汉阳区2009-2010学年度第二学期七年级期末数学试题(word版)
- 格式:doc
- 大小:168.00 KB
- 文档页数:4
2009—2010学年度第一学期第二次阶段性考试七 年 级 数 学 试 题(时间100分钟,满分150分)一、选择与填空(每题4分,共64分)1.2-的相反数是 ( ) (A )2 (B )2- (C )21 (D )21-2. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高( )(A )5m (B )10m (C )25m (D )35m 3.化简)1(22+-a a 的结果是 ( ) A .-2 B .2 C .-1 D .14.表示“x 与4-的和的3倍”的代数式为 ( )(A )3)4(⨯-+x (B )3)4(⨯--x (C ) )]4([3-+x (D ) )4(3+x5.按下列图示的程序计算,若开始输入的值为x =3,则最后输出的结果是 ( )A .6B .21C .156D .2316.下列四个平面图形中,不能折叠成无盖的长方体盒子的是 ( )(A ) (B ) (C ) (D )7.若m 、n 取正数,p 、q 取负数,则以下式中其值最大的是 ( ) A .)(q p n m -+- B .)(q p n m +-- C .)(q p n m --+ D .)(q p n m +-+8. 如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )(A ) (B ) (C ) (D )9. 丁丁做了以下4道计算题: ①2004)1(2004=-;②011--=();③111236-+=-;④11122÷-=-(). 请你帮他检查一下,他一共做对了( )(A ) 1题 (B ) 2题 (C ) 3题 (D ) 4题 10. 一个数的绝对值是3,则这个数是 .11. 据2004年12月10日苍梧晚报报道,今年我市国民生产总值首次超过400亿元,将达到405亿元,405亿元用科学记数法可表示为 元. 12. 要在墙上固定一根木条,至少需要 根钉子. 13. 写出一个比2-大的负分数: .14. 小华同学在解方程=-15x ( )3+x 时,把“( )”处的数字看成了它的相反数,解得,2=x 则该方程的正确解应为x = . 15.下左图是一串有趣的图案按一定规律排列而成的.请仔细观察并思考,按此规律画出的第2009个图案是 .俯视图左视图主视图16.上右图是由一些相同的小正方形构成的几何体的三视图,那么这些相同的小正方体的个数是 。
七年级下册数学 期末试卷易错题(Word 版 含答案)一、选择题1.116的平方根是() A .-14B .14C .14±D .12±2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列语句中,是假命题的是( ) A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列计算正确的是( ) A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.若,则()m a b +的值为10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.13.图,直线//AB CD ,直线l 与直线AB ,CD 相交于点E 、F ,点P 是射线EA 上的一个动.点.(不包括端点E ),将EPF 沿PF 折叠,使顶点E 落在点Q 处.若∠PEF =75°,2∠CFQ =∠PFC ,则EFP ∠=________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若△PAB 的面积为18,则m ,n 满足的数量关系式为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.三、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=. 19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF . 分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )20.如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点C (41)-,. (1)写出点A ,B 的坐标; (2)求ABC ∆的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.二十三、解答题23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】解:因为211416⎛⎫±=⎪⎝⎭,所以116的平方根是14±,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.B 【分析】根据坐标的特点即可求解. 【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限 故选B . 【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.D 【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可 【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如505010090︒+︒=︒>︒,故D 选项是假命题,符合题意 故选D 【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A错误;B.原式=1,故B错误;C、(﹣2a2b)2=4a4b2,计算正确;D、原式=﹣a2,故D错误;故选C.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA =180°-34°=146°, ∵BE ⊥AE , ∴∠AEB =90°,∵∠AEB +∠BED +∠AED =360°, ∴∠BED =360°-146°-90°=124°, 故选:B . 【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长解析:C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1, ∴P 的坐标是(2021,1), 故选:C . 【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.-1 【解析】解:有题意得,,,,则解析:-1 【解析】 解:有题意得,,,,则()ma b10.(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本解析:(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),解析:120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB ),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°, 又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,∴,∴,,,∵,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了平解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;13.或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+解析:35︒或63︒【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=2x,3∴75°+2x+x=180°,3解得x=63°,∴∠EFP=63°.故答案为:35︒或63︒【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.【分析】连接OP,将PAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,解析:3230m n +=-【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.16.【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1 解析:20213,22⎛⎫- ⎪ ⎪⎝⎭ 【分析】 通过观察可得,A n 每6个点的纵坐标规律:32,0,32,0,-32,0,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标规律:32,0,32,0,032-,0,…,确定P 2021循环余下的点即可. 【详解】解:∵图中是边长为1个单位长度的等边三角形,∴113,22A ⎛⎫ ⎪ ⎪⎝⎭A 2(1,0)333,22A ⎛⎫ ⎪ ⎪⎝⎭A 4(2,0)553,22A ⎛⎫- ⎪ ⎪⎝⎭A 6(3,0)773,22A ⎛⎫ ⎪ ⎪⎝⎭…∴A n 中每6303030, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次点P 00,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n , ∵2021=336×6+5,∴点P 2021的纵坐标为, ∴点P 2021的横坐标为20212,∴点P 2021的坐标20212⎛ ⎝⎭,,故答案为:20212⎛ ⎝⎭,. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1),;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(解析:(1)(3,4)A ,(0,1)B ;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(1)(3,4)A ,(0,1)B(2)3ABC S S S =-△长方形个三角形11145241533222=⨯-⨯⨯-⨯⨯-⨯⨯ =9【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=. 364349<6437∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为164±±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC =23∠APC 理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE ﹣∠CKE =∠BAK ﹣∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP ﹣∠DCP ,∵∠BAK =23∠BAP ,∠DCK =23∠DCP , ∴∠BAK ﹣∠DCK =23∠BAP ﹣23∠DCP =23(∠BAP ﹣∠DCP )=23∠APC , ∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-1∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.。
本文为自本人珍藏版权所有仅供参考七年级数学试题(满分:150分考试时间:120分钟)亲爱的同学,你步入初中的大门已经一学期了,一定会有很多的收获吧,现在是你展示自我的时候了。
相信自己,定会成功!1. -3的相反数是 .2.某型号的电脑标价为a 元.打8折后又降价100元出售.则实际售价可用代数式表示为元.3.比较大小:32______43(填“<”、“=”或“>”)4. 观察下列单项式:2x, 5x 2, 10x 3, 17x 4, 26x 5, ,,,按此规律,第10个单项式是 .5.如图是一个数值转换机,若输入的a 值为3,则输出的结果应为.6. 如图,A 、B 、C 、D 四名同学的家在同一条直线上,已知C 同学家处在A 与B 两家的中点处,而D 同学的家又处于A 与C 两家的中点处,又知C 与B 两家相距3千米,则A 与D 两同学家相距千米. 7.若28x y , 则62x y .8.已知2(2)|2|0ab a ,则2ab 的值等于.9.如图,A 、O 、B 在同一条直线上,如果OA 的方向是北偏西2430',那么OB 的方向是东偏南....(第9题)O西北南AB东ABCD(第6题)输入 a-4a2×(-2) 输出(第5题)得分评卷人一.认真填一填(每空3分,共30分)题号一二三四五六七八总分合分人得分得分评分人10.如图所示,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为12,则xy.二.精心选一选(每小题有且只有一个正确答案,请将你认为正确的答案前的字母填入下表相应的空格内,每题3分,共24分)题号11 12 13 14 15 16 17 18答案11. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高A.5mB.10m C.25m D.35m12.如图,从A 到B 有多条道路,人们会走中间的直路,而不会走其他的曲折的路,这是因为 A .两点之间线段最短 B .两条直线相交只有一个交点C .两点确定一条直线D.其他的路行不通13.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是A. 28 B. 33 C. 45 D. 5714.物理教科书中给出了几种物质的密度,符合科学记数法的是A .水银13.6×103kg/m 3B .铁7.8×103kg/m3C .金19.3×103kg/m3D .煤油0.8×103kg/m315.《棋盘上的米粒》故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在第3格上加倍至4粒,,,依次类推,每一格均是前一格的双倍,那么他在第12格中所放的米粒数是A . 22粒 B. 24粒 C. 211粒 D. 212粒16.如图,把边长为2的正方形的局部进行图①~图④的变换,最后再通过图形变换形成图⑤,则图⑤的面积是A 、18 B、16 C 、12 D 、8(第10题)yx432(第12题)AB⑤④③②①17.一张桌子上摆放着若干个碟子,从三个方向上看到的三种视图如下图所示,则这张桌子上共有碟子为A. 17个B. 12个 C. 8个 D. 6个18. 小颖按如图所示的程序输入一个正数..x ,最后输出的结果为656,则满足条件的x 的不同值最多有A.2个B.3个 C.4个 D.5个三.计算小能手(本大题共32分)19.计算与化简(每小题8分,共16分)⑴计算:42232[1(3)]()(15)35⑵先化简,再求值:222363()3x xxx ,其中5x得分评卷人俯视图主视图左视图输入x计算5x+1的值>500输出结果是否20.(本题8分)解方程:2425()()333xx21.(本题8分)化简与求值:⑴若3m,则代数式2113m的值为;⑵若3mn,则代数式2()13mn 的值为;⑶若534m n,请你仿照以上求代数式值的方法求出2()4(2)2m n m n 的值.得分评分人四.请你当老师(本题8分)22.下面是马小哈同学做的一道题,请按照“要求”帮他改正。
2009~2010学年度第二学期七年级期中数学测试卷一.选择题(每题2分,共20分)1.下列运算中,正确的是 ( ).A . 5210a a a ⋅=B . 358a a a += C . 623a a a ÷= D . ()428aa =2.下列式子中一定相等的是 ( ).A . 222)(b a b a -=-B . 222)(b a b a +=+C . 2222)(b ab a b a +-=+- D . ()2222b ab a b a +-=--3.如图,下列说理中,正确的是 ( ).A .因为∠A +∠D =180°,所以AD ∥BCB .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CD D .因为∠A +∠C =180°,所以AB ∥CD4.△ABC 中,∠A : ∠B : ∠C =1:2:3则△ABC 一定是 ( ).A .锐角三角形B .直角三角形C .钝角三角形D .无法判断5.若x 2-mx +9是完全平方式,则m 的值是 ( ).A .3B .±3C .6D .±66.生物具有遗传多样性,遗传信息大多储存在DNA 分子上。
一个DNA 分子的直径约为 0.0000002cm.,这个数量用科学记数法表示为 ( ). A .0.2×10—6cm B .2×10—6cm C .0.2×10—7cm D . 2×10—7cm7.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()(b a >,把余下的部分拼成 一矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是 ( ). A .222))(2(b ab a b a b a -+=-+ B .2222)(bab a b a ++=+C .2222)(b ab a b a +-=- D .))((22b a b a b a -+=-8.现有两根木棒,它们的长分别是20cm 和30cm 。
2009-2010学年度第二学期七年级数学科期中考试题( 时间:100分钟 内容:P1---P91 满分:110分 )一. 选择题:(每小题3分,共30分)1、如图1,直线C 与直线a 、b 相交且a ∥ b ,则下列结论: ①∠1=∠2,②∠1=∠3,③∠2=∠3 中正确的个数为( ) A .3B .2C .1D . 02、如图2,已知∠1=50°,∠2=50°,∠3=100 °,那么的∠4度数是( ) A .40° B .50° C .80° D . 100° 3、点(-7,0)在( )A 、x 轴正半轴上B 、x 轴负半轴上C 、y 轴正半轴上D 、y 轴负半轴 4、点P 的横坐标是2,且到x 轴的距离为3,则P 点的坐标是( )。
A 、 (3,2)或(-3,2) B 、 (2,3)或(2,-3) C 、 (-2,3) D 、 (-2,-3) 5、下列长度的三条线段为边能组成三角形的是( )A 、3、3、3B 、3、3、6C 、2、3、5D 、1、3、56、如图3,∠ACD 是△ABC 的一个外角,已知∠B=80°,且3∠A=∠ACD ,则∠A 的度数为( )A .25°B .30°C . 35°D .40 °7、在△ABC 中,AB=10,BC=7,,则第三边AC 的长度的取值范围是( ) A . 3<AC < 10 B .7<AC < 10 C . 10<AC <17 D .3<AC < 178、如图4,l 1∥l 2,AB ⊥l 2,∠ABC=130°,则∠1的度数为( )A . 30 °B .40°C . 50°D 60°9、用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( )A .正三角形B . 正方形C .正五边形D .正六边形10、若一个正多边形的每一个内角都等于135°,则它是( )A .正八边形B . 正方形C .正五边形D .正六边形二、.填空题。
桐城市2009~2010学年度第二学期期末质量检测七 年 级 数 学 试 题注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟!一.选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.已知数据:17π,2-,其中无理数出现的频率为 ( ) A .20% B .40% C .60% D .80%2.下列计算中,结果正确的是 ( )A .222()a b a b -=-B .3(2)8-=C .11()33-= D .222623a a a ÷=3.计算4222a a a++--的结果为 ( ) A .1 B .1- C .22a a +- D .22a a+-4.下列因式分解错误的是 ( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+ D .222()x y x y +=+5.下列运动属于平移的是( )A .电风扇扇叶的转动B .石头从山顶滚到山脚的运动C .缆车沿索道从山顶运动到山脚D .足球被踢飞后的运动6.下图表示某个不等式组的解集,则此解集中包含的自然数解的个数有 ( )A .4个B .5个C .6个D .7个7.一组数据的最小数是12,最大数是38,如果分组的组距相等,且组距为3,则分组后的第一组为 ( ) A .11.5~13.5 B .11.5~14.5 C .12.5~14.5 D .12.5~15.58.下列说法正确的是 ( )A .同位角相等B .在同一平面内,如果a b ⊥,b c ⊥,则a c ⊥C .相等的角是对顶角D .在同一平面内,如果a ∥b ,b ∥c ,则a ∥c 9.解分式方程11222x x x-+=--,可知方程 ( )A .解为2x =B .解为4x =C .解为3x =D .无解10.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果ABO α∠=,DCO β∠=,则BOC ∠的度数是 ( )A .αβ+B .180αβ︒--C .1()2αβ+ D .90()αβ︒++二.填空题(本题共4小题,每小题5分,满分20分)11.有一个分式,三位同学分别说出了它的一些特点:甲说:分式的值不可能为0;乙说:分式有意义时,x 的取值范围是1x ≠±; 丙说:当2x =-时,分式的值为1.请你写出满足上述三个特点的一个分式: .12.已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 . 13.如果m 2,m ,m -1这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是 .14.小明和小刚玩一种游戏,即将图甲和图乙中的三角形通过水平或竖直方向的平移得到图丙,在平移过程中,规定每次只能平移一格,先拼成图丙者获胜.小明选择了图甲,小刚选择了图乙,则获胜的是 .三.(本大题共2小题,每小题8分,满分16分)15.计算:101()(2010)2-+--.【解】16.化简:2411422x x x ⎛⎫+÷ ⎪-+-⎝⎭. 【解】四.(本大题共2小题,每小题8分,满分16分)17.解不等式组:3(21)2102(1)3(1)x x x ---⎧⎨-+-<-⎩≥,并把解集在数轴上表示出来.【解】18.课堂上,李老师给大家出了这样一道题:“当3x =、5-、7时,求代数式22212211x x x x x -+-÷-+的值.”小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程.【解】五.(本大题共2小题,每小题10分,满分20分)19.如图,EF ∥AD ,∠1=∠2,∠BAC =70°,请将求∠AGD 的过程填写完整,并在括号内填出所得结论的理由.因为EF ∥AD ,所以∠2= .( ) 又因为∠1=∠2,所以∠1=∠3.(等量代换) 所以AB ∥ .( ) 所以∠BAC + =180°.( ) 又因为∠BAC =70°, 所以∠AGD = .20.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色地完成了任务,这是记者与驻军工程指挥官的一段对话:记者:你们是怎样用9天时间完成4800米长的大坝加固任务呢?指挥官:我们在加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天加固多少米? 【解】六.(本题满分12分)21.我市某校对九年级学生进行“综合素质”评价,评价的结果为A (优)、B (良好)、C (合格)、D (不合格)四个等级.现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如下频数分布直方图,已知图中从左到右的四个长方形的高的比为14:9:6:1,评价结果为D 等级的有2人.请你回答以下问题:⑴共抽测了多少人?⑵样本中B等级的频率是多少?C等级的频率是多少?⑶如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?⑷该校九年级的毕业生共300人,只有“综合素质”等级为A或B的学生才能报考示范高中,请你计算该校大约有多少名学生可以报考示范高中?【解】22.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:⑴满足条件的方案共有几种?写出解答过程.⑵通过计算判断,哪种建造方案最省钱.【解】八.(本题满分14分)23.观察下列等式:①111212-=⨯; ②1112323-=⨯; ③1113434-=⨯; ④1114545-=⨯; ……⑴猜想并写出第n 个算式: ; ⑵请说明你写出的等式的正确性. 【解】⑶把上述n 个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过程.1111122334(1)n n ++++=⨯⨯⨯+ . 【解】⑷我们规定:分子是1,分母是正整数的分数叫做单位分数.....任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数23表示成不同的单位分数的和的形式.(写出一种即可) 【解】【结束语】再仔细检查一下,也许你会做得更好,祝考试顺利!七年级数学试题参考答案及评分标准说明:第11题答案不唯一,如:211x x +-,11x -等.三.(本题每小题8分,满分16分) 15.原式21333=+-+=.【分项给分:11()22-=(1分),0(2010)1-=(1分)3=(1分)3=(1分)】16.原式=()()()()42122222x x x x x x ⎛⎫-+÷ ⎪ ⎪+-+--⎝⎭(4分)=()()()2222x x x x +⋅-+-(6分)=1.(8分)四.(本题每小题8分,满分16分)17.解不等式()3212x ---≥,得3x ≤;(3分) 解不等式102(1)3(1)x x -+-<-,得1x >-;(6分) 所以原不等式组的解集为13x -<≤.(7分)把解集在数轴上表示出来为:(8分)18.〖提示〗原式化简得12(5分);所以在该式有意义的条件下,不论x 为何值,代数式的值都为12,与x 的取值无关(8分). 五.(本题每小题10分,满分20分)19.∠3(2分);两直线平行,同位角相等(1分);DG (2分);内错角相等,两直线平行(1分);∠AGD (2分);两直线平行,同旁内角互补(1分);110°(1分).20.设原来每天加固x 米,则采用新的加固模式后每天加固2x 米,由题意得:(1分)600480060092x x-+=,(6分) 解这个方程得:300x =.(8分) 经检验:300x =是原方程的根.(9分)所以该地驻军原来每天加固300米.(10分)六.(本题满分12分)21.⑴122306030÷=⨯=(人),所以抽测了60人.(2分) ⑵9300.3÷= ,∴样本中B 等级的频率是0.3; 6300.2÷= ,∴样本中C 等级的频率是0.2.(4分)⑶A 等级在扇形统计图中所占的圆心角为:1436016830⨯= ; D 等级在扇形统计图中所占的圆心角为:13601230⨯= .(3分)⑷2330023030⨯=(名),估计该校大约有230名学生可以报考示范高中.(3分) 七.(本题满分12分)22.⑴设建造A 型沼气池 x 个,则建造B 型沼气池(20-x )个(1分)依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015x x x x (4分),解得:7≤ x ≤ 9 (5分).∵ x 为整数,∴ x = 7,8,9,∴满足条件的方案有三种.(6分)⑵由⑴知共有三种方案,其费用分别为:方案一:建造A 型沼气池7个,建造B 型沼气池13个,总费用为:7×2+13×3=53(万元); 方案二:建造A 型沼气池8个,建造B 型沼气池12个,总费用为:8×2+12×3=52(万元); 方案三:建造A 型沼气池9个,建造B 型沼气池11个,总费用为:9×2+11×3=51(万元)(10分) ∴方案三最省钱.(12分)八.(本题满分14分)23.⑴1111(1)n n n n -=++;(3分) ⑵左边=111111(1)(1)(1)(1)n n n n n n n n n n n n n n ++--=-==+++++=右边, 即1111(1)n n n n -=++.(3分) ⑶111111122334(1)1n n n ++++=-⨯⨯⨯++ ;(过程给3分,结论填对得2分) ⑷2111111111326274227431806=+=++=+++,等等;(写出一个即可,3分)。
江苏省江都市2009-2010学年第二学期七年级数学期末检测试卷2010.6(满分:150分,时间:120分钟)一、选择题(每题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的空格内. 1.下列计算正确的是A 1243a a a =⋅B 1243)(a a =-C 22)(ab ab =D a a a 1243=⋅2. 下列各式从左到右的变形中,属于因式分解的是 A ()k x n m k nx mx ++=++ B 32327214y x y x ⋅=C ()()22b a b a b a -=-+D ()222329124y x y xy x -=+-3.以下列各组线段长为边,能组成三角形的是A 2,2,4B 2,6,3C 12,5,6D 7,3,6 4.如右图,某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是 A 带①去 B 带②去 C 带③去 D 带①和②去 5.如图,不能判断1l ∥2l 的条件是A ∠1=∠3B ∠2+∠4=180°C∠4=∠5D ∠2=∠36. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式是 A 222()a b a b -=- B 222()2a b a a b b +=++ C 222()2a b a a b b -=-+215341l 2l第5题图b甲乙第4题图FE DCBA13题图D 22()()a b a b a b -=+-7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 A31 B 51C 152D 1548. 一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为 A 13 B 15 C 13或15 D 15或16或17二、填空题(每小题3分,计30分) 请将答案填写在题中的横线上.9.计算:=-13 .10.遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm ,用科学记数法表示为______________cm .11.若24=x,34=y,则4x y+=______________.12.某人只带了2元和5元这两种货币,他要买一件17元的商品,而商店没有零钱找,他想恰好付17元,那么他的付款方式有 种.13. 如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 个单位.14. 如图所示,是用一张长方形纸条折成的.如果∠1=100°,那么∠2=___ ___°.15.若方程组⎩⎨⎧=+=+5231y x y x 的解也是方程3x+ky=10的一个解,则k= .16.如图所示,△ABC 中,∠A=90°,BD 是角平分线,DE ⊥BC ,垂足是E ,AC=10cm ,CD=6cm,则DE 的长为__________________.第7题图14题图ADCE第16题图17.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿 直线前进10米,又向左转30°,……照这样走下去,他第一次回 到出发地A 点时,一共走了 米.18.有若干个数,第一个数记为1a ,第二个数记为2a ,以此类推, 若112a =-,从第二个数起,每个数都等于1与它前面的那个数的差的倒数. 那么2010a 的值为 .三、解答题(本大题共9题,满分96分)解答应写出文字说明、证明过程或演算步骤.19.(本题满分10分)分解因式:(1) 2225b a - (2) a ab ab 442+-20.(本题满分10分)计算与化简: (1) 22--(41)2009×42010+(4-π)0 (2) 2(21)(3)(3)x x x +-+-21. (本题满分10分)已知,如图,∠1=∠ACB ,∠2=∠3,那么∠BDC+∠DGF=180°吗?说明理由.22.(本题满分10分)某校课外活动小组为了解本校九年级学生的睡眠时间情况,对学校若干名九年级学生的睡眠时间进行了抽查,将所得数据整理后分为六组,画出了频数分布直方图的一部分.已知图中从左至右前五个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第二小组的频数为4.请回答:⑴这次被抽查的学生人数是多少?并补全频数分布直方图;⑵被抽查的学生中,睡眠时间在哪个范围内的人最多?这一范围内的人数是多少? ⑶如果该学校有900名九年级学生,若合理睡眠时间范围为97≤≤t .那么请你估计一下这个学校九年级学生中睡眠时间在此范围内的人数是多少?F第21题图AD BCFE23.(本题满分10分)如图,在△ABC 中,E 是AC 的中点,过E 作一条直线交AB 于D ,并在直线DE 上截取线段EF ,使DE=FE ,连接CF ,则AB 与CF 有什么位置关系?并说明理由.24、(本题满分10分)一批货物要运往某地,货主准备租用运输公司的甲、乙两种货车,已知以前用这两种货车的情况如下表(每辆车都满载):(1)求出甲、乙两种货车的满载的吨数分别是多少?(2)假如租用该公司3辆甲种货车和5辆乙种货车可以一次刚好运完这批货物,如果按每吨支付30元运费计算,货主应支付运费多少元?25.(本题满分10分)对于任意的有理数,,,a b c d ,我们规定.a bad bc c d=-如: .据这一规定,解下列问题:(1)化简 ;(2)若,x y 同时满足x y)2(3-=-2,821=y x ,求,x y 的值.26. (本题满分10分)如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个面积相等的扇形,小王与小李利用他们来做决定获胜与否的游戏,规定小王转甲转盘一次,小李转乙转盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小王说:“如果两个指针所指区域内的数之和为6或7,则我获胜,否则你获胜.”小王的设计规则,这种游戏规则公平吗?并说明理由;(2)请你为小王和小李玩的这种转盘游戏设计一种公平的游戏规则,并说明理由.()()(2)(4)2543235--=-⨯--⨯=(3)23(2)x y xy x y ++27.(本题满分14分)(1)如图(1),正方形ABCD 中,E 为边CD 上一点,连结AE ,过点A 作AF ⊥AE 交CB 的延长线于F ,猜想AE 与AF 的数量关系,并说明理由;(2)如图(2),在(1)的条件下,连结AC ,过点A 作AM ⊥AC 交CB 的延长线于M , 观察并猜想CE 与MF 的数量关系(不必说明理由); (3)解决问题:①王师傅有一块如图所示的板材余料,其中∠A =∠C =90°,AB=AD .王师傅想切一刀后把它拼成正方形.请你帮王师傅在图(3)中画出剪拼的示意图;②王师傅现有两块同样大小的该余料,能否在每块上各切一刀,然后拼成一个大的正方 形呢?若能,请你画出剪拼的示意图;若不能,简要说明理由.参考答案一、选择题E图1图2图3ACDAB CD图4ACD二、填空题: 9、31; 10、2×107; 11、 6; 12、2种; 13、8; 14、50°; 15、-21; 16. 4cm ; 17、120; 18、3.三、解答题:19、①解:原式=(a+5b )(a-5b) ②解:原式=a(b -2)220、①解:原式=-411 ②解:原式=32x +4x+10 21、解:∵∠1=∠ACB∴DE ∥BC ……………… 2分 ∴∠2=∠DCF ……………… 4分 ∵∠2=∠3∴∠3=∠DCF ……………… 6分 ∴CD ∥FG ……………… 8分∴∠BDC+∠DGF=180° ……………… 10分 说明:本题如果学生先回答:∠BDC+∠DGF=180°,给2分. 22、解:(1)50名 ; 图略 ………………(2+2)4分 (2 )6~7小时;14人 ……………… (2+2)8分 (3)324人 ……………… 10分 23解:A B ∥CF ……………… 2分 理由:∵E 为AC 的中点∴AE=CE ……………… 4分 在△ADE 和△CFE 中 AE=CE∠AED=∠CEF DE=FE∴△≌△CFE∴∠DAE =∠FCE ……………… 9分 ∴A B ∥CF ……………… 10分24、解:(1)设甲种货车一次运x 吨,乙种货车一次运y 吨。
湖北省武汉市汉阳区七年级下学期期末数学试卷一、选择题(每小题3分,共36分)1.(3分)要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图2.(3分)下列调查适合全面调查的是()A.了解武汉市民消费水平B.了解全班同学每周体育锻炼的时间C.了解武汉市中学生的眼睛视力情况D.了解一批节能灯的使用寿命情况3.(3分)下列各组数中互为相反数的是()A.|﹣2|与2 B.﹣2与C.﹣2与D.﹣2与4.(3分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.5.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE6.(3分)若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+1 7.(3分)不等式的解集在数轴上表示正确的是()A.B.C.D.8.(3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣89.(3分)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)解方程组时,小强正确解得,而小刚只看错了C,解得,则当x=﹣1时,ax2+bx+c的值是()A.6B.2C.0D.﹣811.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x >n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>12.(3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每小题3分,共18分)13.(3分)若x2=4,则x的值为.14.(3分)的立方根是.15.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.16.(3分)如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是.17.(3分)已知关于x的不等式组只有四个整数解,则实数a的取值范是.18.(3分)若方程组的解是,则方程组的解为.三、解答题(共8小题,共66分)19.(8分)解下列方程组(1)(2).20.(8分)解不等式(组),并在数轴上表示它的解集(1)3x﹣7>x+3(2).21.(8分)如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.22.(8分)某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图1,图2所示的不完整的统计图.(1)参加调查的同学一共有名,图2中乒乓球所在扇形的圆心角为°;(2)在图1中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请根据抽样调查数据估计该校同学中喜欢羽毛球运动的人数.23.(8分)如图直角坐标系中,A(﹣2,1),B(﹣3,﹣2),平移线段AB,使B点的对应点刚好与坐标原点O重合.(1)在图中画出平移后的对应线段A1O;(2)若线段AB上有点M(a,b),用a,b表示平移后的对应点M1的坐标是;(3)求出线段AB在平移过程中扫过的面积.24.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?25.(10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.26.(6分)对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题:(1)填空:①若[x]=3,则x应满足的条件:;②若[3x+1]=3,则x应满足的条件:;(2)求满足[x]=x﹣1的所有非负实数x的值.湖北省武汉市汉阳区2014-2015学年七年级下学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.2.(3分)下列调查适合全面调查的是()A.了解武汉市民消费水平B.了解全班同学每周体育锻炼的时间C.了解武汉市中学生的眼睛视力情况D.了解一批节能灯的使用寿命情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解武汉市民消费水平,调查范围广,适合抽样调查,故A错误;B、了解全班同学每周体育锻炼的时间,调查范围小,适合普查,故B正确;C、了解武汉市中学生的眼睛视力情况,调查范围广,适合抽样调查,故C错误;D、了解一批节能灯的使用寿命情况,调查具有破坏性,适合抽样调查,故D错误;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列各组数中互为相反数的是()A.|﹣2|与2 B.﹣2与C.﹣2与D.﹣2与考点:实数的性质.分析:首先根据|﹣2|=2,可得|﹣2|与2相等;然后根据,可得﹣2=;再根据互为倒数的含义,可得﹣2与﹣互为倒数;最后根据,可得﹣2与互为相反数,据此解答即可.解答:解:∵|﹣2|=2,∴|﹣2|与2相等;∵,∴﹣2=;∵(﹣2)×(﹣)=1,∴﹣2与﹣互为倒数;∵据,∴﹣2与互为相反数.故选:D.点评:(1)此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.(2)此题还考查了绝对值的非负性,以及互为倒数的含义以及判断,要熟练掌握.(3)此题还考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.4.(3分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.考点:估算无理数的大小.分析:根据无理数的定义进行估算解答即可.解答:解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为:B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.(3分)若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+1考点:不等式的性质.分析:运用不等式的基本性质求解即可.解答:解:已知m<n,A、m﹣4<n﹣4,故A选项错误;B、<,故B选项错误;C、﹣3m>﹣3n,故C选项错误;D、2m+1<2n+1,故D选项正确.故选:D.点评:本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.7.(3分)不等式的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:,解得,即:﹣1<x<3,在数轴上表示不等式的解集:.故选:A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入各项检验即可得到结果.解答:解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选:D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.(3分)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:确定出点P的横坐标比纵坐标大,再根据各象限内点的坐标特征解答.解答:解:∵(a+2)﹣(a﹣2)=a+2﹣a+2=4,∴点P的横坐标比纵坐标大,∵第二象限内点的横坐标是负数,纵坐标是正数,∴点P不可能在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(3分)解方程组时,小强正确解得,而小刚只看错了C,解得,则当x=﹣1时,ax2+bx+c的值是()A.6B.2C.0D.﹣8考点:二元一次方程组的解.分析:根据题意把和代入ax+by=6组成方程组,解方程组求出a、b的值,把代入cx﹣4y=﹣2求出c,计算得到答案.解答:解:由题意得,,解得,,把代入cx﹣4y=﹣2,得c=3,当x=﹣1时,x2+2x+3=2,故选:B.点评:本题考察的是二元一次方程组的解的定义和解法,正确理解题意组成新的方程组是解题的关键.11.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x >n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>考点:不等式的解集;不等式的性质.分析:先解关于x的不等式mx﹣n>0,得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.解答:解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,=,解得m=5n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<=﹣,故选A.点评:本题考查了不等式的解集以及不等式的性质,要熟练掌握不等式的性质3.12.(3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.专题:规律型.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.点评:本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共18分)13.(3分)若x2=4,则x的值为±2.考点:有理数的乘方.分析:根据有理数的乘方的定义解答即可.解答:解:∵(±2)2=4,∴x=±2.故答案为:±2.点评:本题考查了有理数的乘方,是基础题,需要要注意,x的值有两个.14.(3分)的立方根是2.考点:立方根;算术平方根.专题:计算题.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.解答:解:∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故答案为:2.点评:本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.15.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.考点:平行线的判定;垂线.分析:根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.解答:解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.点评:此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.16.(3分)如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是12.考点:频数(率)分布直方图.分析:根据直方图即可直接求得平均成绩大于或等于60的国家个数.解答:解:平均成绩大于或等于60的国家个数是:8+4=12.故答案是:12.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.(3分)已知关于x的不等式组只有四个整数解,则实数a的取值范是﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.解答:解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:﹣2,﹣1,0,1.则实数a的取值范围是:﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.点评:本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(3分)若方程组的解是,则方程组的解为.考点:二元一次方程组的解.分析:把方程组的解是代入原方程组中可得到,再把关于c1c2的代数式代入所求的方程组即可得解.解答:解:把方程组的解代入原方程组中得:,此式代入所求的方程得:,解得.故答案填.点评:本题考查了运用代入法解二元一次方程组的方法,解题时要根据方程组的特点进行有针对性的计算.三、解答题(共8小题,共66分)19.(8分)解下列方程组(1)(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1),①+②得:5x=5,即x=1,把x=1代入②得:y=1,则方程组的解为;(2),①×3+②×2得:19x=114,即x=6,把x=6代入①得:y=﹣,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(8分)解不等式(组),并在数轴上表示它的解集(1)3x﹣7>x+3(2).考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.分析:(1)根据解不等式的一般步骤解答即可,一般步骤为:移项及合并同类项,系数化为1解答即可;(2)先解不等式,再求解集的公共部分即可.解答:解:(1)3x﹣7>x+3,3x﹣x>3+7,2x>10,x>5,把解集画在数轴上为:;(2)解①得x<2,②得x≥﹣3,∴不等式组的解集为﹣3≤x<2.点评:本题考查了一元一次不等式的求解,熟记不等式的性质是解题的关键:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(8分)如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.考点:平行线的判定与性质.专题:计算题.分析:(1)由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由已知角相等,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到一对角互补,利用等角的补角相等得到∠BOC+∠DFE=180°,结合∠BOC+∠DFE=180°,求出∠OFE的度数即可.解答:(1)证明:∵AB∥DC,∴∠C=∠A,∵∠1=∠A,∴∠1=∠C,∴FE∥OC;(2)解:∵FE∥OC,∴∠FOC+∠OFE=180°,∵∠FOC+∠BOC=180°,∠DFE+∠OFE=180°,∴∠BOC+∠DFE=180°,∴∠BOC+∠DFE=180°,解得:∠DFE=80°,∴∠OFE=100°.点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(8分)某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图1,图2所示的不完整的统计图.(1)参加调查的同学一共有200名,图2中乒乓球所在扇形的圆心角为72°;(2)在图1中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请根据抽样调查数据估计该校同学中喜欢羽毛球运动的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用喜欢蓝球运动的人数除以对应的百分比即可求解;用喜欢乒乓球人数与总人数的百分比,再乘以360度即可求出扇形统计图中的乒乓球部分的圆心角的度数;(2)用总人数乘以喜欢排球运动人数的百分比求得喜欢排球运动的人数;用总人数减去喜欢其他运动的人数可求得喜欢足球的人数,从而将条形统计图补充完整;(3)用喜欢羽毛球运动的人数除以总人数,再乘以2400即可.解答:解:(1)66÷33%=200,×360°=72°,故答案为:200,72;(2)200×10%=20(名),200﹣40﹣24﹣66﹣20=50(名),如右图所示:(3)×2400=288(名),答:估计该校2400名同学中喜欢羽毛球运动的有288名同学.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)如图直角坐标系中,A(﹣2,1),B(﹣3,﹣2),平移线段AB,使B点的对应点刚好与坐标原点O重合.(1)在图中画出平移后的对应线段A1O;(2)若线段AB上有点M(a,b),用a,b表示平移后的对应点M1的坐标是(a+3,a+2);(3)求出线段AB在平移过程中扫过的面积.考点:作图-平移变换.分析:(1)根据图形平移的性质画出线段A1O即可;(2)由点B到点O可知应把线段先向右平移2的单位,再向上平移3个单位得出,由此可得出M1的坐标;(3)利用矩形的面积减去四个顶点上三角形的面积与矩形的面积即可得出结论.解答:解:(1)如图所示;(2)由图可知,点B到点O可知应把线段先向右平移2的单位,再向上平移3个单位得出,∴M1(a+3,a+2).故答案为:(a+3,a+2);(3)S四边形ABOA1=4×5﹣×2×3﹣1×2﹣×1×3﹣×2×3﹣1×2﹣×1×3=20﹣3﹣﹣3﹣2﹣=9.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?考点:二元一次方程组的应用;一元一次方程的应用.专题:应用题.分析:(1)根据图表可得小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据图表列出方程组求出x和y的值;(3)设商店是打a折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1062元,列出方程求解即可.解答:解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.点评:本题考查了二元一次方程组和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.25.(10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个.根据生产竖式纸盒用的正方形纸板+生产横式纸盒用的正方形纸板≤162张;生产竖式纸盒用的长方形纸板+生产横式纸盒用的长方形纸板≤340张.由此,可得出不等式组,求出自变量的取值范围,然后得出符合条件的方案.(2)设x个竖式需要正方形纸板x张,长方形纸板横4x张;y个横式需要正方形纸板2y 张,长方形纸板横3y张,可列出方程组,再根据a的取值范围求出y的取值范围即可.解答:解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个.由题意得,解得38≤x≤40.答:共有三种生产方案,方案一:生产竖式纸盒38个,横式纸盒62个;方案二:生产竖式纸盒39个,横式纸盒61个;方案三:生产竖式纸盒40个,横式纸盒60个.(2)设生产竖式纸盒x个,则生产横式纸盒y个.由题意得解得y=∵290<a<306,∴342<648﹣a<358∵y是整数,∴648﹣a=345,350,355.此时;;∴a=303,298,293.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.26.(6分)对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题:(1)填空:①若[x]=3,则x应满足的条件:≤x;②若[3x+1]=3,则x应满足的条件:≤x;(2)求满足[x]=x﹣1的所有非负实数x的值.考点:一元一次不等式组的应用.专题:新定义.分析:(1)①因为[x]=3,根据n﹣≤x<n+,求得x取值范围即可;②由①得出3x+1的取值范围,进一步解不等式组得出答案即可;(2)设x﹣1=m,m为整数,表示出x,进一步得出不等式组得出答案即可.解答:题:(1)①≤x;②≤x;(2)设x﹣1=m,m为整数,则x=,∴[x]=[]=m,∴m ﹣≤<m+∴<m ≤,∵m为整数,∴m=1,或m=2,∴x=或x=.点评:本题考查理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.初中数学试卷金戈铁制卷。
09-10学年度第二学期期中模拟试卷七年级数学4.下列各题屮,不能用平方差公式进行计算的是(B 、(x 3 - y 3)(x 3 + y 3); D 、(x 2-/)(-/-x 2)遗传信息大多储存在DNA 分子上。
一个DNA 分子的直径A 、0.2X10-6伽B 、6. 如图,Z1 = Z2, ZDAB=ZBCDo 给出下列结论(1)AB//DC, (2)AD 〃BC, (3)ZB=ZD, (4)ZD 二ZDAC 。
其中,正确的结论有( )个。
A N 1 ;B A 2;C 、3;D 、4o7. 如图,在宽为20加,长为30加的矩形地面上修建两条同样宽的道路余下部分作为耕地.根据图中数据,计算耕地的面积为( )刁A 、600 m 2B 、551 m 2C 、550 m 2D 、500 m r&下列因式分解中,正确的是( )A. — 2兀3 — 3xy3 + xy — _xy (2,x~ _ 3y 2 + B,—x~ _ y~ — _(% + yX 兀—)^7*"C. 16x 2 -\6xy + 4y 2 = 4(2x- y)2;O,x 2y + 2^ + 4y = y(x + 2)2 9.小明同学在计算某n 边形的内角和时,不小心少输入一个内角,得到和为2005° •则n 等于()A 、 11B 、 12C 、 13D 、 14 X = ~2是方程mx+y = 3的解,则加的值是( )y = 11. 下列计算正确的是(A^ a2- a 3 = a6; 2a + 3b = 5ab ;2. 下列各组中能构成三角形的一组是(A 、1、2、3;B 、2、3、4;3.下列方程组中,表示二元一次方程组的是C 、a8^a 2 =a 6)C 、2、3、5;D 、(a?b) = a 4bD N 2^ 3、6ox+ v = 3B 、<z+ 兀=5C 、<x+ j = 3 xy = 2x =11 *凹2约为 0.0000002cm., 这个数量用科学记数法可表示为( 5.生物具有遗传多样性, A 、2 B 、一2 C 、1D 、-12xl0_6cm C 、0.2x10_7C777 D 、2xl0~7cm10.已知 )30/w二.填空(只要你理解概念,仔细运算,积极思考,相信你一定会填对•每题3分,共30分)12.将-、(-2)°、(- 3)2按从小到大的顺序排列: 16丿 13.若〃边形的内角和是它外角和的2倍,则72二 14•若x 2-2ax^l6^完全平方式,则。
2009-2010学年度第二学期七年级期末数学试题
2010.6
一、选择题(每题3分,共12题36分)
1. 2的倒数是
A. 12 B. 12 C.2 D.-2
2.为了了解某批次50000台显示器的使用寿命,从中抽取50台进行试验.这个问题的样本容
量是
A.50000 B. 50 C.50000台显示器 D. 50000台显示器的使用寿命
3.地球上的陆地地形一般分为五种形态, 、平原、高原、盆地、丘陵,为简洁清晰地描述
我国五种陆地地形占国土面积的百分比,最适宜的统计图是
A.条形统计图 B.折线统计图 C.扇形统计图 D.直方图
4.如图1是由四个相同的小正方体组成的立体图形,它的俯视图(从上面看)为
5.如图2,直线AB∥CD,∠B=120°,那么,∠C =
A.30° B.60° C.90° D. 120°
6.下列命题是真命题的是
A.有且只有一条直线与已知直线垂直
B.有且只有一条直线与已知直线平行
C.三角形三个内角的和是一平角
D.三角形的高一定在三角形的内部
7.若mn,则下列不等式中成立的是
A. aman B. manb C.manb D. 22mana
8.由132xy得到用x表示y的式子为
A. 332xy B. 362xy C. 223yx D. 223yx
9.不等式1()23xmm的解集为2x,那么m的值是
A. 4 B. 2 C. 1 D. 1.5
10.如果35x,那么在直角坐标系中,点P(62x,5x)在
A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限
11.不等式组5234xx的解集在数轴上表示正确的是
A B
C
D
图1
A
B
C
D
图2
1 A 0 -1 2 3 C 1 0 -1 2 3 B 1 0 -1 2 3 D 1 0 -1 2
3
12.去冬今春,我国西南地区旱情严重,育英中学积极开展“捐一元,为灾区孩子送水喝”
爱心捐献活动,九(3)同学人人拿出自己的零花钱,踊跃捐款,捐款额有5元、10元、15元、
20元四种情况.李晓明同学根据统计数据绘制了图①和图②两幅尚不完整的统计图,则下列
结论:①该班共有32名同学;②捐款15元的人数最多;③在扇形图中,“20元”对应扇形
的圆心角为72°;④该班同学平均捐款13元.其中正确的是
A.①② B.②③
C.③④ D.①④
二.填空题
13. 23()2=__________; 111()12462=__________; 63()255=__________.
14.请你把平行线的性质补充完整:两直线平行,同旁内角_____,同位角____,内错角_____.
15.江城市积极开展“中学生阳光一小时”活动,学生身体素质情况有了很大的改善,随机
抽取了500名七年级学生进行检测,达标率为91.5%.据此,请你计算该市约8万名七年级
学生中,身体素质达标的大约有________人(结果用科学记数法表示,保留2个有效数字).
16.如图,在直角坐标系中,点A(0,4)、B(-2,0)、C(2,0)、D(0, 43)、,直线相交于点
E(-4,-4)、,连结AC,那么,△ACE的面积是________(平方单位).
三.解答题
17.解下列方程组
(1) 22240xyxy (2) 3()4()1126xyxyxyxy
18. 先化简,再求值:22(542)(55)xxxx,其中x=-2.
19.解下列不等式(组) (1)263x (2) 513(1)131722xxxx
图①
5元
20元
10元
15元
32%
4
人数/人
8
16
12
20
5
15
20 10 6 10
16
捐款额/元
图②
A
B
C
D
E
O
第16题图
20.如图,EF∥AD,∠1=∠2,∠BAC=70°.请你将求∠AGD的过程填写完整.
解:∵EF∥AD
∴∠2=∠3 (________________)
又∵∠1=∠2
∴∠1=∠3(等量代换)
∴AB∥_____ (___________________)
∴∠BAC+∠AGD=_______ (____________________)
∵∠BAC=70°
∴∠AGD=_______
21.南山中学组织同学们进行社会主义新农村社会调查,小龙负责了解他所居住村庄316户
村民的家庭月收入情况.他从中随机调查了40户村民家庭月收入情况(收入取整数,单位:
元),并绘制了如下的频数分布表和频数分布直方图.
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表.
(2)补全频数分布直方图.
(3)绘制相应的频数分布折线图.
(4)请你估计该村庄家庭收入属于中等水平(不足1600元,不低于1000元)的大约有多少户?
22.如图,在平米直角坐标系中,点B、C在x轴上,OB>OC,点A在y轴正半轴上,AD
平分∠BAC,交x轴于点D.
(1)若∠B=30°,∠C=50°,求∠DAO的度数.
(2)试写出∠DAO与∠C-∠B的关系?(不必证明)
(3)若点A 在y轴正半轴上运动,当点A运动至点P时,
请你作出△BPC及其角平分线PQ,
并直接写出∠QPO与∠PBC、∠PCB三者的关系?
分组 频数 百分比
600≤x<800
2 5%
800≤x<1000
6 15%
1000≤x<1200
45%
1200≤x<1400
9 22.5%
1400≤x<1600
1600≤x<1800
2
合计
40 100%
A
B
C
D
E
F
G
1
2 3
第20题图
0
4
户数
8
16
12
20
600
1200 1400
800 元 1000 1600
1800
A
B C
D O
x
y
第22题图
P
23.凌云中学组织师生春游,李志同学经过计算发现,如果全部租用54座客车若干辆,恰好
坐满;如果全部租用72座客车,则可少租2辆车,并且所租用的客车中除有1辆车剩余不
到一半的空位,其余车辆全部坐满.问凌云中学参加春游的师生共有多少人?
24.如图,已知∠ABC=30°,∠BAD=∠EBC,AD交BE于F.
(1)求∠BFD的度数;
(2)若EG∥AD,EH⊥BE,求∠HEG的度数.
25.2010年4月,在汉举行的第七届“中国森林城市论坛”上,武汉市等八城市被授予“国
家森林城市”称号.汉阳市政公司为绿化一段沿江风光带,计划购买红枫、桂花两种树苗共
500株,红枫树苗每株50元,桂花树苗每株80元.有关统计表明:红枫、桂花两种树苗的成
活率分别为90%和95%.
(1)若购买树苗共用了28000元,求购买红枫、桂花两种树苗各多少株?
(2)若购买树苗的钱不超过34000元,应如何选购树苗?
(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗?
H
第24题图
F
G
A
B
C
D
E