1)2≥0.即当m≠1时,△≥0,方程有两个实数根.(2)当m=1时,原方程是一元一次方程,有一个实数根.综上所述:无论m取何值,原方程都有实数根.【点睛】本题考查了根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.2019年要投入的广告经费为1.8亿元.【解析】【分析】设2018年至2020年的广告经费的年平均降低的百分率为x,根根2018 年投入广告经费2 亿元,计划2020 年要投入广告经费比2018 年降低19%,列方程,再求解即可得到平均降低率,从而得出结论.【详解】设2018年至2020年的广告经费的年平均降低的百分率为x,根据题意得:2(1-x)2=2(1-19%)解得:x1=0.1=10%,x2=190%(舍去).故2019年要投入的广告经费为2(1-10%)=1.8(亿元).答:2019年要投入的广告经费为1.8亿元.【点睛】本题考查了一元二次方程的应用-增长率问题,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】 本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.22.(1)AB =10;(2;(3)AC +BC 最小值为 【解析】【分析】(1)根据两点间的距离公式可求线段AB 的长;(2)根据两点间的距离公式可求线段AC ,BC 的值,再相加即可求解;(3)作B 点关于x 轴对称点F 点,连接AF ,与x 轴相交于点C .此时AC +BC 最短.根据两点间的距离公式即可求解.【详解】(1)10AB=;(2)AC+BC==(3)如图,作B点关于x轴对称点F点,连接AF,与x轴相交于点C.此时AC+BC最短.∵B(8,1),∴F(8,-1),∴AC+BC=AC+CF=AF==即AC+BC最小值为【点睛】本题考查了最短路线问题,利用了数形结合的思想,构造出符合题意的直角三角形是解题的关键.23.(1)如图1所示,见解析;45°;(2)∠BPC=150°,PP′(3)∠BPC=135°. 【解析】【分析】(1)根据旋转角,旋转方向画出图形即可,只要证明△ABB'是等腰直角三角形即可;(2)根据旋转的性质,可得△P'PB是等边三角形,由等边三角形的性质即可求出PP'的长;而△PP'A又是直角三角形(由勾股定理的逆定理可证),所以∠AP'B=150°,从而得出结论;(3)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:∠EBP=∠EBA+∠ABP=∠ABC=90°,求出∠BEP=45°,根据勾股定理的逆定理求出∠AEP=90°,即可得出结论.【详解】如图1所示,连接BB',将△ABC绕点A按顺时针方向旋转90°,∴AB=AB',∠B'AB=90°,∴∠AB'B=45°.故答案为45°;(2)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP',如图2,∴AP'=CP=1,BP'=BP∠PBC=∠P'BA,∠AP'B=∠BPC.∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP'+∠ABP=∠ABC=60°,∴△BPP'是等边三角形,∴PP∠BP'P=60°.∵AP'=1,AP=2,∴AP'2+PP'2=12+2 =4,AP2=22=4,∴AP'2+PP'2=AP2,∴∠AP'P=90°,则△PP'A是直角三角形,∴∠BPC=∠AP'B=90°+60°=150°;(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=2,BE=BP=4,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=12(180°﹣90°)=45°,由勾股定理得:EP=∵AE=2,AP=6,EP=∴AE2+PE2=22+(2=36 2=62=36,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°.【点睛】本题考查了勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解答此题的关键.。
沪科版八年级下册数学期中考试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释) 1.下列方程中,无论b取什么实数,总有两个不相等实数根的是( ).A .210x bx ++=B .221x bx b +=+C .20x bx b ++=D .22x bx b +=2.已知x=1是方程x 2+b x -2=0的一个根,则方程的另一个根是A .1B .2C .-2D .-13.用配方法解方程x 2+8x+7=0,则配方正确的是( )A .2(4)9x +=B .2(4)9x -=C .2(8)16x -=D .2(8)57x +=4.方程x 2﹣5x=0的解是A 、x 1=0,x 2=﹣5B 、x=5C 、 x 1=0,x 2=5D 、x=05.若方程260x x m -+=有两个同号不相等的实数根,则m 的取值范围是( ).A .9m <B .0m >C .09m <<D .09m <≤6.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为 ( )A.15%B.20%C.5%D.25%评卷人得分 二、填空题7.已知方程x 2−3x +1=0的两根是x 1,x 2;则:x 12+x 22=_______, 1x 1+1x 2=_______。
8.如图,一个圆柱形容器高为1.2m ,底面周长为1m ,在容器内.壁离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外.壁,离容器上沿0.3m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为 ______m (容器厚度忽略不计).9.已知(x +1x )(x +1x −1)=2,则x +1x=______. 10.一元二次方程()21230k x x +-+=有实数根,则k 的范围为___________.11.使有意义的x 的取值范围是__________.12.已知:ΔABC 中,AB =4,AC =3,BC =7,则ΔABC 的面积=__________ .评卷人得分 三、解答题ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF ,将纸片ACB 的一角沿EF 折叠.(1)如图①,若折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △AEF ,则AE = ;(2)如图②,若折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .求AE 的长;(3)如图③,若折叠后点A 落在BC 延长线上的点N 处,且使NF ⊥AB .求AE 的长.14.化简:(1)81812++ ;(2)121263483-+ (3)52130232232⨯÷;(4)()()2232x x --- 15.如图,在△ABC 中,D 为BC 上一点,且AB =5 ,BD =3 ,AD =4 ,且△ABC 的周长为18,求AC 的长和△ABC 的面积。
沪科版八年级下册数学期中考试试卷一、单选题1.下列给出的式子是二次根式的是( )A .±3BCD 2.下列方程是一元二次方程的是( )A .2230x x +-=B .2y x =C .12x x+= D .20ax bx c ++= 3.底边上的高为3,且底边长为8的等腰三角形腰长为( )A .3B .4C .5D .64有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1 C .1x 2≥- D .1x>2-且x≠1 5.用配方法解一元二次方程223x x --=0时,此方程可变形是为()A .2(1)4x +=B .2(1)4x -=C .2(1)2x +=D .2(1)2x -=6=( )A B C D .7.如图,在平面直角坐标系中()0,4A 、()6,0C ,BC x ⊥轴,存在第一象限的一点(),25P a a -使得PAB △是以AB 为斜边的等腰直角三角形,则点P 的坐标( ).A .()3,1或()3,3B .()5,5C .()3,1或()5,5D .()3,3 8.已知M ,N 是线段AB 上的两点,2AM MN ==,1NB =,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,则ABC ∆一定是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .等边三角形9.若方程20(a 0)++=≠ax bx c 中,,,a b c 满足0a b c ++=和420a b c -+=,则方程的根是( )A .1,2-B .1,0-C .1,0D .无法确定10.下列各组数中,是勾股数的是( )A .0.6,0.8,1B .3,4,5C .111,,345D .1,11.如图,在△ABC 中,△ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为( )A .2B .2.6C .3D .412.下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1△2△3B .三边长的平方之比为1△2△3C .三边长之比为3△4△5D .三内角之比为3△4△5二、填空题13______.14.关于x 的一元二次方程20ax bx c ++=.王同学由于看错了二次项系数,误求得两根为2和4,那么b c=______. 15.已知ABC 中,AB =13,AC =15,AD△BC 于D ,且AD =12,则BC =_.16.已知x =20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.三、解答题17.计算:18.解方程:(1)(2)4x x -+=19.已知;a =b =(1)ab ;(2)223a ab b -+;20.据报道,我国的新能源汽车的发展空间巨大,使用新能源车能够清洁空气,净化环境,减少PM2.5的浓度,某市决定市区的新能源公交车由2020年的占比为30%,逐步提升到2022年占比60%,假定该市市区的公交车总量不变,求每年的平均增长率.(取1.41≈)21.如图ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ACB △顶点A 在ECD 的斜边DE 上,求证:2222AE AD AC =+.22.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元.(1)每天的销售量为______瓶,每瓶洗手液的利润是______元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润达到300元,则销售单价应上涨多少元?23.分已知关于x 的一元二次方程(m-2)x2+(2m+1)x+m=0有两个实数根x1,x2. (1)求m 的取值范围.(2)若|x1|=|x2|,求m 的值及方程的根.24.如图,斜靠墙上的一根竹竿AB长为13m,端点B离墙角的水平距离BC长为5m.(1)若A端沿垂直于地面的方向AC下移1m,则B端将沿CB方向移动多少米?(2)若A端下移的距离等于B端沿CB方向移动的距离,求下移的距离;(3)在竹竿滑动的过程中,ABC面积有最______值(填“大”或“小”)为______(两个空直接写出答案不需要解答过程)参考答案1.B【解析】根据二次根式的定义逐个判断即可.【详解】解:A.±3不是二次根式,故本选项不符合题意;B.C.△3﹣π<0,D.3,不是2,故选:B.【点睛】本题主要考查二次根式的定义,解题的关键是正确理解题意二次根式的定义.2.A【解析】依据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件逐项判断即可.【详解】A.2+-=,符合一元二次方程的定义,故该选项符合题意.230x xB.2y x=,含有两个未知数,故该选项不符合题意.C.12+=,不是整式方程,故该选项不符合题意.xxD.20++=,a可能为0,即二次项系数可能为0,故该选项不符合题意.ax bx c故选:A.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.C【解析】本题主要考查了等腰三角形三线合一这一性质. 画出图形,根据等腰三角形的性质和直角三角形的性质,求出腰长为5.解:△AD△BC,△BD=CD,△BC=8,△BD=4,又AD=3,在Rt△ABD中,.故选C.4.A 【解析】【详解】根据二次根式被开方数必须是非负数和分式分母不为0在实数范围内有意义,必须12x10x1{{x2x102x1+≥≥-⇒⇒≥--≠≠且x1≠.故选A.5.B【解析】【分析】利用配方法解已知方程时,首先将-3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.【详解】x2-2x-3=0,移项得:x2-2x=3,两边都加上1得:x2-2x+1=3+1,即(x-1)2=4,则用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是(x-1)2=4.故选B.【点睛】此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.6.A【解析】【分析】直接利用二次根式的乘除运算法则化简求出即可.【详解】原式==故选:A.【点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.7.C【解析】【分析】分点P在AB的上方和点P在AB的下方,根据全等三角形的判定与性质进行讨论求解即可.【详解】解:当点P在AB的上方时,过P作x轴的平行线交y轴于E,交CB延长线于F,如图1,则△AEP=△PFB=△APB=90°,E(0,2a﹣5),F(6,2a﹣5),△PE=a,PF=6﹣a,AE=2a﹣9,△△EAP+△EPA=90°,△EPA+△BPF=90°,△△EAP=△BPF,又△AEP=△PFB,PA=PB,△△AEP△△PFB(AAS),△AE=PF,△6﹣a=2a﹣9,解得:a=5,△P(5,5);当点P在AB的下方时,同样过P作x轴的平行线交y轴于E,交CB于F,如图2,则△AEP=△PFB=△APB=90°,E(0,2a﹣5),F(6,2a﹣5),△PE=a,PF=6﹣a,AE=9﹣2a,△△EAP+△EPA=90°,△EPA+△BPF=90°,△△EAP=△BPF,又△AEP=△PFB,PA=PB,△△AEP△△PFB(AAS),△AE=PF,△9﹣2a=6﹣a,解得:a=3,△P(3,1),综上,点P的坐标为(3,1)或(5,5),故选:C.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定与性质、等角的余角相等、坐标与图形性质、解一元一次方程等知识,过已知点向坐标轴作平行线或垂线,然后求出相关线段的长是解决此类问题的基本方法.8.B【解析】【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,△AC2+BC2=AB2,△△ABC是直角三角形,且△ACB=90°,故选:B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.A【解析】【分析】根据一元二次方程的根的定义,将未知数的值代入方程,计算后即可得出结论.【详解】解:△20(a 0)++=≠ax bx c ,把1x =代入得:0a b c ++=,即方程的一个解是1x =,把2x =-代入得:420a b c -+=,即方程的一个解是2x =-;故选:A .【点睛】本题考查了方程的解的定义,掌握方程的解的定义并能准确利用定义进行判断是解题的关键.10.B【解析】【分析】根据勾股数的定义:三边是正整数且两小边的平方和等于第三边的平方,进行求解即可.【详解】根据勾股数的定义可得,2223+4=5,故选:B .【点睛】本题考查了勾股数,熟练勾股数的定义是解决本题的关键.11.D【解析】【分析】在△ABC 中,△ACB=90°,AC=12,BC=5,根据已知可以用勾股定理求边长AB ,再根据AM=AC ,BN=BC 得到结果.【详解】在Rt△ABC 中,根据勾股定理,13=又△AC=12,BC=5,AM=AC ,BN=BC ,△AM=12,BN=5,△MN=AM+BN-AB=12+5-13=4.故选D .【点睛】此题重点考察学生对勾股定理的认识,掌握勾股定理是解题的关键.12.D【解析】【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】A 、设三个内角的度数为n ,2n ,3n 根据三角形内角和公式23180n n n ++=,求得30n =,所以各角分别为30°,60°,90°,故此三角形是直角三角形;B 、三边符合勾股定理的逆定理,所以是直角三角形;C 、设三条边为3n ,4n ,5n ,则有()()()222345n n n +=,符合勾股定理的逆定理,所以是直角三角形;D 、设三个内角的度数为3n ,4n ,5n ,根据三角形内角和公式345180n n n ++=,求得15n =,所以各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选D .【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.13.5.【解析】【分析】利用算术平方根的性质估算确定出所求即可.【详解】解:△162125△45<<,并162520.52125;故答案是:5.【点睛】本题考查了估算无理数的大小,熟练掌握无理数的估算方法是解本题的关键.14.﹣3 4【解析】【分析】根据一元二次方程的根与系数关系解答即可.【详解】解:由一元二次方程的根与系数关系得:2+4=﹣ba,2×4=ca,即﹣ba=6,ca=8,△bc=﹣34,故答案为:﹣34.【点睛】本题考查一元二次方程的根与系数关系,熟练掌握一元二次方程的根与系数关系是解答的关键.15.14或4【解析】【详解】:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD 中AB=13,AD=12,由勾股定理得BD 2=AB 2-AD 2=132-122=25,△BD=5,在Rt△ABD 中AC=15,AD=12,由勾股定理得CD 2=AC 2-AD 2=152-122=81,△CD=9,△BC 的长为BD+DC=9+5=14;(2)钝角△ABC 中,AB=13,AC=15,BC 边上高AD=12, 在Rt△ABD 中AB=13,AD=12,由勾股定理得BD 2=AB 2-AD 2=132-122=25,△BD=5,在Rt△ACD 中AC=15,AD=12,由勾股定理得CD 2=AC 2-AD 2=152-122=81,△CD=9,△BC 的长为DC-BD=9-5=4.故答案为14或4.16. 2; 4-;【解析】【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:△x ====1△20x ax b ++= △))2110a b ++= △60a b --+=60a b -++=)()260a b a -+-+=△a ,b 为有理数,△2a -,6b a -+也为有理数,)()260a b a -+-+=时候,只有20a -=,60b a -+=,△2a =,4b =-,故答案是:2,4-; 【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.17.【解析】【分析】先进行二次根式的除法运算,再化简二次根式,最后合并同类二次根式即可得到答案.【详解】=【点睛】本题考查了二次根式的混合运算,在运算时,要先把二次根式化为最简二次根式,再合并. 18.x1=2,x2=-3.【解析】【分析】将方程左边利用多项式乘以多项式的法则计算,右边移项到左边,合并后整理为一般形式,然后利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【详解】解:方程(x-1)(x+2)=4,整理得:x2+2x-x-2-4=0,即x2+x-6=0,分解因式得:(x-2)(x+3)=0,可得:x-2=0或x+3=0,解得:x1=2,x2=-3.【点睛】本题考查解一元二次方程-因式分解法,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.19.(1)2;(2)10.【解析】【分析】(1)根据二次根式的乘法法则求出ab即可;a b,根据二次根式的乘法法则求出ab,把原式化(2)根据二次根式的减法法则求出--、代入计算即可.简,把a b ab【详解】解:5a=+b=∴==-=,a b532ab-==∴ (1)ab =2(2)()(22223210a ab b a b ab -+=--=-=.【点睛】 本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.20.41%.【解析】【分析】设市区的公交车总量为a ,每年的平均增长率是x ,2020年的利用量是30%a ,那么2021年的占有率就是()30%1x +,2022年的占有率就是()230%1a x +,进而可列出方程,求出答案.【详解】解:设市区的公交车总量为a ,每年的平均增长率是x ,由题意得,()230%160%a x a +=,即()212x +=, 解得:10.41x ≈,2 2.41x ≈-(不合题意,舍去),△年增长率0.41x ≈.答:每年的增长率约为41%.【点睛】本题考查了一元二次方程的应用,旨在要求我们掌握增长率的求解方法,要注意增长的基础,另外还要注意解的合理性,从而确定取舍.21.证明见解析.【解析】【分析】连结BD ,易证()EAC DBC SAS ≅,即BD=AE 、AC=BC .又可证明出△ADB=90△,再结合勾股定理即可得到所要证明的等式是成立的.【详解】证明:如图,连结BD ,△90ECA ACD DCB ACD ∠+∠=∠+∠=︒,△ECA DCB ∠=∠.△在△EAC 和△DBC 中,AC BC ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,△EAC DBC SAS ≌().△ 45AE BD CDB E =∠=∠=︒,.又△45EDC ∠=︒, △ 90ADB ∠=︒.△ 在Rt ADB 中,222AB AD BD =+,△222AB AD AE =+.△ 在Rt ABC 中,22222AB AC BC AC =+=,△2222AC AD AE =+ .【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理.灵活应用全等三角形的判定和性质是解题关键.22.(1)()605x -,()4x +;(2)2元或6元.【解析】【分析】(1)设这款洗手液的销售单价上涨x 元,则每天的销售量为()605x -瓶,每瓶洗手液的利润为()4x +元;(2)利用这款洗手液的日销售利润=每瓶洗手液的利润×每天的销售量,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:(1)设这款洗手液的销售单价上涨x 元,则每天的销售量为()605x -瓶,每瓶洗手液的利润为()()20164x x +-=+元.故答案为:()605x -;()4x +.(2)依题意得:()()4605300x x +-=,整理得:28120x x -+=,解得:12x =,26x =.答:销售单价应上涨2元或6元.【点睛】本题考查了一元二次方程的应用以及列代数式,读懂题目列出方程是解题的关键. 23.(1)m≥112-且m≠2;(2)112m =-. 【解析】【详解】试题分析:(1)根据一元二次方程的定义结合根的判别式,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由12,x x =可得:12x x =或12.x x =-当12x x =时,利用△=0可求出m 的值,利用122b x x a ==-,可求出方程的解;当12x x =-时,由根与系数的关系可得出122102m x x m ++=-=-,解之即可得出m 的值,结合(1)可知此情况不存在.综上即可得出结论.试题解析:(1)△关于x 的一元二次方程2(2)(21)0x m m x m -+++= 有两个实数根12,x x ,20{(21)24(2)0m m m m -≠∴=+--≥,解得:112m ≥-且m≠2. (2)由12,x x =可得:12x x =或12.x x =-当12x x =时,2(21)4(2)0m m m =+--=,解得:112m =-, 此时122112(2)5m x x m +==-=-;当12x x =-时,122102m x x m ++=-=-,1 2m ∴=-, 112m ≥-且m≠2, △此时方程无解. 综上所述:若12,x x =,m 的值为112-,方程的根为1215x x ==;.24.(1)移动了(5)米;(2)下移了7米;(3)大,1694【解析】【分析】(1)利用勾股定理分别求出AC 和CB1的长,根据BB 1=CB 1﹣BC 即可求解; (2)设AA 1=BB 1=x ,根据勾股定理求解x 即可;(3)设A 端下移了x 米,则A 1C=12﹣x ,由勾股定理得CB 1111(12)2A CB S S x ==⨯-22221(12)13(12)4S x x ⎡⎤=⨯-⋅--⎣⎦, 设(12﹣x )2=t ,221(13)4S t t =⨯⋅-=2116944t t -+,由二次函数求最值的方法求解即可.【详解】解:(1)在Rt△ABC 中,AB=13,BC=5,△AC= ,△A 端沿垂直于地面的方向AC 下移1m ,△A 1C=12﹣1=11,在Rt△A 1B 1C 中,由勾股定理得:CB 1△BB 1=CB 1﹣BC=5,答:B 端沿CB 方向移动(5)米;(2)设A 端下移了x 米,则AA 1=BB 1=x , A 1C=12﹣x ,CB 1=5+x ,在Rt△A 1B 1C 中,由勾股定理得:(12﹣x )2+(5+x )2=132,解得:x 1=7,x 2=0(舍去),答:下移7米;(3)设A 端下移了x 米,则A 1C=12﹣x ,由勾股定理得CB 1△111(12)2A CB S S x ==⨯- △22221(12)13(12)4S x x ⎡⎤=⨯-⋅--⎣⎦, 设(12﹣x )2=t , △221(13)4S t t =⨯⋅-=2116944t t -+=221169169()4216t --+, 当1692t =时,2S 有最大值,最大值为216916, △S 有最大值为1694, 故答案为:大,1694. 【点睛】本题考查勾股定理的应用、解一元二次方程、求二次函数的最值,熟练掌握勾股定理和二次函数的最值解法,利用整体换元方法求最值是解答的关键.。