2013年初中毕业生学业考试数学试卷
- 格式:doc
- 大小:100.00 KB
- 文档页数:4
荆门市2013年初中毕业生学业水平及升学考试数 学 试 题 卷本试题卷共6页。
满分120分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证 条形码粘贴在答题卡上的指定位置,并认真核对条形码上的姓名、准考证号是否 正确。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需 改动,必须先用橡皮擦干净后,再选涂另一个答案标号。
答案写在试题卷上一律无 效。
3.填空题和解答题用0.5毫米黑色签字笔写在答题卡上每题对应的答题区域内。
答案写在试题卷上一律无效。
3.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分) 1.-6的倒数是A .6B .-6C .61D .-612.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为A .0.8×107-米 B .8×107-米C .8×108-米D .8×109-米3.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的 俯视图为A. B. C.D.4.下列运算正确的是机密★启用前A .8a ÷2a =4a B .325)(a a a -=--C .523)(a a a =-⋅ D .ab b a 835=+5.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名 学生参赛成绩统计如图所示. 对于这10名学生的参赛成 绩,下列说法中错误..的是 A .众数是90 B .中位数是90C .平均数是90D .极差是156.若反比例函数y =xk 的图象过点(-2, 1)则一次函数k kx y -=的图象过A .第一、二、四象限B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ②AD=BC ③OA=OC ④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 A .3种B .4种C .5种D .6种8.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是A .r l 2=B .r l 3=C .r l =D .r l 23=9.若关于x 的一元一次不等式组 有解,则m 的取值范围为A .32->mB .m ≤ 32 C . 32>mD .m ≤32-10.在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为 A .(3,4)B .(-4,3)C .(-3,4)D .(4,-3)11.如图,在半径为1的⊙O 中,∠AOB =45°,则sin C 的值为A .22 B .222-分数1 080 人数 2 5 85 90 9502<-m x 2>+m x 45°OCABC .222+ D .4212.如右图所示,已知等腰梯形ABCD,AD ∥BC ,若动直 线l 垂直于BC ,且向右平移,设扫过的阴影部分的面 积为S ,BP 为x ,则S 关于x 的函数图象大致是二、填空题(本大题共5小题,每小题3分,共15分) 13.分解因式:=-642x .14.若等腰三角形的一个内角为50°,则它的顶角为 .15.如图,在Rt ∆ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线 交AC 于点E ,BC =6,53sin =A ,则DE = .16.设1x ,2x 是方程020132=--x x 的两实数根,则=-+20132014231x x . 17.若抛物线c bx x y ++=2与x 轴只有一个交点,且过点)(n m A ,,)6(n m B ,+.则=n .三、解答题(本大题共7小题,共69分) 18.(本题满分8分)⑴计算:︒--++-60tan 3)1(8)5(201330πxByPADCl BAC EDx0 s A.…xs B.x 0s C.x0 sD.⑵化简求值: ⋅+-÷++-2344922a a a aa 31+a ,其中25-=a19.(本题满分9分)如图,在∆ABC 中,AB =AC ,点D是BC 的中点,点E 在AD 上. ⑴求证:BE =CE ;⑵若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为 F ,∠BAC =45°,原题设其它条件不变. 求证:∆AEF ≌∆BCF .20.(本题满分10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: ⑴求三辆车全部同向而行的概率; ⑵求至少有两辆车向左转的概率;⑶由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时 段对车流量作了统计,发现汽车在此十字路口向右转的频率为52,向左转和直行的频率均为103.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向 的绿灯亮的时间做出合理的调整.21.(本题满分10分)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627, tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速 公路是否穿过风景区,请说明理由.ABCDE C E ABDFβα北北CA B22.(本题满分10分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出 了一个购买商品房的政策性方案.人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)0.3 超过30平方米不超过m (平方米)部分(45≤m ≤60) 0.5 超过m 平方米部分 0.7根据这个购房方案:⑴若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;⑵设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x 的 函数关系式;⑶若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且 57<y ≤60 时, 求m 的取值范围.23.(本题满分10分)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线, 交AD 于点F ,切点为E .⑴求证:OF ∥BE ;⑵设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; ⑶延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P , 使∆EFO ∽∆EHG (E 、F 、O 与E 、H 、G 为对应点),如果存在,试求⑵中x 和y 的 值,如果不存在,请说明理由.DC AB E DC BA GOMPF OMPFEH (图1)(图2)24.(本题满分12分)已知关于x 的二次函数m m mx x y ++-=222的图象与关于x 的函数1+=kx y 的图象交于两点),(11y x A 、),(22y x B ;)(21x x < ⑴当==m k ,10,1时,求AB 的长;⑵当m k ,1=为任何值时,猜想AB 的长是否不变?并证明你的猜想. ⑶当m =0,无论k 为何值时,猜想∆AOB 的形状. 证明你的猜想. (平面内两点间的距离公式212212)()(y y x x AB -+-=).荆门市2013年初中毕业生学业水平及升学考试数学参考答案及评分标准一、 选择题(每小题3分,共36分) 1~6 DCBCCA 7~12 BACCBA 二、 填空题(每小题3分,共15分)13、(x -8)•(x +8) 14、50°或80° 15、415 16、2014 17、9三、 解答题(本题包括7个小题,共69分) 18、(共8分)解:(1)原式=1+2-1-3×3 = -1 ………………………4'(2)原式=21+a 代入a 值得原式=55 ………………………4'19、证明:(1)∵AB =AC ,D 是BC 的中点∴∠BAE =∠EAC 在∆ABE 和∆ACE 中, ∵AB =AC , ∠BAE =∠EAC ,AE =AE ∴∆ABE ≌∆ACE∴BE =CE ………………………5' (2) ∵∠BAC =45°,BF ⊥AF∴∆ABF 为等腰直角三角形,∴AF =BF , 由(1)知AD ⊥BC ∴∠EAF =∠CBF在∆AEF 和∆BCF 中,AF =BF , ∠AFE =∠BFC =90°∠EAF =∠CBF ∴∆AEF ≌∆BCF ………………………4'20、根据题意,画出树形图直左右 左 直 直右 左 直 右右左 直 左左右 左 直 直右 左 直 右右 左 直 右左左 左 直 直右 左 直 右右左 直P (三车全部同向而行)=91 ………………………4'(2)P (至少两辆车向左转)=277 ………………………3'(3)由于汽车向右转、向左转、直行的概率分别为103,103,52,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×3/10=27(秒),直行绿灯亮时间为90×3/10=27(秒) 右转绿灯亮的时间为90×2/5=36(秒) ………………………3'21、AB 不穿过风景区.如图,过C 作CD ⊥AB 与D ,AD =CD ·tan α;BD =CD ·tan β ………………………4' 由AD +DB =AB ,得CD ·tan α+CD ·tan β=AB ………………………2' CD =βαtan tan +AB =503150373.1627.1150==+(千米) ……………………3'∵CD =50>45 ∴高速公路AB 不穿过风景区. ………………………1' 22、解:(1)三口之家应缴购房款为0.3×90+0.5×30=42(万元)…………………4' (2)①当0≤x ≤30时,y=0.3×3x=0.9x②当30<x ≤m 时,y=0.9×30+0.5×3×(x-30)=1.5x-18 ③当x >m 时,y=1.5m-18+0.7×3×(x-m)=2.1x-18-0.6m0.9x (0≤x ≤30)1.5x-18 ( 30<x ≤m ) (45≤m ≤60) ………3'2.1x -18-0.6m (x >m )(3) ①当50≤m ≤60时,y=1.5×50-18=57(舍)②当45≤m ﹤50时,y=2.1×50-0.6m-18=87-0.6m ∵57<87-0.6m ≤60 ∴45≤m <50综合①②得45≤m <50. ……………3'23、(1)证明:连接OEFE 、FA 是⊙O 的两条切线 ∴∠FA O =∠FEO =90° FO =FO ,OA =EO ∴Rt △FAO ≌Rt △FEO ∴∠AOF =∠EOF=21∠AOE∴∠AOF =∠ABE∴OF ∥BE ………………4'(2)、过F 作FQ ⊥BC 于Q∴PQ =BP -BQ =x -yy=PF =EF +EP =FA +BP =x +y ∵在Rt △PFQ 中 ∴2FQ+22PFQP=∴222)()(2y x y x +=-+化简得xy 1=,(1<x <2) ………………3'(3)、存在这样的P 点∵∠EOF =∠AOF∴∠EHG =∠EOA =2∠EOF 当∠EFO =∠EHG =2∠EOF 时即∠EOF =30°时,Rt △EFO ∽Rt △EHG 此时Rt △AFO 中,y =AF =OA ·tan30°=3331==yx∴当33,3x ==y 时,△EFO ∽△EHG ………………3'24、解:(1)当m=0时,2x y =联立得012=--x x∴x 1+x 2=1 x 1·x 2=-1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10同理,当k =1,m =1时,AB =10 ………………4'(2)猜想:当k =1,m 为任何值时,AB 的长不变,即AB =10 下面证明: 联立 y =x2-2mx +m 2+my =x +1消y 整理得 x2-(2m +1)x +m 2+m -1=0∴x 1+x 2=2m+1 ,x 1·x 2= m2+m -1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10, ………………4'(3)当m =0,k 为任意常数时,三角形AOB 为直角三角形,y =x 2y =x +1①当k=0时,则函数的图像为直线y=1, 则由y=x2y=1得A(-1,1),B(1,1)显然∆AOB为直角三角形②当k=1时,则一次函数为直线y=x+1,则由y=x2y=x+1x2-x-1=0x1+x2=1 x1·x2=-1AB=2AC=2| x2- x1|=2212124)(xxxx-+=10A(x1,y1) 、B(x2,y2)∴AB²=10OA²+OB²=x1²+ y1²+x2²+ y2²=10∴AB²=OA²+OB²(3)当k为任意实数,∆AOB仍为直角三角形联立y=x2y=kx+1得x2-kx-1=0x1+x2=k x1·x2= -1AB²=(x1-x2)²-+ (y1-y2)²=k4+5k ²+4OA ²+OB ²=x1²+ y1²+x2²+ y2²=k4+5k ²+4∴AB²=OA²+OB ²∴∆AOB为直角三角形……………4'。
2013届初中毕业生学业考试模拟试卷数学试题一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.计算的值为()A.B.C.4 D.22.下列图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如图所示,下列选项中,正六棱柱的左视图是()4.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某通信卫星的零部件的质量情况的调查D.对某类烟花爆竹燃放安全情况的调查5.已知圆锥的侧面积为8πcm2,侧面展开图的圆心角为45°,则该圆锥的母线长为()A.64cm B.8cm C.2cm D.6.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是()7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=89.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5 )C.D.10.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为()2 a b c ﹣3 1 …A.2 B.﹣3 C.0 D.111.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.12.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.地球上的海洋面积约为361000000km2,则科学记数法可表示为km2.14.分解因式:= .15.乐乐和爸爸到广场散步,爸爸的身高是176cm,乐乐的身高是156cm,在同一时刻爸爸的影长是44cm,那么乐乐的影长是cm.16.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF= 度.17.如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,则∠B= 度.18.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小.三、解答题(本大题共8小题,共76分,其中第19题6分,第20、21各7分,第22、23各9分,第24、25各12分,第26题14分;请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(3)°20.如图,方格纸上的每个小方格都是边长为1小正方形,我们把格点连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.(1)填空:BC=_________,tanB=_________;(2)请先在方格纸中画出一个格点三角形DEF,使△DEF∽△ABC,并且DE:AB=2:1.再回答:△DEF与△ABC的周长之比为_________.21.为了了解我市初中学生体育活动情况,随机调查了720名八年级学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2012年我市八年级学生约为1.2万人,按此调查,可以估计2012年我市八年级学生中每天锻炼未超过1小时的学生约有多少万人?22.如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:≈1.73)23.已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长;(2)⊙P移动到与边OB相交于点E,F,若EF=4 cm,求OC 的长.24.小王从A地前往B地,到达后立刻返回.他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示.(1)小王从B地返回到A地用了多少小时?(2)求小王出发6小时后距A地多远?(3)在A、B之间有一C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C 两地相距多远?25.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.(1)、观察图2可知:与BC相等的线段是_________,∠CAC′=_________°.(2)、问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(3)、拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME 和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.26.已知抛物线经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.参考答案一、选择题(每小题3分,共36分)题号1 2 3 4 5 6 7 8 9 10 11 12答案C B B C B D C D A B B C二、填空题(每小题3分,共18分)题号13 14 15 16 17 18答案3.61×108 3(x+3)(x﹣3)39 80 30°三、解答题(本大题共8小题,共76分,其中第19题6分,第20、21各7分,第22、23各9分,第24、25各12分,第26题14分;请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(﹣1)2008﹣(π﹣3)0+解:原式=1﹣1+2=2 对一个得一分,答案对得3分,共6分20.解:(1)根据BC2=32+22,∴BC= ,tanB= = ,故答案为:BC= ,tanB= ;2分(2)如图所示,∵△DEF∽△ABC,并且DE:AB=2:1.∴△DEF与△ABC的周长之比为:2:1.故答案为:2:1.4分7分21.解(1)∵= ,∴选出的恰好是“每天锻炼超过1小时”的学生的概率是; 2 分(2)720×﹣120﹣20=400 4分故“没时间”锻炼的人数是400名.频数分布图为:5分(3)1.2×=0.9(万人)故估计2011年我县八年级学生中每天锻炼未超过1小时的学生约有0.9万人.7分22.解:如图,过点A作AD⊥BC,垂足为D.根据题意,可得∠BAD=30°,∠CAD=60°,AD=66.在Rt△ADB中,由tan∠BAD= ,得BD=AD•tan∠BAD=66×tan30°=66×.3分在Rt△ADC中,由tan∠CAD= ,得CD=AD•tan∠CAD=66×tan60°=66×.6分∴BC=BD+CD= ≈152.2.答:这栋楼高约为152.2m.9分23. 解:(1)∵∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA 相切的切点记为点C.∴∠DPC=120°,∴劣弧的长为:=2πcm;3分(2)可分两种情况,①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB 于点N,∵EF= cm,∴EM=2 cm,在Rt△EPM中,PM= =1cm,∵∠AOB=60°,∴∠PNM=30°,∴PN=2PM=2cm,∴NC=PN+PC=5cm,在Rt△OCN中,OC=NC×tan30°=5×= cm.7分②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,由①可知,PN=2cm,∴NC=PC﹣PN=1cm,在Rt△OCN中,OC=NC×tan30°=1×= cm.9分综上所述,OC的长为cm或cm.24.解:(1)从B地返回到A地所用的时间为4小时;2分(2)小王出发6小时.由于6>3,可知小王此时在返回途中,于是,设DE所在的直线的解析式为y=kx+b.由图象可知:解得:∴DE的解析式是y=﹣60x+420(3≤x≤7).当x=6时,有y=﹣60x+420=60.∴小王出发6小时后距A地60千米;7分(3)设AD所在直线的解析式是y=mx.由图象可知3m=240,解得m=80∴AD所在直线的解析式是y=80x(0≤x≤3)设小王从C到B用了n小时,则去时C与A的距离为y=240﹣80n.返回时,从B到C用了(﹣n)小时,这时C与A的距离为y=﹣60[3+(﹣n)]+420=100+60n由240﹣80n=100+60n,解得n=1故C与A的距离为240﹣80n=240﹣80=160千米.12分另解:设从C到B用小时,从B到C用小时,从A到B的速度为80千米/小时,从B到A的速度为60千米/小时,则所以,AC=240-80=160千米25.解:①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;故答案为:AD,90.2分②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,又∵AF=AC,∴△AFQ≌△CAG,∴FQ=AG,同理EP=AG,∴FQ=EP.7分③HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°,又AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:EA.同理△ACG∽△FAQ,∴AG:FQ=AC:FA.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.12分26. 解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,∴,解得:,∴y= x2﹣x+3;∴点C的坐标为:(0,3);3分(2)假设存在,分两种情况:①当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,如图1,过点B作BM⊥x轴于点M,∵A(3,0),B(4,1),∴AM=BM=1,∴∠BAM=45°,∴∠DAO=45°,∴AO=DO,∵A点坐标为(3,0),∴D点的坐标为:(0,3),∴直线AD解析式为:y=kx+b,将A,D分别代入得:∴0=3k+b,b=3,∴k=﹣1,∴y=﹣x+3,∴y= x2﹣x+3=﹣x+3,∴x 2﹣3x=0,解得:x=0或3,∴y=3,y=0(不合题意舍去),∴P点坐标为(0,3),∴点P、C、D重合,7分②当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,如图2,过点B作BF⊥y轴于点F,由(1)得,FB=4,∠FBA=45°,∴∠DBF=45°,∴DF=4,∴D点坐标为:(0,5),B点坐标为:(4,1),∴直线BD解析式为:y=kx+b,将B,D分别代入得:∴1=4k+b,b=5,∴k=﹣1,∴y=﹣x+5,∴y= x2﹣x+3=﹣x+5,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4(舍),∴y=6,∴P点坐标为(﹣1,6),∴点P的坐标为:(﹣1,6),(0,3);10分求出一个得四分求出二个得七分(3)如图3:作EM⊥AO于M,∵直线AB的解析式为:y=x﹣3,∴tan∠OAC=1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∴AC⊥AF,∵S△FEO= OE×OF,OE最小时S△FEO最小,∵OE⊥AC时OE最小,∵AC⊥AF∴OE∥AF∴∠EOM=45°,∴MO=EM,∵E在直线CA上,∴E点坐标为(x,﹣x+3),∴x=﹣x+3,解得:x= ,∴E点坐标为(,).14分。
湛江市2013年初中毕业生学业考试数学试卷说明:1.本试卷满分150分,考试时间90分钟.2.本试卷共4页,共3大题.3.答题前,请认真阅读答题卡上的“注意事项”,然后按要求写在答题卡相应的位置上.4.请考生保持答题卡的整洁,考试结束,将试卷和答题卡一并交回.注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.一、选择题:本大题12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各数中,最小的数是( ) .A 1 .B 12.C 0 .D 1- 2. 国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( ).A 621310⨯ .B 721.310⨯ .C 82.1310⨯ .D 92.1310⨯3. 气候宜人的省级度假旅游胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:C ο),这组数据的中位数是( ) .A 24 .B 22 .C 20 .D 174、如下左图是由6个大小相同的正方体组成的几何体,它的左视图是( )5、已知一个多边形的内角和是540ο,则这个多边形是( ) .A 四边形 .B 五边形 .C 六边形 .D 七边形6、在平面直角坐标系中,点A ()2,3-在第( )象限..A 一 .B 二 .C 三 .D 四7、下列运算正确的是( ).A 236a a a ⋅= .B ()426a a = .C 43a a a ÷= .D ()222x y x y +=+8、函数y =x 的取值范围是( ).A 3x >- .B 3x ≥- .C 3x ≠- .D 3x ≤-9、计算222x x x ---的结果是( ).A 0 .B 1 .C 1- .D x10、由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次下降%a 售价下调到每斤是5元,下列所列方程中正确的是( ).A ()2121%5a += .B ()2121%5a -= .C ()1212%5a -= .D ()2121%5a +=11、如图,AB 是O 的直径,110AOC ο∠=, 则D ∠=( ) .A 24 .B 22.C 20 .D 1712、四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率为( ).A 12 .B 14 .C 34.D 1 二、填空题:本大题共4小题,每小题4分,共16分. 13、分解因式:24x -= .14、抛物线21y x =+的最小值是 .15、若反比例函数k y x=的图象经过点()1,2A ,则k = . 16、如图,所有正三角形的一边平行于x 轴,一顶点在y 轴 上.从内到外,它们的边长依次为2,4,6,8,, ,顶点依次用1234A A A A 、、、、表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、 均相距一个单位,则顶点3A 的坐标是 ,92A 的坐标是 .三、解答题:本大题共10小题,其中17~18每小题6分,19~22每小题8分,23~25每小题10分,26题12分,共86分.17、计算:()2-61-..18、解不等式组,并把它的解集在数轴上表示出来.19、如图,点B F C E 、、、在一条直线上,FB CE =,//,//,AB ED AC FD 求证:AC DF =.2110x x x +>⎧⎨-<⎩① ②20、把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上数字1、2、3,将这两组卡片分别放入两个盒子中搅均,再从中各随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率.(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.21、如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛在渔政船的北偏西30ο的方向上,随后渔政船以80海里/小时的速度向北偏东30ο的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60ο的方向上,求此时渔政船距钓鱼岛A的距离AB.≈)1.73222、2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?OP BC,.23、如图,已知AB是⊙O的直径,P为⊙O外一点,且//∠=.P BAC(1)求证:PA为⊙O的切线;(2)若255,3OB OP ==,求AC 的长.24、阅读下面的材料,先完成阅读填空,再将要求答题:1sin 30,cos3022οο==,则22sin 30cos 30οο+= ; ①sin 454522οο==,则22sin 45cos 45οο+= ; ②sin 6022οο==,则22sin 60cos 60οο+= . ③……观察上述等式,猜想:对任意锐角A ,都有22sin cos A A += .④ (1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理 对A ∠证明你的猜想;(2)已知:A ∠为锐角()cos 0A >且3sin 5A =,求cos A .25、周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程()y km 与小明离家时间()x h 的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.26、如图,在平面直角坐标系中,顶点为()3,4的抛物线交 y 轴与A 点,交x 轴与B C 、两点(点B 在点C 的左侧),已知A 点坐标为()0,5-.(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线与点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 的位置关系,并给出证明.(3)在抛物线上是否存在一点P ,使ACP ∆是以AC 为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.。
浙江省2013年初中毕业生学业考试(金华卷) 数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.在数0,2,-3,-1.2中,属于负整数的是( ▲ )A .0B .2C .-3D .-1.2 2.化简-2a +3a 的结果是( ▲ )A .-aB .aC .5aD .-5a 3.用3个相同的立方块搭成的几何体如图所示,则它的主视图是( ▲ )4.若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是(▲ ) A .x ≤2 B .x >1 C .1≤x <2 D .1<x ≤25.如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =20°,∠COD =100°, 则∠C 的度数是( ▲ ) A .80°B .70°C .60°D .50°6.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数 是( ▲ )A .16人B .14人C .4人D .6人7.一元二次方程16)6(2=+x 可转化为两个一元一次方程,其中一个一元一次方程是x +6=4, 则另一个一元一次方程是( ▲ ) A .x -6=-4 B .x -6=4C .x +6=4D .x +6=-4(第5题)(第4题)A .B .C .D .O DCBA8.一条排水管的截面如图所示,已知排水管的半径OB =10,水面宽AB =16则截面圆心O 到水面的距离OC 是( ▲ ) A .4 B .5C .6D .89.若二次函数2ax y =的图象经过点P (-2,4),则该图象必经过点( ▲ )A .(2,4)B .(-2,-4)C .(-4, 2)D .(4,-2)10.如图1,在Rt △ABC 中,∠ACB =90°,点P 以每秒1 cm 的速度从点A 出发,沿折线AC -CB运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长度y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( ▲ )A .1.5 cmB .1.2 cmC .1.8 cmD .2cm卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分)11.分解因式:=-x x 22 ▲ .12.分式方程021=-x的解是 ▲ .13.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示, 学生B ,C ,D 随机坐到其他三个座位上,则学生B 坐在2号座位的 概率是 ▲ .14.如图,在Rt △ABC 中,∠A =Rt ∠,∠ABC 的平分线BD 交AC 于点D , AD =3,BC =10,则△BDC 的面积是 ▲ .15.如图,四边形ABCD 与四边形AEFG 都是菱形,其中点C 在AF 上, 点E ,G 分别在BC ,CD 上,若∠BAD =135°,∠EAG =75°,则ABAE= ▲ . 16.如图,点P 是反比例函数y =x k(k <0)图象上的点,P A 垂直x 轴于点A (-1,0),C 点的坐标为(1,0),PC 交y 轴于点B ,连结AB , 已知AB =(1)k 的值是 ▲ ;(2)若M (a ,b )是该反比例函数图象上的点,且满足∠MBA <∠ABC , 则a 的取值范围是 ▲ .DCBA(第14题)GEDCBA(第15题)(第10题)图1 )D PC BA (第8题)(第13题)3号2号1号A三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:0)21(28-+--.18.(本题6分)先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a . 19.(本题6分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB =3m . 已知木箱高BE =3m ,斜面坡角为30°,求木箱端点E 距地面AC 的高度EF . 20.(本题8分)如图,科技小组准备用材料围建一个面积为60m 2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12m .设AD 的长为x m ,DC 的长为y m .(1)求y 与x 之间的函数关系式;(2)若围成矩形科技园ABCD 的三边材料总长不超过26m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案. 21.(本题8分)如图,在△ABC 中,AB =AC ,∠BAC =54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F . (1)求证:BE =CE ;(2)求∠CBF 的度数; (3)若AB =6,求AD⌒的长. 22.(本题10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试 成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人? (2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?(第20题)九年级某班跳绳测试得分人数统计图 九年级某班跳绳测试得分扇形统计图(第19题)23.(本题10分)如图,已知抛物线bx x y +=221与直线y=2x 交于点O (0,0),A (a ,12).点B 是抛物线 上O ,A 之间的一个动点,过点B 分别作x 轴、y 轴的平行线与直线OA 交于点C ,E .(1)求抛物线的函数解析式;(2)若点C 为OA 的中点,求BC 的长; (3)以BC ,BE 为边构造矩形BCDE ,设点D 的坐标为(m ,n ), 求出m ,n 之间的关系式.24.(本题12分)如图1,点A 是x 轴正半轴上的动点,点B 坐标为(0,4),M 是线段AB 的中点.将点M 绕点A 顺时针方向旋转90°得到点C ,过点C 作x 轴的垂线,垂足为F ,过点B 作y 轴的垂线与直线CF 相交于点E ,点D 是点A 关于直线CF 的对称点.连结AC ,BC ,CD ,设点A 的横坐标为t .(1)当t =2时,求CF 的长;(2)①当t 为何值时,点C 落在线段BD 上;②设△BCE 的面积为S ,求S 与t 之间的函数关系式;(3)如图2,当点C 与点E 重合时,将△CDF 沿x 轴左右平移得到△C′D′F′,再将A ,B ,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C ′的坐标.(第23题) (第24题)图1 图2浙江省2013年初中毕业生学业考试(金华卷)数学试卷参考答案及评分标准一、二、11.x (x -2) 12.21=x 13.3114.15 15.231+16.(1)-4;(2)0<a <2或23311--<a <23311+-(各2分) 三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(本题6分)解:原式=22-2+1=2+1. ……6分 18.(本题6分)解:原式=22144a a a -+++=54+a . ……3分当43-=a 时,原式=4×(43-)+5=2. ……3分19.(本题6分)解:连结AE ,在Rt △ABE 中,已知AB =3,BE =3,∴AE =22BE AB +=32.又∵tan ∠EAB =33=AB BE ,∴∠EAB =30°. 在Rt △AEF 中,∠EAF =∠EAB +∠BAC =60°,∴EF = AE ·sin ∠EAF =32×sin60°=32×23=3(m ). 答:木箱端点E 距地面AC 的高度是3 m . ……6分 20.(本题8分)解:(1)如图,AD 的长为x , DC 的长为y ,由题意,得xy =60,即y =x60. ∴所求的函数关系式为y =x60. ……4分 (2)由y =x60,且x ,y 都是正整数, x 可取1,2,3,4,5,6,10,12,15,20,30,60.但∵2x +y ≤26,0<y ≤12,∴符合条件的有: x =5时,y=12;x =6时,y=10;x =10时,y=6.答:要使活动的园的长和宽都是整米数,共有3种围建方案:AD =5m ,DC =12m 或AD =6m ,DC =10m 或AD =10 m ,DC =6m . ……4分21.(本题8分)解:(1)连结AE ,∵AB 是⊙O 的直径, ∴∠AEB =90°.即AE ⊥BC .又∵AB =AC ,∴BE =CE . ……2分(2)∵∠BAC =54°,AB =AC , ∴∠ABC =63°.又∵BF 是⊙O 的切线,∴∠ABF =90°. ∴∠CBF =∠ABF -∠ABC =27°. ……3分 (3)连结OD , ∵OA =OD ,∠BAC =54°, ∴∠AOD =72°.又∵AB =6,∴OA =3. ∴=180372⨯π=56π. ……3分 22.(本题10分)解:(1)得4分的学生数是50×50%=25人. ……3分(2)平均分=50105254%10503102⨯+⨯+⨯⨯+⨯=3.7(分). ……3分(3)设第二次测试中得4分的学生有x 人,得5分的学生有y 人, 由题意,得⎩⎨⎧⨯+=++⨯=+,50)8.07.3(5453,45y x y x解得⎩⎨⎧==.30,15y x答:第二次测试中得4分的学生有15人,得5分的学生有30人. ……4分23.(本题10分)解:(1) ∵直线y=2x 经过点A (a ,12), ∴a =6.∵点A 是抛物线bx x y +=221的一点, 把A (6,12)代入bx x y +=221,得b =-1. ∴抛物线的函数解析式为x x y -=221. ……3分 (2) ∵点C 为OA 的中点,∴点C 的坐标(3,6).把y =6代入x x y -=221,x 1=131+,x 2=131-(舍去), ∴BC=131+-3=213-. ……4分 (3)∵设点D 的坐标为(m ,n ),∴点E 的坐标为(n 21,n ),点C 的坐标为(m ,2m ).∴点B 的坐标为(n 21,2m ).把(n 21,2m )代入x x y -=221,可得n n m 411612-=.∴m ,n 之间的关系式是n n m 411612-=. ……3分 24.(本题12分)解:(1)当t =2时,OA =2,∵点B (0,4),∴OB =4.又∵∠BAC =90°,AB =2AC ,可证Rt △ABO ∽Rt △CAF . ∴2124==CF AF ,即CF =1. ……4分 (2)①当OA =t 时,∵Rt △ABO ∽Rt △CAF ,∴CF =t 21,FD = AF =2,∴FD =2,CE =4-t 21,BE =t +2.∵点C 落在线段BD 上,∴Rt △CFD ∽Rt △BOD , ∴42142tt =+,整理得01642=-+t t , 解得2521-=t ,2522--=t (舍去).∴当252-=t 时,点C 落在线段BD 上. ……3分 ②当点C 与点E 重合时,CF =4,可得t = OA =8. 当0<t ≤8时,S =21BE·CE =)214)(2(21t t -+=423412++-t t ; 当t >8时,S =21BE·CE =)421)(2(21-+t t =423412--t t . ……2分 (3)点C′的坐标为:(12,4),(8,4),(2,4). ……3分 理由如下:①如图1,当F′C′=A F′时,点F′的坐标为(12,0),根据△C′D′F′≌△AH F′,△B C′H 为拼成的三角形,此时C′的坐标为(12,4); ②如图2,当点F′与点A 重合时,点F′的坐标为(8,0),根据△O C′A ≌△B A C′,△O C′D′为拼成的三角形,此时C′的坐标为(8,4); ③如图3,当BC′=F′D′时,点F′的坐标为(2,0),根据△B C′H ≌△D′F′H ,△A F′C′为拼成的三角形,此时C′的坐标为(2,4).图1 图2 图3。
机密★启用前广东省初中毕业生学业考试数学(2013年样题)说明:1、全卷共4页,考试用时100分钟,满分为150分.2、答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、试室号、座位号,用2B 铅笔把对应该号码的标号涂黑。
3、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
4、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准便用铅笔和涂改液,不按以上要求作答的答案无效。
5、考生务必保持答题卡的整洁,考试结束时,将试卷和答题卡一并交回一、选择题(本大题共8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. -5的绝对值是 答案:AA. 5B. -5C.51D.51-2.地球半径约为6400 000米,用科学计数法表示为 答案:BA. 71064.0⨯B. 6104.6⨯C. 51064⨯D. 410640⨯ 3.数据8、8、6、5、6、1、6的众数是 答案:CA. 1B. 5C. 6D. 8 4.如左图所示几何体的主视图是 答案:B5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是 答案:C A. 5 B. 6 C. 11 D. 166.下列运算正确的是A .a+a=a 2B .(一a 3) 2= a 5C .3a ·a 2= a 3D .(2a) 2=2a 2 7.已知三角形两边的长分别是4和lO ,则此三角形第一边的长可能是 A .5 B .6 C .1l D .16 8.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ’B ’C .若∠A=40°, ∠B ’=110°,则∠BCA ’的度数是A .110°B .80°C .400°D .30° 二、填空题(本大题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 9.分解因式:=x x 10-22.简析:本题考查因式分解,提公因式法,)5-(210-22x x x x = 10.不等式09-3>x 的解集是 .简析:本题考查不等式的解法,09-3>x ,3x >9,x >3,故不等式的解集为{x |x >3} 11.如图,A 、B 、C 是⊙O 上的三个点,∠ABC=25°,则∠AOC = . 简析:本题考查圆周角与圆心角之间的关系,∠AOC =50°12.若x 、y 为实数,且满足|x-3|+3+y =0,则2012)(yx 的值是 .简析:本题考查非负性,x =3,y =-3,2012)(yx =20121-)(=1.13.如图在ABCD 中,AD=2,AB =4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是 (结果保留π)简析:本题考查的是面积计算,包含平行边形,三角形,扇形的面积计算方法,阴影部分的面积为:3-6π。
益阳市2013年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP )突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是A .111002.1⨯B .10102.10⨯C .101002.1⨯D .11102.1⨯2.下列运算正确的是A .623=÷a aB .422)(ab ab =C .22))((b a b a b a -=-+D .222)(b a b a +=+3.分式方程xx 325=-的解是 A .x =3B .x =3-C .x =34D .x =34-4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 5.一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为 A . 2个 B . 3个 C . 5个D . 10个6.如图2,在平行四边形ABCD 中,下列结论中错误..的是 A .∠1=∠2 B .∠BAD =∠BCD C .AB =CD D . AC ⊥BD1 2ABC图2主视图左视图俯视图图1 姓名 准考证号x (时)y (℃) 18 2O 图5A BC7.抛物线1)3(22+-=x y 的顶点坐标是A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1) 8.已知一次函数2-=x y ,当函数值0>y 时,自变量x 的取值范围在数轴上表示正确 的是ABCD二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上) 9.因式分解:24xy x -= . 10.化简:111x x x ---= . 11.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是 .12. 如图3,若AB 是⊙O 的直径,10=AB cm ,︒=∠30CAB ,则BC = cm .13.下表中的数字是按一定规律填写的,表中a 的值应是 .三、解答题(本大题共2小题,每小题6分,共12分)14.已知:3=a ,2-=b ,21=c . 求代数式:24a b c +-的值.15. 如图4,在ABC Δ中,AC AB =,CD BD =,AB CE ⊥于E .求证:CBE ABD ΔΔ∽.四、解答题(本大题共3小题,每小题8分,共24分)16.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图5是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线xky =的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?图3 AB DC E图4 0 217.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图6).(1)表中a = ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?18.如图7,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:0.80=AB 米,︒=∠5.38PAB ,︒=∠5.26PBA .请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:62.05.38sin ≈︒,78.05.38cos ≈︒,80.05.38tan ≈︒,45.05.26sin ≈︒,89.05.26cos ≈︒,50.05.26tan ≈︒)五、解答题(本大题共2小题,每小题10分,共20分)19.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石. (1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.图7图620.如图8,在ABC Δ中,︒=∠36A ,AC AB =,ABC ∠的平分线BE 交AC 于E .(1)求证:BC AE =; (2)如图8(2),过点E 作EF ∥BC 交AB 于F ,将AEF Δ绕点A 逆时针旋转角α)1440(︒<<︒α得到F E A ''Δ,连结E C ',F B ',求证:CE BF ''=;(3)在(2)的旋转过程中是否存在E C '∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由.六、解答题(本题满分12分)21.阅读材料:如图9,在平面直角坐标系中,A 、B 两点的坐标分别为11()A x y ,,22()B x y , ,AB 中点P 的坐标为()p p x y ,.由12p p x x x x -=-,得122p x x x +=,同理122p y y y +=,所以AB 的中点坐标为1212()22x x y y ++,. 由勾股定理得2222121AB x x y y =-+-,所以A 、B 两点间的距离公式为AB . 注:上述公式对A 、B 在平面直角坐标系中其它位置也成立.解答下列问题:如图10,直线l :22+=x y 与抛物线22x y =交于A 、B 两点,P 为AB 的中点,过P 作x 轴的垂线交抛物线于点C . (1)求A 、B 两点的坐标及C 点的坐标;(2)连结AC BC 、,求证ABC ∆为直角三角形; (3)将直线l 平移到C 点时得到直线l ',求两直线l 与l '的距离.1y 图10图8BC 图8(1) A E 36°EB CF图8(备用图)A 36°图8(2)EBCF E 'F '36° A次数第17题解图益阳市2013年普通初中毕业学业考试数学参考答案及评分标准一、选择题(本大题共8小题,每小题4分,共32分).二、填空题(本大题共5小题,每小题4分,共20分).9.)2)(2(-+y y x ;10.1;11.32;12.5;13.21.三、解答题(本大题共2小题,每小题6分,共12分).14.解:当3=a ,2-=b ,21=c 时, c b a 42-+=2142)3(2⨯--+=223-+ ······················································································· 5分 =3 ··································································································· 6分15.证明:在ABC Δ中,AC AB =,CD BD =,∴BC AD ⊥, ································································································ 2分 ∵AB CE ⊥,∴︒=∠=∠90CEB ADB , ··············································································· 4分 又B B ∠=∠,∴CBE ABD ΔΔ∽. ······················································································ 6分四、解答题(本大题共3小题,每小题8分,共24分)16. 解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时. ·························· 2分(2)∵点B (12,18)在双曲线xky =上, ∴1218k =, ∴216=k . ································································································ 5分 (3)当x =16时,5.1316216==y , 所以当x =16时,大棚内的温度约为13.5℃. 8分17. 解:(1)a =4. 2分(2)如图. 5分 (3)∵小组成员共10人,参加了10次活动的成员有3人,∴103=P ,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是103. ··· 8分18.解:设x PD =米,∵AB PD ⊥,∴︒=∠=∠90BDP ADP . 在Rt △P AD 中,ADx PAD =∠tan , ∴5tan38.50.804x x AD x =≈=︒. ········································································· 3分 在Rt △PBD 中,DBx PBD =∠tan , ∴2tan 26.50.50x xDB x =≈=︒. ······································································ 5分 又AB =80.0, ∴0.80245=+x x . ∴6.24≈x ,即6.24≈PD . ∴2.492≈=x DB .答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米. ···················· 8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:⎩⎨⎧=+=+11010812y x y x , ······························································· 2分解之得⎩⎨⎧==75y x .∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆; ···· 5分(2)设载重量为8吨的卡车增加了z 辆,依题意得:165)67(10)5(8>-+++z z , ·············································· 7分解之得:25<z ∵0≥z 且为整数, ∴=z 0,1,2 ; ∴=-z 66,5,4. ······················································································ 8分 ∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆; ②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆; ③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆. ··················· 10分20.解:(1)证明:∵AC AB =,︒=∠36A ,∴︒=∠=∠72C ABC , ···································································· 1分 又BE 平分ABC ∠,∴︒=∠=∠36CBE ABE ,∴︒=∠-∠-︒=∠72180CBE C BEC ∴A ABE ∠=∠,C BEC ∠=∠, ∴BE AE =,BC BE =, ∴BC AE =. ··················································································· 3分(2)∵AB AC =且EF ∥BC ,∴AF AE =;由旋转的性质可知:AB F AC E '∠='∠,F A E A '=', ∴E CA 'Δ≌F BA 'Δ, ∴F B E C '='. ··························································································· 6分 (3)存在E C '∥AB ,由(1)可知BC AE =,所以,在ΔE 点经过的路径(圆弧)与过点C 且与AB ①当点E 的像E '与点M ∴︒=∠=∠72ABC BAM ,又∠BAC ∴︒=∠=36CAM α.······· 8分 ②当点E 的像E '与点N 重合时,由l AB ∥得,︒=∠=∠72BAM AMN ∵AN AM =, ∴︒=∠=∠72AMN ANM ,∴︒=︒⨯-︒=∠36722180MAN ,∴︒=∠+∠=∠=72MAN CAM CAN α. 所以,当旋转角为︒36或︒72时,E C '∥AB . ······································ 10分六、解答题(本题满分12分)21.解:(1)由⎩⎨⎧=+=2222x y x y ,解得⎪⎩⎪⎨⎧-=-=5325111y x ,⎪⎩⎪⎨⎧+=+=5325122y x . 则A ,B 两点的坐标分别为:)53,251(--A ,)53,251(++B , ·········· 2分 ∵P 是A ,B 的中点,由中点坐标公式得P 点坐标为)3,21(,又x PC ⊥轴交抛物线于C 点,将21=x 代入22x y =中得21=y ,∴C 点坐标为11(,)22. ····················································································· 4分(2)由两点间距离公式得:第20题解图)')E '5)]53()53[()251251(22=+--++--=AB ,25213=-=PC ,∴PB PA PC ==,·································································································· 6分∴PCA PAC ∠=∠,PCB PBC ∠=∠, ∴︒=∠+∠90PCB PCA ,即︒=∠90ACB ∴ ABC Δ为直角三角形. ······················································································ 8分(3)过点C 作AB CG ⊥于G ,过点A 作PC AH ⊥于H则H 点的坐标为)5321(-,, ···································· ∴ AH PC CG AP S PAC⨯=⨯=2121Δ, ∴2521251=--==AH CG . 又直线l 与l '之间的距离等于点C 到l 的距离CG , ∴直线l 与l '之间的距离为25. ········································································· 12分图10。
2013年安徽省初中毕业学业考试数学试题(含答案全解全析)(满分150分,考试时间120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2的倒数是()A.-12B.12C.2D.-22.用科学记数法表示537万正确的是()A.537×104B.5.37×105C.5.37×106D.0.537×1073.如图所示的几何体为圆台,其主(正)视图正确的是()4.下列运算正确的是()A.2x+3y=5xyB.5m2·m3=5m5C.(a-b)2=a2-b2D.m2·m3=m65.已知不等式组{x-3>0,x+1≥0.其解集在数轴上表示正确的是()6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年...发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=3898.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时..发光的概率为()A.16B.13C.12D.239.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()图1图2A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC·CF的值增大D.当y增大时,BE·DF的值不变10.如图,点P是等边三角形ABC外接圆☉O上的点.在以下判断中,不正确...的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.若√1-3x在实数范围内有意义,则x的取值范围是.12.因式分解:x2y-y=.13.如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=2,则S1+S2=.14.已知矩形纸片ABCD中,AB=1,BC=2.将该纸片折叠成一个平面图形,折痕EF不经过A点(E,F是该矩形边界上的点),折叠后点A落在点A'处,给出以下判断:①当四边形A'CDF为正方形时,EF=√2;②当EF=√2时,四边形A'CDF为正方形;③当EF=√5时,四边形BA'CD为等腰梯形;④当四边形BA'CD为等腰梯形时,EF=√5.其中正确的是(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:2sin30°+(-1)2-|2-√2|.16.已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.四、(本大题共2小题,每小题8分,满分16分)17.如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.18.我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图(1)17图(2)212图(3)317图(4)4………猜想:在图(n)中,特征点的个数为(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为.图(n)五、(本大题共2小题,每小题10分,满分20分)19.如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)20.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本题满分12分)21.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数.现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.七、(本题满分12分)22.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p(件) p=50-x销售单价q(元/件)当1≤x ≤20时,q=30+12x;当21≤x ≤40时,q=20+525x.(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式; (3)这40天中该网店第几天获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中,∠B=∠C,E 为边BC 上一点,若AB ∥DE,AE ∥DC.求证:AB DC =BE EC; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E,若EB=EC,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)图1图2图3答案全解全析:1.A ∵-2×(-12)=1,∴-2的倒数是-12.2.C 537万=5 370 000=5.37×106,故选C.评析此题主要考查了科学记数法的定义.3.A 从这个几何体正面看,是上宽下窄的梯形,故选A.4.B A项: 2x与3y不是同类项,不能合并,故本选项错误;B项: 5m2·m3=5m5,故本选项正确;C项:(a-b)2=a2-2ab+b2,故本选项错误;D项:m2·m3= m5, 故本选项错误.故选B.5.D 解不等式x-3>0得x>3,解不等式x+1≥0得x≥-1,∴原不等式组的解集为x>3,在数轴上表示大于3的任何实数.故选D.6.C 如图所示,设AB与CE交于点F.∵AB∥CD,∴∠EFB=∠C,又∵∠EFB=∠A+∠E=75°,∴∠C=75°,故选C.7.B 依题意,得389(1+x)2=438,故选B.8.B 画出树状图.任意闭合其中两个开关的情况共有6种,其中能使两盏灯泡同时发光的情况有2种,故概率.是139.D ∵反比例函数图象过(3,3),,∴y=9x∵△AEF是等腰直角三角形,∴△EBC、△CDF都是等腰直角三角形,A项:在矩形ABCD中,BC=3时,CD=3,此时矩形ABCD是边长为3的正方形,∴当x=3时,EC=EM=3√2,故本选项错误;B项:∵当y=9时,x=1,∴EC=√2,CF=9√2,∴EM=5√2,即EC<EM,故本选项错误;C项:∵EC·CF=√2x·√2y=2xy=18,值不变,故本选项错误;D项:∵BE·DF=xy=9,值不变,故本选项正确.故选D.评析此题主要考查了矩形、等腰直角三角形、反比例函数的性质,是综合性较强的题. 10.C A项:∵弦PB是☉O的直径时最长,此时∠BCP=∠BAP=90°,∴∠ACP=∠CAP=30°,∴△APC是等腰三角形,故本选项正确;B项:若点P与点B不重合,当△APC是等腰三角形时,△PBA≌△PBC,∴∠BAP=∠BCP=90°,∠BPA=∠BPC,∴PB是☉O的直径,又∵∠BPA=∠BPC且AP=CP,∴PB⊥AC,即PO⊥AC,若点P与点B重合,由于△ABC是等边三角形,∴BO⊥AC,即PO⊥AC,故本选项正确;C项:当点P与点B重合时满足PO⊥AC,但此时∠ACP=60°,故本选项错误; D项:当∠ACP=30°时,则∠BCP或∠PBC=90°,∴△BPC一定是直角三角形,故本选项正确.故选C.11.答案x≤13.解析∵1-3x≥0,∴x≤1312.答案y(x+1)(x-1)解析x2y-y=y(x2-1)=y(x+1)(x-1).13.答案8解析∵P为平行四边形ABCD边AD上一点,∴△PDC、△PAB的面积之和与△PBC的面积相等,又∵E、F分别为PB、PC的中点,∴△PEF∽△PBC且相似比为1∶2,∴△PBC的面积是△PEF面积的四倍,∴S1+S2=4S=8.评析此题考查了平行四边形的性质、中位线的性质、相似三角形的性质.14.答案①③④解析①当四边形A'CDF为正方形时,如图1所示,A'是BC的中点,F是AD的中点,因此点E 与点B重合,此时EF=√2,故①正确;②当EF=√2时,除①这种情况外,还有其他情况,如图2所示,四边形A'CDF不一定为正方形,故②错误;③当EF=√5时,如图3所示,EF与BD重合,四边形BA'CD为等腰梯形,故③正确;④当四边形BA'CD为等腰梯形时,只有一种情况,即EF 与BD重合,EF=√5,故④正确.故填①③④.图1图2图3评析此题既考查学生的动手操作能力,又考查学生的推理能力.+1+√2-2=√2.(8分)15.解析原式=2×12评析此题主要考查了特殊角的三角函数值、乘方、绝对值,属基础题.16.解析由题意可设二次函数的解析式为y=a(x-1)2-1(a≠0).∵函数图象经过原点(0,0),∴a·(0-1)2-1=0,∴a=1.∴该函数的解析式为y=(x-1)2-1(或y=x2-2x).(8分)17.解析(1)如图所示.(4分)(2)点B 2的坐标为(2,-1);(6分) h 的取值范围为2<h<3.5.(8分) 18.解析 (1)22;5n+2.(4分) (2)√3;2 013√3.(8分) 19.解析 作AF⊥BC 于F. 在Rt△ABF 中,∠ABF=∠α=60°, AF=AB·sin 60°=20×√32=10√3(m).(5分)在Rt△AEF 中,∵∠β=45°,∴AF=EF.(7分) 于是AE=√AF 2+EF 2=10√6(m). 即坡长AE 为10√6 m.(10分) 20.解析 (1)(4 000+25x)元.(2分)(2)每副乒乓球拍的价格为x 元,则每副羽毛球拍的价格为(x+20)元. 由题意得2 000x=2 000+25x x+20,解得x 1=40,x 2=-40.经检验x 1,x 2都是原方程的根.(8分)但x>0,∴x=40.即每副乒乓球拍的价格为40元.(10分)评析 由题意找出等量关系,把有关量用含有未知数的代数式表示,列出方程是解题的关键所在,本题属于基础题.21.解析 (1)∵把合格品数从小到大排列,第25,26个数都是4,∴中位数为4.(4分)(2)众数的可能值为4,5,6.(7分)(3)这50名工人中,合格品数低于3件的有8人.因为400×850=64,所以该厂约有64人将接受技能再培训.(12分)评析 本题是统计的频数分布直方图问题,解题时要能从所给的统计图中获取有用的信息,难度较小.22.解析 (1)当1≤x≤20时,令30+12x=35,得x=10;当21≤x≤40时,令20+525x=35,得x=35.即第10天或第35天该商品的销售单价为35元/件.(4分) (2)当1≤x≤20时,y=(30+12x -20)(50-x)=-12x 2+15x+500, 当21≤x≤40时,y=(20+525x -20)(50-x)=26 250x-525.∴y={-12x 2+15x +500 (1≤x ≤20),26 250x-525 (21≤x ≤40).(8分)(3)当1≤x≤20时,y=-12x 2+15x+500=-12(x-15)2+612.5. ∵-12<0,∴当x=15时,y=-12x 2+15x+500有最大值y 1,且y 1=612.5.当21≤x≤40时,∵26 250>0,∴26 250x随着x 的增大而减小,∴当x=21时,y=26 250x-525最大.于是,当x=21时,y=26 250x-525有最大值y 2,且y 2=26 25021-525=725.∵y 1<y 2.∴这40天中第21天该网店获得的利润最大,最大利润为725元 .(12分) 评析 此题难点是第(3)问要分别在不同范围内计算函数的最大值,然后再比较这两个最大值,取其中较大的.23.解析 (1)如图所示:(画出其中一种即可)(2)证明:∵AE∥CD,∴∠AEB=∠C,又∵AB∥ED,∴∠B=∠DEC,∴△ABE∽△DEC.∴AECD =BE EC.又∠B=∠C,∴∠B=∠AEB,∴AB=AE.故ABCD =BEEC.(6分)(3)是.理由如下:过E点分别作EF⊥AB,EG⊥AD,EH⊥CD,垂足分别为F,G,H(如图).∵AE平分∠BAD,∴EF=EG,又∵DE平分∠ADC,∴EG=EH,∴EF=EH,又∵EB=EC,∴Rt△BFE≌Rt△CHE,∴∠3=∠4,又∵EB=EC,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC=∠DCB.又∵四边形ABCD为AD截某三角形所得,且AD不平行于BC,∴四边形ABCD为“准等腰梯形”.当点E不在四边形ABCD内部时,有两种情况:当点E在四边形ABCD的边BC上时,如图①所示,四边形ABCD为“准等腰梯形”;当点E在四边形ABCD的外部时,如图②所示,四边形ABCD仍为“准等腰梯形”.图①图②。
2013年初中毕业生学业诊断考试数学试题注意事项:1、本试卷共三道大题25道题30小题,满分120分,考试时间120分钟.2、考生在答题前,先将学校、班级、考号和姓名等信息填写在试卷和答题卡指定的位置.一.选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项最符合题目要求,把最符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错或一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,本大题满分30分.)1.-3的绝对值是:A.3 B.-3 C.-3 D. 1 32.科学家测得肥皂泡的厚度约为0.000 000 7米,用科学记数法表示为:A.0.7×l0错误!未找到引用源。
米 B.0.7×l0错误!未找到引用源。
米 C.7×l0错误!未找到引用源。
米 D.7×l0错误!未找到引用源。
米3.点P(-2,3)关于y轴对称点的坐标是:A.(-3,2) B.(2,-3) C.(-2,-3) D.(2,3)4.如图所示的几何体是由六个小正方体组合而成的,它的左视图是:5.已知在Rt△ABC中,∠C=90°.若sin A=错误!未找到引用源。
,则sin B等于:A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.16.如图,AB是⊙的直径,弦CD⊥AB,垂足为M,下列结论不成立的是:A.CM=DMB. 错误!未找到引用源。
C.∠ACD=∠ADCD.OM=MD7.下列运算正确的是:A .B .C .错误!未找到引用源。
D . 错误!未找到引用源。
8.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是:A . (10π﹣)米2 B . (π﹣)米2C . (6π﹣)米2D . (6π﹣)米2 9.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足:A .a ≥1 B.a >1且a ≠5 C.a ≥1且a ≠5 D.a >110.如图,在Rt△ABC 中,∠ABC=90°,BA=BC .点D 是AB 的中点,连接CD ,过点B 作BG 丄CD ,分别交GD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF .给出以下四个结论:①;②点F 是GE 的中点;③AF=AB ;④S △ABF =S △ACD ,其中正确的结论序号是:A .①②B .①③C .②③D .①④二.填空题(将每小题的最后正确答案填在题中的横线上.共6小题,每小题3分,本大题满分18分)11.在函数错误!未找到引用源。
浙江省2013年初中毕业生学业考试(义乌市卷)数学试题卷考生须知:1. 全卷共4页,有3大题,24小题. 满分为120分.考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.3. 请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核准条形码的姓名、准考证号.4. 作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑.5. 本次考试不能使用计算器.温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b --,. 卷 Ⅰ说明:本卷共有1大题,10小题,每小题3分,共30分.请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 在2,-2,8,6这四个数中,互为相反数的是A .-2与2B .2与8C .-2与6D .6与8 2.如图几何体的主视图是 3.如图,直线a ∥b ,直线c 与a ,b 相交,∠1=55°,则∠2= A .55° B .35° C .125° D .65°4.2012年,义乌市城市居民人均可支配收入约为44500元,居全省县级市之首,数字44500用科学计数法可表示为 A .31045.4⨯B .41045.4⨯ C .51045.4⨯ D.61045.4⨯ 5.两圆半径分别为2和3,圆心距为5,则这两个圆的位置关系是 A .内切 B .相交 C .相离 D .外切 6.已知两点P 1(x 1,y 1)、P 2(x2,y 2)在反比例函数3y x=的图象上,当021>>x x 时,下列结论正确的是A .120y y <<B .210y y <<C .120y y <<D .210y y << 7.下列图形中,既是轴对称图形又是中心对称图形的有A .4个B .3个C .2个D .1个第3题图 12a bc A . B . C . D .第15题图8.已知圆锥的底面半径为6cm ,高为8cm ,则这个圆锥的母线长为A .12cmB .10cmC .8cmD .6cm9.为支援雅安灾区,小慧准备通过爱心热线捐款,他只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是A .21 B .41 C .61 D .81 10.如图,抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x >3时,y <0;②3a b +>0; ③1-≤a ≤23-;④3≤n ≤4中,正确的是 A .①② B .③④ C .①④ D .①③卷 Ⅱ说明:本卷共有2大题,14小题,共90分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.二、填空题(本题有6小题,每小题4分,共24分) 11.把角度化为度、分的形式,则20.5°=20° ▲ ′; 12.计算:233a a a += ▲ ;13.若数据2,3,7,-1,x 的平均数为2,则x = ▲ ; 14.如图,已知∠B =∠C .添加一个条件使△ABD ≌△ACE (不标注新的字母,不添加新的线段),你添加的条件是 ▲ ;15.如图,AD ⊥BC 于点D ,D 为BC 的中点,连结AB ,∠ABC 的平分线交AD 于点O ,连结OC ,若∠AOC =125°,则∠ABC = ▲ °; 16.如图,直线l 1⊥x 轴于点A (2,0),点B 是直线l 1上的动点.直线l 2:y =x +1交l 1于点C ,过点B 作直线l 3垂直于l 2,垂足为D ,过点O ,B 的直线l 4交l 2于点E .当直线l 1,l 2,l 3能围成三角形时,设该三角形面积为S 1,当直线l 2,l 3,l 4能围成三角形时,设该三角形面积为S 2.(1)若点B 在线段AC 上,且S 1=S 2,则B 点坐标为 ▲ ; (2)若点B 在直线l 1上,且S 21,则∠BOA 的度数为 ▲ .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.计算: 0( 3.14)π-+(12)-1+--18.解方程:(1)2210x x --= (2)2321x x =-ABCD E 第14题图“我最喜爱的图书”各类人数统计图 丙20%甲 乙 丁 “我最喜爱的图书”各类人数统计图19.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1 和S 2;(2)请写出上述过程所揭示的乘法公式.20.在义乌市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题: (1)本次共调查了 ▲ 名学生;(2)被调查的学生中,最喜爱丁类图书的学生有 ▲ 人,最喜爱甲类图书的人数占本次被调查人数的 ▲ %;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.已知直线PD 垂直平分⊙O 的半径OA 于点B ,PD 交⊙O 于点C ,D ,PE 是⊙O 的切线,E 为切点,连结AE ,交CD 于点F .(1)若⊙O 的半径为8,求CD 的长; (2)证明:PE =PF ; (3)若PF =13,sin A =513,求EF 的长.22.为迎接中国森博会,某商家计划从厂家采购A ,B 两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数.下表提供了部分采购数据. (1)设A 产品的采购数量为x (件),采购单价为y 1(元/件),求y 1与x 的关系式; (2)经商家与厂家协商,采购A 产品的数量不少于B 产品数量的911,且A 产品采购单价不低于1200元.求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A ,B 两种产品,且全部售完.在(2)的条件下,求采购A 种产品多少件时总利润最大,并求最大利润.图123.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B(2,2),C (2,1),D0),E (0),F .(1)他们将△ABC 绕C 点按顺时针方向旋转........45..︒得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系; (2)他们将△ABC 绕原点按顺时针方向旋转........45..︒,发现旋转后的三角形恰好有两个顶点落在抛物线2y bx c =++上.请你求出符合条件的抛物线解析式; (3)他们继续探究,发现将△ABC 绕某个点旋转..45..︒,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.24.如图1,已知6y x=(x >0)图象上一点P ,P A ⊥x 轴于点A (a ,0),点B 坐标 为(0,b )(b >0),动点M 是y 轴正半轴上B 点上方的点,动点N 在射线AP 上,过点B 作AB 的垂线,交射线AP 于点D ,交直线MN 于点Q ,连结AQ,取AQ 的中点 为C .(1)如图2,连结BP ,求△P AB 的面积;(2)当点Q 在线段BD 上时,若四边形BQNC 是菱形,面积为P 点的坐标;(3)当点Q 在射线BD 上时,且3a =,1b =,若以点B ,C ,N ,Q 为顶点的四边形是平行四边形,求这个平行四边形的周长.浙江省2013年初中毕业生学业考试(义乌市卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11. 30 12. 34a 13. -1 14. AB =AC 或AD =AE 或BD =CE 或BE =CD (写出一个即给4分) 15.70 16.(1)(2,0)(2分) (2)15°、75°(1分1个)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.解:原式=12++4分=3…………………………………………………………………………………6分18.解:(1)解法一:2212x x -+=2(1)2x -=………………………………………………………1分11x =+2分21x =3分解法二:由求根公式得x =1分11x =+…………………………………………………………2分21x =3分(2)423x x -=……………………………………………………………………1分2x =……………………………………………………………………2分经检验,2x =是原方程的解.………………………………………………3分19.解:(1)221S a b =-……………………………………………………………………2分21(22)()()() 2S b a a b a b a b=+-=+-……………………………………4分(2)22()()a b a b a b+-=-………………………………………………………6分20.解:(1)200 (2)分(2)15,40……………………………………………………………………………5分(3)设男生人数为x人,则女生人数为1.5x人,根据题意可得%2015005.1⨯=+xx…………………………………………………………6分120=x解得……………………………………………………………………7分1805.1120==xx时,当∴人人,男生人数人数为最喜欢丙类图书的女生12018021.解:(1)连结OD……………………………………………1分∵PD平分OA,OA=8 ∴OB=4∴根据勾股定理得,BD2分∵PD⊥OA∴CD=2BD…………………………………3分(2)∵PE是⊙O的切线∴∠PEO=90°……………………………………………………………………4分∴∠PEF=90°-∠AEO , ∠PFE=∠AFB=90°-∠A∵OE=OA∴∠A=∠AEO∴∠PEF=∠PFE…………………………………………………………………5分∴PE=PF…………………………………………………………………………6分(3)作PG⊥EF于点G∵∠PFG=∠AFB ∴∠FPG=∠A∴FG=PF×sin A=13×513=5………………………………………………………7分∵PE=PF ∴EF=2FG=10………………………………………………………8分22.解:(1)为整数)xxxy,200(1500201≤<+-=(不写取值范围不扣分)……3分(2)根据题意可得⎪⎩⎪⎨⎧≥+--≥1200150020)20(911xxx…………………………………………………………4分解得1x≤≤…………………………………………………………………5分11121314155x x ∴∴ 为整数可取的值为:,,,,该商家共有种进货方案(3)解法一:令总利润为W , 则W 23054012000x x =-+…………………………………………………7分9570)9(302+-=x ……………………………………………………8分3009a x x =>∴≥ 当时,W 随的增大而增大11151510650x x ≤≤∴== 最大当时,W答:采购A 产品15件时总利润最大,最大利润为10650元.解法二:根据题意可得B 产品的采购单价可表示为:1100101300)20(102+=+--=x x y 则A 、B 两种产品的每件利润可分别表示为:60010170026020176021+-=-+=-x y x y2026010600x x +>-+则当时,A 产品的利润高于B 产品利润,343x >即时,A 产品越多,总利润越高111515x x ≤≤∴= 当时,总利润最高 此时总利润为(20×15+260)×15+(-10×15+600)×5=10650…………10分答:略.解法三:列举法(过程2分,5个全算对2分,有部分错误1分,结果给(其他解法酌情给分)23.解:(1)A 1(2,1).........................................1分B 1(22+,12+)........................................ 2分平行.......................................................... 3分(2)∵△ABC 绕原点按顺时针方向旋转45︒后的三角形即为△DEF ∴①当抛物线经过点D ,E 时,根据题意可得:22c c ⎧+=⎪⎨++=⎪⎩ 解得12b c =-⎧⎪⎨=⎪⎩∴………………………………………………6分……………………………………9分 ……………………………………………10分………………………………………7分 ………………………………………………………8分 …………………………………9分图1212y x =-+.....................................4分②当抛物线经过点D ,F 时,根据题意可得:220(222c c ⎧++=⎪⎨++=-⎪⎩ 解得11bc =-⎧⎪⎨=⎪⎩∴211y x =-+.....................................5分③当抛物线经过点E ,F 时,根据题意可得:220(222c c ⎧++=⎪⎨++=-⎪⎩ 解得13b c=-⎧⎪⎨=⎪⎩ ∴213y x =-+....................................6分(3)①若△ABC 绕某点按顺时针方向旋转45︒,则此时P 点坐标分别为P 1),P 2),P3(0)②若△ABC 绕某点按逆时针方向旋转45︒,则此时P 点坐标分别为P 4(24,38+),P 5(24,38-)综上所述,P 点坐标为P 1),P 2),P 3(0),P 4).24.解:(1)S P AB =S P AO =162⨯=3....................3 (2)如图1∵四边形BQNC 是菱形∴BQ =BC =NQ ,∠BQC =∠NQC∵AB ⊥BQ ,C 为AQ 中点 ∴BC =CQ =12AQ ....4∴∠BQC =60° ∴∠BAQ =30°在△ABQ 和△ANQ 中BQ NQ BQA NQA QA QA =⎧⎪∠=∠⎨⎪=⎩∴△ABQ ≌△ANQ ∴∠BAQ =∠NAQ =30° ∴∠BAO =30°.......5分 ∵S 四边形BCNQ =∴BQ =2.............6分∴ ∴OA=2AB=3 又∵P 点在反比例函数6y x=的图象上∴P 点坐标为(3,2)............................7(3)∵OB=1,OA=3 ∴AB∵△AOB∽△DBA∴OB OA AB BD=∴BD=..................................8分①如图2,当点Q在线段BD上∵AB⊥BD,C为AQ的中点∴BC=12 AQ∵四边形BQNC是平行四边形∴QN=BC,CN=BQ,CN∥BD∴12CN ACQD AQ==∴BQ=CN=13BD∴AQ=...........................9分∴C BQNC=..............10分②如图3,当点Q在线段BD的延长线上∵AB⊥BD,C为AQ的中点∴BC=CQ=12 AQ∴平行四边形BNQC是菱形,BN=CQ,BN∥CQ∴12BD BNQD AQ==∴BQ=3BD=∴==分∴C BNQC=2AQ=.........................................12分图2。
2013年襄阳市初中毕业生学业考试数学试题一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.2的相反数是( ) A .-2 B.2 C.21-D.21 2.四川芦出发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨.将15810用科学记数法表示为了( )A.1.581×103B.1.581×104C.15.81×103D.15.81×1043.下列运算正确的是( )A.4a -a =3B. a ·33a a =C.()523a a=- D.326a a a =÷4.如图1,在⊿ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( ) A.60° B.70° C.80° D.90°5.不等式组⎩⎨⎧-≥-71212 x x 的解集在数轴上表示正确的是( )6.如图2,BD 平分∠ABC ,CD ∥AB ,若∠BCD=70°,则∠ABD 的度数为( ) A.55° B.50° C.45° D.40°7.分式方程121+=x x解为( ) A. x =3 B. x =2 C. x =1 D. x -18.如图3所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )9.如图4,□ABCD 的对角线相交于点O ,且AB=5,⊿OCD 的周长为23,则□ABCD 的两条对角线的和是( )A.18B.28C.36D.46DCBA 图1 -3-3-3-3A B C D D C BA图2A B C D 图310.二次函数c bx xy ++-=2的图象如图5所示,若点A (1x ,1y ),B (2x ,2y )在此函数图象上,且1x <2x <1,则1y 与2y 的大小关系是( ) A.1y ≤2y B. 1y <2y C. 1y ≥2y D. 1y >2y11.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”.下表是从七年级400A.0.4和0.34B.0.4和0.3C.0.25和0.34D.0.25和0.312.如图6,以AD 为直径的半圆O 经过Rt ⊿ABC 斜边AB 的两个端点,交直角边AC 于点E.B ,E 是半圆弧的三等分点,弧BE 的长为32π,则图中阴影部分的面积为( ) A.9π B.93πC. 23233π-D. 32233π- 二、填空题(本大题共5个小题,每小题3分共15分)请把答案填在答题卡的相应位置上. 13.计算:()0123-+-= .14.使代数式xx —312-有意义的x 的取值范围是 .15.如图7,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m , 则排水管内水的深度为 .16.襄阳市辖区内旅游景点较多.李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中景点为第一站的概率是 .17.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图8所示的直角梯形,则原三角形纸片的斜边长是 .ODCBA 图4 O 图6图7332图8三、解答题(本大题共9小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)先化简,再求值:⎪⎪⎭⎫ ⎝⎛--÷-a a b ab a b a 2222,其中a =1+2,b =12-.19.(本小题满分6分)如图9,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼上的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的水平距离CD 为9m ,则旗杆的高度是多少?20.(本小题满分6分)有一人患了流感,经过两轮传染后共有64人患了流感. (1) 求每轮传染中平均一个人传染了几个人?(2) 如果不及时控制,第三轮将又有多少人被传染?D B 图9某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图,(从左到左右依次为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次有成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数。
2013年初中毕业生学业考试数学试卷
一、选择题(本题有12个小题,每小题3分,共36分) 1.2的倒数是( ) A 、-2 B 、
12
C 、-
12
D 、1
2.反比例函数()0k y k x
=≠的图像经过点(1,-3),则k 的值为( ) A 、-3
B 、3
C 、
13
D 、-
13
3.数据2、4、4、5、7的众数是( )
A 、2
B 、4
C 、5
D 、7 4.不等式1030
x x ->⎧⎨-<⎩的解集是( ) A 、x>1
B 、x<3
C 、1<x<3
D 、无解
5.下列图形中,不是轴对称图形的是( )
6.随着新农村建设的进一步加快,湖州市农村居民人均纯收入增长迅速。
据统计,今年本市农村居民人均纯收入比上一年增长14.2%。
若去年湖州市农村居民人均纯收入为a 元,则今年本市农村居民人均纯收入可表示为( )
A 、14.2a 元;
B 、1.42a 元;
C 、1.142a 元;
D 、0.142a 元 7.如图,在⊙O 中,AB 是弦,OC ⊥AB ,垂足为C ,若AB=16,OC=6,则⊙O 的半径OA 等于( ) A 、16 B 、12 C 、10 D 、8 8.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a 在展开前所对的面的数字是( ) A 、2 B 、3 C 、4 D 、5
9.下列各式从左到右的变形正确的是( )
A 、
122122
x y x y x y
x y -
-=++ B 、0.220.22a b a b a b
a b
++=++
C 、11x x x y
x y
+--=
-- D 、
a b a b a b
a b
+-=
-+
10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A 、1 B 、
12
C 、
13
D 、
23
11.已知一次函数y=kx+b (k 、b 是常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b<0的解集是( ) A 、x<0 B 、x>0
C 、x<1
D 、x>1
12.已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。
下列关于抛物线的移动方向的描述中,正确的是( ) A 、先往左上方移动,再往左下方移动; B 、先往左下方移动,再往左上方移动; C 、先往右上方移动,再往右下方移动; D 、先往右下方移动,再往右上方移动
二、填空题(本题有6小题,每小题4分,共24分) 13.请你写出一个比0.1小的有理数__________。
14.分解因式:a 3-2a 2+a=________。
15.分式方程
121
x x =
+的解是x=_________。
16.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切。
17.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB )的高度约为________米(精确到0.1米)。
18.一青蛙在如图8×8的正方形(每个小正方形的边长为1)网格的格点(小正方形的顶点)上跳跃,
,青蛙从点A 开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是________。
三、解答题(本题有6小题,共60分) 19.(本小题8分)计算:(3)2-(2)0+12
-;
20.(本小题8分)如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,∠B=60º,DE ∥AB 。
求证:(1)DE=DC ;
(2)△DEC 是等边三角形。
21.(本小题10分)初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:
(1)该班共有_____名同学参加这次测验;
(2)在该频数分布直方图中画出频数折线图;
(3)这次测验成绩的中位数落在___________
分数段内;
(4)若这次测验中,成绩80分以上(不含
80分)为优秀,那么该班这次数学测验的
优秀率是多少?
22.(本小题10分)已知Rt△ABC中,∠C=90º。
(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)
①作∠BAC的平分线AD交BC于D;
②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;
③连接ED。
(2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形:△________∽△________;△________≌△________。
并选择其中一对加以证明。
23.(本小题12分)为了鼓励小强勤做家务,培养他的劳动意识,
小强每月的费用都是根据上月他的家务劳动时间所得奖励加
上基本生活费从父母那里获取的。
若设小强每月的家务劳动时
间为x小时,该月可得(即下月他可获得)的总费为y元,则
y(元)和x(小时)之间的函数图像如图所示。
(1)根据图像,请你写出小强每月的基本生活费为多少元;父母
是如何奖励小强家务劳动的?
(2)写出当0≤x≤20时,相对应的y与x之间的函数关系式;
(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?
24.(本小题12分)已知如图,矩形OABC的长OC=1,将△AOC沿AC翻折得△
APC。
(1)填空:∠PCB=____度,P点坐标为(,);
(2)若P,A两点在抛物线y=-4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由。
四、自选题(本题有2个小题,共10分)
25.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1)。
(1)若P(p,0)是x轴上的一个动点,则当p=____时,△PAB的周长最短;
(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=____时,四边形ABDC的周长最短;
(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=____,n=___(不必写解答过程);若不存在,请说明理由。