当前位置:文档之家› 消声器的选型

消声器的选型

消声器的选型
消声器的选型

目录

一、工程概况

本消声设计主要针对A塔楼B2层。

二、设计依据

本设计方案所采用的设计方法及设计原则遵循以下相关规范:

1. 国家标准:《采暖通风与空气调节设计规范》GB 50019-2003

2. 国家标准:《通风与空调工程施工质量验收规范》GB 50243-2002

3. 国家标准:《民用建筑隔声设计规范》GBJ118—88

4. 行业标准:《通风消声器》HJ/T16-1996

5. 国家标准:《消声器引用标准》GB4760-84

6.消声器招标文件

7.空调通风设计图纸

8.室内允许噪声标准

图2 离心风机与轴流风机典型频谱曲线

9.空调通风设备噪声值资料

三、 空调系统消声设计方法

通风空调系统的消声设计是一项系统工程,主要包括风机声源噪声的计算与分析,管路系统噪声自然衰减的计算、管道系统气流再生噪声的计算及消声器的选用与计算等几个主要方面,图1为通风空调系统消声设计程序图。

1 噪声源的分析

风机噪声是通风空调系统中最主要的噪声源之一,风机在运转时产生的噪声主要包括空气动力噪声、机械噪声及气体和固体弹性系统相互作用产生的气固耦合噪声。而在这些噪声中,以空气动力性噪声为主,一般空气动力噪声可比机械噪

声大10dB 左右。

风机噪声的大小和特性因风机的形式、型号及规格的不同而不同。从构

造上

风机可分为离心风机和轴流风机两种类型,两种类型风机的典型噪声频谱曲线如图2所示。离心风机噪声以低频为主,随着频率的提高,噪声逐渐下降;而轴流风机则以中频噪声为主。但在工程上,往往不是以风机的声学性能作为选择风机的首要标准,而是根据所需要的风量与风压来确定风机的型号、大小和转速。

风机的空气动力噪声主要包括旋转噪声和气流旋涡噪声。其中旋转噪声又称离散频率噪声或通过频率噪声(Blade Passage Frequency ,BPF)。当风机旋转时,旋转叶轮上的叶片通道出口处,沿周向的气流压力与气流速度都有颇大的变化。由于叶片旋转而产生周期性的压力和速度脉动,此种脉动所产生的噪声被称为旋转噪声。更形象地说,旋转噪声是由旋转的叶片周期性地打击空气质点引起空气脉动所产生的。其频率就是叶片每秒钟打击空气质点的次数,因此它与叶片数和转速有关。其基本频率,也称为

叶片通过频率,以符号表示B f

B f n N

=? (1) 其中,B f

为叶片旋转频率,Hz ;n 为风机转速,转/秒; N 为叶片数。除了频率为B f 的基频旋转噪声以外,旋转噪声还包括频率与B f

成整数倍的高阶谐频噪声。

由于人耳能从背景噪声中区分出纯音信号,在风机噪声控制工程中,由风机基频和离散的高次谐波产生的窄带噪声常常成为重要问题,必须引起足够重视。风机消声系统在这些频带上必须要有足够的消声能力。

风机声功率级可由风机的比声功率级、风量和风压进行估算:

L W=L WC+10lg(QH2)-20 dB (2) 其中: L WC——风机的比声功率级,dB,即为风机在单位风量、单位风压下所产生的声功率级,同一系列风机的比声功率级是相同的,因此比声功率级可

作为评价噪声的标准;

Q——风机的风量,m3/h;

H——风机的全压,Pa;

从式(2)可以看出,风机的风量、风压越大,则风机的噪声也越大。因此,在风机选型时安全系数不宜考虑过大。

2 管道系统的噪声自然衰减

在通风、空调系统中管道系统内噪声的自然衰减也是系统消声设计中应予考虑的一个方面。管道系统的噪声自然衰减主要来源于直管道的声衰减,弯头、三通、变径管的声衰减,风口的末端声衰减以及风口噪声向房间内传播途径的声衰减等方面,现分述如下:

(1) 直管道自然衰减

当管道较长、流速较低时,矩形风管及圆形风管的自然声衰减量可由表1查得。

直管道的自然声衰减量与管道断面周长、长度及管壁吸声系数成正比,与管道的载面积成反比。

一般镀锌钢板制作的光滑风管、管壁吸声很低,而当管内风速较高(如大于8m/s),气流再生噪声又较大时,直管自然声衰减可忽略不计。

表1 金属管道的声衰减(dB/m)

由表1可见小管道的自然声衰减大于大管道,低频自然声衰减大于高频声衰减,矩形管道自然声衰减又大于圆形管道。

(2) 弯头自然衰减

弯头的自然衰减在管道系统的自然衰减中起到一定的作用,尤其是在其有内衬的弯头及中高频范围较为显着。

表2为方形弯头的自然声衰减量,表3为有内衬方弯头的自然声衰减量,表4为圆形弯头的自然声衰减量。

表2 方形弯管自然声衰减量

表3 有内衬方弯头的自然声衰减量

表4 圆形弯头的自然声衰减量

由表2~4可见,圆弯头的自然衰减量仅为1—3dB,小直径圆弯头衰减小于大直径弯头,低频衰减小于高频衰减,而方形弯头也是大尺寸声衰减优于小尺寸弯头,高频衰减优于低频衰减。

通常圆形弯头不设内衬材料,而矩形弯头内衬材料长度至少应为弯头宽度的二倍,而内衬材料的厚度控制为风管宽度的10%;对于有导流片的矩形弯头,其自然声衰减可取方弯头和圆弯头衰减量的平均值。

在通风空调工程设计中,常设计有连续弯头。连续弯头的总声衰减量并不简单等于两个单独弯头衰减量之和。而与两个弯头之间的距离有关。图3为无内衬连续弯头的声衰减量。两个连续弯头之间的管道段内壁宜衬贴吸声材料。

图3 无内衬连续弯头的声衰减量

连续弯头的消声量可按以下原则估算:

当l >2xd(风管断面对角线长度)时,总声衰减量等于两个单独弯头衰减量之和。

当0

(3) 三通自然衰减

当管道中设三通即管道分叉时,其噪声能量可以按支管的断面积比例(或风量分配比例)分配噪声能量,则从主管道到任一支管的噪声自然衰减量可按下式计算,或由图4查得。

ΔL=10lgS1/S dB

式中:S1——支管的断面积(m2);

S——分叉处全部支管的断面积(m2)。

(4) 变径管自然衰减

在风管系统中遇到管道截面突变处所引起的自然声衰减可由下式计算或由图5查得。

式中:S1——变径前的管道断面积(m2);

S2——变径后的管道断面积(m2)。

(5) 风口末端的反射损失

当沿风管传递的噪声到达房间送风口即风管末端时,有一部分噪声能量将在风口末端处产生反射而衰减,即称为风口末端声反射损失。

风口末端反射损失的大小同风口面积、风口位置及噪声频率等有关,具体可由图6、图7及图8查得。

由图可见,大尺寸风口的末端反射损失小于小尺寸风口,高频末端反射损失小于低频,设于房间平顶或墙面中部且局部突出的风口其末端反射损失最大。

(6) 房间声衰减

空调系统的送回风口是房间内的声源点,房间内的声传递衰减量即为由风口进入房间的噪声级与房间内某点的噪声级之差值。

在距风口Rm处的室内声压级L P值可由下式计算:

式中:L W——风口传入房间的声功率级(dB);

Q——风口的指向性因素(可由图9查得);

R——房间常数,

S——房间总表面积;

α——房间内平均吸声系数。

3 风管系统的气流再生噪声

同气流通过消声器时会产生气流噪声并影响消声器的实际消声性能一样,当气流经过风管系统的各个部件时,同样会产生气流再生噪声,并直接影响管路各部件的自然声衰减效果,甚至还会产生新的噪声。因此在通风空调系统消声设计中也必须注意到风管系统的气流再生噪声所产生的影响,特别是当设计的气流速度偏大或噪声降低要求很高的空调系统。

风管系统各部件的气流再生噪声声功率级的估算方法分述如下:

(1) 直管道的气流再生噪声

直管道内的气流再生噪声声功率级可以下式计算:

L W=L WC+50lgV+10lgS dB (3)

式中:L WC ——直风管的比声功率级,一般可取10dB ;

V ——管内气流速度(m/s ); S ——管道断面积(m 2)。

各倍频程直管道气流再生噪声声功率级修正式见表5所示。

表5 直管道气流再生噪声声功率级倍频程修正值

空调系统设计的气流速度较高时,虽然可以减小风道断面尺寸,有利于控制建筑层高和节省投资,但流速偏高也会提高管路的压力损失和气流噪声,影响消声器的实际消声效果。因此必须根据空调用房的噪声允许标准,合理选择空调系统不同管路内的气流速度,表6为根据实践检验的不同噪声标准下的气流速度控制推荐值。

(2) 弯头气流再生噪声

弯头气流再生噪声声功率级可用下式计算:

10lg 30lg 50lg w wc e L L f d v =+++下 (4)

式中:L WC ——弯头的比声功率级(dB ),它是Nstr (strouhal )的函数,按Nstr=f ·de/V 求得后,对于方形及矩形直角弯头的L WC 可由图10查得,对于圆形弯头则可由图11内V/Va=1的曲线查得;

f 下——倍频程频带的下限频率(HZ ),f 下=f/sqrt(2) ; f ——倍频程频带的中心频率(HZ );

de ——圆弯头为直径(m )、矩形弯头de=2ab/a+b (m ),a 、b 为矩形弯头的断面长和宽尺寸;

V ——气流速度(m/s )。

式中10lg f 下为弯头气流再生噪声在各倍频带的修正值,可由表10查得。

(3) 阀门的气流再生噪声

管道上阀门产生的气流再生噪声声功率级可用下式计算或由图14查得,其相对频带声功率级值则可由表11查得。

L W=Lθ+10lgS+55lgV dB (5) ——由阀门叶片角度θ决定的常数:

式中:L

θ

=30dB;

θ=0°时,L

θ

θ=45°时,L

=42dB;

θ

=51dB;

θ=65°时,L

θ

V——管道内气流速度(m/s);

S——管道断面积(m2)。

表11 阀门气流再生噪声频带声功率修正值

(4)消声器气流再生噪声特性的评价

在消声器的设计试验与工程应用中,经常会遇到动态消声量低于静态消声量及同一消声器当流速提高时消声量相应减低等现象,这就是由于在消声器内部所产生的气流再生噪声的影响所导致的结果。消声器的气流再生噪声就是当气流以一定速度通过消声器时,由于气流在消声器内所产生的湍流噪声(以中高频为主)以及气流激发消声器的结构部件振动所产生的噪声(以低频为主),称为气流再生噪声。

气流再生噪声的大小主要取决于消声器的结构型式和气流速度。消声器的结构型式愈复杂,气流通道的弯折愈多,消声器内通道壁面的粗糙度愈大,则气流再生噪声也愈高,反之则愈低。气流再生噪声与气流速度一般近似为六次方关系,其经验公式为:

L WA=a+60lgV+10lgS (dBA)(6)式中:L WA——消声器气流再生噪声的A声功率级;

a——与消声器结构型式有关并由实验确定的比A声功率级,如管式消声器

a=-5~-10,

片式消声器a=-5~5,阻抗复合式消声器a=5~15,折板式消声器a=15~20。

V——消声器内平均气流速度(m/s)

S——消声器内气流通道总面积(m2)

四、消声器的选择与布置原则

1 消声器选择的主要原则

(1)按风机的噪声及频谱特性和空调用房的噪声允许标准确定的所需消声量,即所选消声器的消声性能与需要消声量相适应;

(2)所选消声器的压力损失应与管道系统所允许的压力损失相适应;

(3)消声器的气流再生噪声应与声源及消声性能相适应,使消声器的消声性能得到充分发挥;

(4)消声器的外形尺寸及长度与实际可供安装的位置相适应;

(5)所选消声器应满足防火、防潮、防尘、防腐等工艺条件。

2 确定消声器安装位置的主要原则

(1)消声器应尽可能设置在气流比较稳定的管道段;

(2)消声器应尽量设在刚出风机房前后的风管段,并避免机房内噪声再次进入消声器后的管道内;

(3)当总管流速较高时,消声器宜安装在支管段;

(4)消声要求较高、消声器需用较多的系统,可以分段设置消声器,而不宜集中布置;(5)安装长度及空间有限的空调系统可利用消声弯头及直管消声器的作用;

(6)当消声器安装位置有限时,可利用建筑空间、空调箱的出风段位置等设计并安装消声静压箱;

(7)当相邻隔声房间的送回风口来自同一风管时,必须设置防串音消声装置;

(8)回风系统也同样应设置足够的消声器,而且应注意回风的通畅性和末端流速,以避免回风口产生过高的气流再生噪声。

消声器的原理

目录 一、概述 二: GF型中低压风机消声器 三: ZF型轴流风机消声器 四: DF型罗茨鼓风机消声器 五:订货选型须知 江苏省连云港市新浦安百利电力辅机厂

一、概述 为了有效地降低并控制各类鼓风机,罗茨风机、空压机、轴流排风机、离心式通风机等风机进、出风道的消声降噪,我厂针对各类风机的噪声源其频谱值往往不止一种,根据不同噪声强度、发声机理、传播途径等形成的频谱带,对其消声形式要求也不相同。为此我厂采用了针对性设计,形成了系列化消声器,经过众多厂家使用具有良好的消声效果。 二、GF型中低压风机消声器 GF型中低压风机消声器主要用于降低各种中、高压离心风机(8-18型.9-27型)的风口、风道和封闭式机房进风口的空气动力性噪声,如循环流化床锅炉鼓风机(或一次风机、二次风机)、引风机、冷渣器流化风机和回流阀风机等。 根据结构不同,分为GFY型圆形结构和GFP型矩形结构。(1):GFY型圆形结构分为A、B型两种, A型两端均为法兰盘,直接串接于管道中, B型一端为法兰,另一端为防雨风帽,仅供设置在室外管道末端和封闭式机房进风口选用。 GFY型圆形结构中的阻式消声片一般厚度为100mm,150 mm,消

声量15-30dB(A),在风速5-12m/s 的条件下,适用风量为1000-50000 m 3/h 。其结构中对高频噪声和低频噪声消声采用阻抗两种消声区,用以最大限度的增宽消声频带。 (2):GFP 型矩形结构(也称片式结构)中的阻式消声片一般厚度为100 mm 和 200 mm 。 GFP-100型四周吸声层和中间吸声片厚度为100mm ,GFP-200型四周吸声层厚度为200mm ,消声量15-30dB(A),在风速5-15m/s 的条件下,适用风量为1000-150000 m 3 /h 。压力损失25~255Pa 。

消声器选型计算

燃气发电机组消声器选型书 燃气发电机组配置465Q-1发动机,发动机相关参数如下: 型式:四冲程、水冷、自然吸气式 发动机排量:0.97L 额定转速:3000r/min 气缸数:4 一、消声器主要结构形式 1.抗性消声器:通常对低、中频带消声效果好,高频消声效果差。 2.阻性消声器:对中、高频消声效果好,通常与抗性消声器组合起来使用 3.阻抗性符合型消声器:对低、中、高频噪声都有很好的消声效果 二、消声器性能要求 1.插入损失 D=L1-L2 式中:D-插入损失,dB; L1-安装消声器前在某点测量的排气声压级,dB;取 111 dB; L2-安装消声器后在某点测量的排气声压级,dB;取91.5 dB; D= 19.5 Db 2.消声器功率损失 R=(P1-P2)/P1×100% 式中:R-发动机额定功率点的功率损失比,%; P1-不带消声器而带空管时的发动机功率,kW; P2-带消声器后发动机功率,kW; 我国汽车消声器行业对不同车型的功率损失要求为:重型汽车R≤3%;中型汽车R≤5%;轻型汽车R≤6%,轿车R≤8%。 功率损失<5% 三、消声器的消声量 首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限制来决定消声器消声量大小。根据整车噪声限制来计算消声器出口噪声限制,假设声源特性属线性声源,声衰减量L为: L=10lg(R2/R1) (dB)(A) 式中:R1-消声器出口处噪声限制点到声源点距离;取1m(按试验测试收归返要求); R2-整车噪声限制测点到声源点距离。取7m(按试验测试要求) L=8.45dB 消声量Lm按以下公式计算: Lm=L1-( La+Lb) 式中:La-整机噪声限制,取68bB; Lb-机柜降低的噪声,91.5-72=19.5,取19.5 dB; Lm=111-(68+19.5)=23.5 dB 国华配YH465Q:>25 dB ,可满足要求。 7m处噪声限定值为:

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= ) ln( ) ()(* ** 2 2*11*2 2*1 12 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -] 4[ 82.0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

脉动阻尼器和吸入稳定器计算公式

这个公式适用于计量泵、活塞泵和柱塞泵的SENTRY?脉动阻尼器和吸入稳定器的选型。对于气动隔膜泵和蠕动泵请见背面的选型表。这个公式允许用户输入需要的防脉冲程度,表示成以平均工作压力为基准的最大和最小压力波动。如果用户希望得到的压力是系统压力的±5%,公式中的百分比就是一个变量,按减少脉动90%来计算所需的缓冲容积。例如,排出压力是80psi,残留脉冲是平均压力的±5%,即总共减少90%的脉动,压力波动范围则是76~84psi。 计量泵、活塞或柱塞泵 选型所需的参数 变量:V =泵单个冲程的容量 K =泵的类型(参数K) P =平均工作压力 D =允许的压力波动百分比(相对平均数的正负) N =气体膨胀系数 氮气=0.714 空气=1.0 V) 单个冲程容量的计算: 1、升/小时÷冲程次数/小时=升/冲程 2、0.7854 ×镗孔直径(mm)2 ×冲程长度(mm) =毫升/冲程 K) 泵的类型(参数K) 单台泵:单泵头=0.60 双泵头=0.25 双台泵:单泵头=0.25 双泵头=0.15 三台泵:单泵头=0.13 双泵头=0.06 四台泵:单泵头=0.10 双泵头=0.06 五台泵:单泵头=0.06 双泵头=0.02 P) 工作压力(平均) 期望的压力波动:最小压力Pmin = P – (P × D)

最大压力Pmax = P + (P × D) 计算公式 1-(P/P max)n 脉动阻尼器所需容量=———————— 1-(P/P max)n 简单估算容量=25.2×单个冲程容量 容量估算的条件是: 1、泵类型为单头泵 2、填充介质为空气 3、脉冲消除效果为95% 气动双隔膜泵和蠕动泵 下表所列的是用于气动双隔膜泵(AODD)的SENTRY脉动缓冲器和吸入稳定器的选型。气动双隔膜泵(AODD)的吸入稳定器和排出的脉动缓冲器选择相同的型号。所列的型号能产生90%的脉动消除效果,如果需要更高的阻尼效果,应该选择下一个更大的容量的系列。 接口尺寸SENTRY阻尼器型号 1/4"0.16L(SENTRY Ⅲ系列) 3/8"0.16L(SENTRY Ⅲ系列) 1/2"0.59L(SENTRY Ⅱ系列) 3/4" 1.39L(SENTRY Ⅱ系列) 1" 1.39L(SENTRY Ⅱ系列) 1-1/4" 2.87L(SENTRY Ⅰ系列) 1-1/2" 2.87L(SENTRY Ⅰ系列) 2" 6.06L(SENTRY Ⅰ系列) 3"22.7L(SENTRY Ⅳ系列) 4"22.7L(SENTRY Ⅳ系列) 蠕动(软管)泵 下表所列的是用于两头或三头的蠕动(软管)泵的SENTRY脉动缓冲器和吸入稳定器的选型。泵的吸入稳定器和排出的脉动缓冲器选择相同的型号。所列的SENTRY缓冲器型号

消音器设计计算书

消音器设计计算书 由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h; 噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移

到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹); 根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得: n g P P q (1)后前 根据气体状态方程、连续性方程和临界流速公式,由资料可

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

减振器机构类型及主要参数的选择计算

4.7减振器机构类型及主要参数的选择计算 4.7.1分类 悬架中用得最多的减振器是内部充有液体的液力式减振器。汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦和液体的粘性摩擦形成了振动阻力,将振动能量转变为热能,并散发到周围空气中去,达到迅速衰减振动的目的。如果能量的耗散仅仅是在压缩行程或者是在伸张行程进行,则把这种减振器称之为单向作用式减振器,反之称之为双向作用式减振器。后者因减振作用比前者好而得到广泛应用。 根据结构形式不同,减振器分为摇臂式和筒式两种。虽然摇臂式减振器能够在比较大的工作压力(10—20MPa)条件下工作,但由于它的工作特性受活塞磨损和工作温度变化的影响大而遭淘汰。筒式减振器工作压力虽然仅为2.5~5MPa ,但是因为工作性能稳定而在现代汽车上得到广泛应用。筒式减振器又分为单筒式、双筒式和充气筒式三种。双筒充气液力减振器具有工作性能稳定、干摩擦阻力小、噪声低、总长度短等优点,在轿车上得到越来越多的应用。 设计减振器时应当满足的基本要求是,在使用期间保证汽车行驶平顺性的性能稳定。 4.7.2相对阻尼系数ψ 减振器在卸荷阀打开前,减振器中的阻力F 与减振器振动速度v 之间有如下关系 v F δ= (4-51) 式中,δ为减振器阻尼系数。 图4—37b 示出减振器的阻力-速度特性图。该图具有如下特点:阻力-速度特性由四段近似直线线段组成,其中压缩行程和伸张行程的阻力-速度特性各占两段;各段特性线的斜率是减振器的阻尼系数v F /=δ,所以减振器有四个阻尼系数。在没有特别指明时,减振器的阻尼系数是指卸荷阀开启前的阻尼系数而言。通常压缩行程的阻尼系数Y Y Y v F /=δ与伸张行程的阻尼系数S S S v F /=δ不等。 图4—37 减振器的特性 a) 阻力一位移特性 b)阻力一速度特性 汽车悬架有阻尼以后,簧上质量的振动是周期衰减振动,用相对阻尼系数ψ的大小来评定振动衰减的快慢程度。ψ的表达式为 s cm 2δ ψ= (4-52)

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

除雾器的选型

除雾器的选型 为了提高除雾效果,一般采用两级叶片,第一级为粗除,第二级为精除。屋脊型除雾器布置在烟气垂直流动的吸收塔上层,多采用单层梁支撑两级叶片的固定方式。但为了检修方便,也有用户要求用两层梁支撑。平板型除雾器可以布置在烟气垂直流动的吸收塔内,也可以布置在烟气水平流动的烟道中,一般采用双层梁支撑或固定。 屋脊型除雾器的优点是烟气通过叶片法线的流速要小于塔内水平截面的平均流速,这样,即使塔内烟气流速偏高,在通过除雾器时,由于流通面积增大而使得烟气流速减小。但是,由于屋脊型除雾器需要在吸收塔的截面上留出矩形通道,而吸收塔是圆形的,所以部分面积需要用盲板封起来,从而部分抵消了一部分优势。另外,屋脊型除雾器的结构较平板型除雾器更稳定,可以耐受的温度较高,因此,当脱硫系统不设GGH时,建议采用屋脊型除雾器。单层梁的屋脊型除雾器高度一般为2 850mm,而两级平板型除雾器高度为3 230mm,即单层梁的屋脊型除雾器占用空间较小。但是,考虑到减小携带水量,通常要求烟气在除雾器叶片以上1m 处开始改变流向和提高流速,这样可以使大的颗粒落回到除雾器。如果加上这预留的1m空间,屋脊型和平板型除雾器占用总空间接近。 另外,从经济角度分析,平板型除雾器的成本比屋脊型稍低一些,所以,一般情况下最好选择平板型,只有在烟温相对较高时,为了提高安全性才选择屋脊型除雾器。 3结垢原因分析及冲洗系统设计 3. 1结垢原因分析 (1)吸收剂浆液附着于除雾器叶片上。SO2溶于水的电离产物主要是H+和HSO3 - ,为了促进SO2的吸收和溶解,采取了2种措施:加入石灰石以中和溶液中的H+ ;向浆池中鼓入过量空气,以促进石膏的形成和结晶。吸收塔底部的石膏浆液与新鲜的石灰石浆液混合后由喷嘴喷出,与烟气充分接触后,其中很小一部分被烟气携带附着于除雾器的叶片或其他零部件上。如果浆液在叶片上停留的时间较长,就会在叶片表面形成垢层。 (2)吸收剂过量。过量的吸收剂会导致溶液中钙离子浓度过高,过饱和度增大,结垢加快。 (3)吸收塔内烟气流动不均匀。这种情况会在烟气流速较快的位置产生二次携带,导致除雾器结垢,其根本原因是吸收塔流场设计不合理。 除雾器叶片一旦开始结垢,发展将十分迅速。 因为结垢层的存在减小了通道面积,导致该处的烟气流速增大,加大了二次携带的风险。 3. 2除雾器冲洗系统设计 在设计除雾器冲洗系统时要考虑的因素有:冲洗面选择、冲洗水压力、冲洗强度、喷嘴角度、冲洗频率、冲洗水水质等。 为了减少烟气通过除雾器后的携带水量,冲洗系统通常设计成只冲洗除雾器初级叶片的迎风面和背风面。冲洗水的压力一般要求200 kPa以上,冲洗强度在40 L/ (m2?min)左右,喷嘴角度一般选择90°或110°, 200%重叠。 通过调整各冲洗通道的间隔时间可调节补充水量,冲洗通道可以按空间顺序依次冲洗,也可以将一个周期内的冲洗次数调整为迎风面多于背风面。冲洗频率一般取决于吸收塔每小时的蒸发水流量,当吸收塔内的水位低于设定值时,自动控制系统将执行除雾器冲洗程序。

消声设备技术要求

风口末端的消声器技术要求1. 各类房间允许噪声值(dB) 2.噪声级对谈话干扰的程度

3.室内平均吸声系数

4.吸声材料的吸声系数 5.消声器性能参数(1节,900长)

消声器分类: 1.阻性片式消声器 2.阻性折板消声器 3.管式消声器 4.微穿孔板消声器 5.消声弯头 6.消声静压箱 设计选用原则 1.选用消声器时,除考虑消声量之外,还应考虑系统允许的阻力损失、安装地点和空间大小、造价的高低以及消声器的防火、防尘、防霉、防蛀性能等。 2.消声器应设于风管系统中气流平稳的管段上。当风管内气流速度小于8m/s时,宜放在接近风机的主管上。当风管内气流速度大于8m/s时,宜分装在各支风管上。在风机出风口出,为使风管内气流平稳和消除一部分噪声,宜安装消声静压箱。 3.消声器不宜设置在空调机房内,也不宜设置在室外,防止噪声穿透进入消声器后的管道。必要时,应采用外壁隔声措施。 4.当一根风管输送多个房间时,可采用增加消声弯头、消声静压箱等措施。 5.由于建筑物空间限制,消声器数量应控制在合理范围内。当消声器数量不能满足要求时,尽可能采用增加消声静压箱等措施。 6.引用标准:HJ/J16-1996 《通风消声器》

GB4760-84 《消声器引用标准》 ZBJ72039-90 《通风机铆焊件技术要求》 GB3096-93 《城市区域环境噪声标准》 GB0019-2003 《采暖通风与空气调节设计规范》 7.技术指标性能要求 7.1选用的材料应符合设计的规定,如防火、防腐、防潮、耐高温和卫生要求。 7.2 外壳应牢固、严密,其漏风量应符合以下规定,并附测试报告:消声器外壳的强度应满足在1.5倍工作压力下接缝处无开裂: 0.01176P0.65 高压系统风管Q H≤ 0.1056P0.65 低压系统风管Q H≤ 中压系统风管Q H≤0.03256P0.65 7.3消声器与风管连接采用法兰连接, 法兰规格(长边尺寸b,单位mm) b≤630 法兰宽度25mm 630

消声静压箱选型计算方法

百科名片 静压箱是送风系统减少动压、增加静压、稳定气流和减少气流振动的一种必要的配件,它可使送风效果更加理想。 静压箱的作用 1、可以把部分动压变为静压使风吹得更远; 2、可以降低噪音 3、风量均匀分配 4、静压箱可用来减少噪声,又可获得均匀的静压出风,减少动压损失。而且还有万能接头的作用。把静压箱很好地应用到通风系统中,可提高通风系统的综合性能。 消声器静压箱选型计算方法: 什么NR曲线,声学计算撇开不谈了,P601也不说了。收录网友言论仅供参考(排名不分先后)! 1、在设计静压箱时,如果按着规定的风速成进行设计,箱体将会很大;一般的静压箱长边要宽出风管边400mm,高度要宽出风管高度400mm。数值是从约克设计手册上搞来的,那是估算。 2、静压箱一般老工程师的经验是5~10db(a)/m,阻抗复合型(似乎空调通风系统一般都用这个)消声器10~15db(a)/m 3、控制风速在2.5以内若体积太大可适当得提高一下风速关于长度一般大于1米没有其他得强制要求 4、高度×深度=静压箱截面面积,静压箱截面面积×2.5m/s=风机风量,至于高度和深度怎么配,自己把握吧~~ 5、用你机组的风量L÷3米/秒,可得到你静压箱一个面的面积,然后你根据你房子的高度,假如是4米,可你的机组是2米高,在减去软接头大概0.5米,上面留高0.5米,那你的静压箱只有1米高,那你就可以确定宽度了,有了两个数,第三个数也就容易确定了,这里最主要的是要看自己的空调机房够不够位置,如果够位置就尽量的大点!!长度的计算方法也是一样的,你知道了宽度,那么你的宽度乘以长度不也是有个面积吗?这个面积也要等于L/3,不过在设计院里的面风速是取用2m/s的,如果够空间,就做大点吧。 6、静压箱厚度最好大于600mm,断面风速小于2m/s,另外注意接出位置与接入位置间有点气流缓冲区,以前在上海和华东院的师兄草根时,师兄告诉我华东院老总强烈不建议用静压箱,造价高阻力大,有条件尽量用裤衩三通加消声弯头或管道消声器。 7、华东院的老总高见呀,我看到过有很多这样的设计了,起初我不明白他们为什么不用静压箱,其实现在说的静压箱只是铁皮箱,并不是贴有消音棉的静压箱,造价上可能不太紧要,如果真的是贴消音棉的静压箱,那就要好好考虑一下成本了,另外的消声器要注意流速的控制,大部分的都是控制在8m/s以内,只

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

消声静压箱的选择

消声静压箱的选择 消声器、静压箱总结 一、概念 (一)消声器 1。阻式消声器:是通过吸声材料来吸收声能降低噪音,一般的微穿孔板消声器就属于这个类型,一般是用来消除高、中频噪声。但是由于结构的原因,在高温、高湿、高速的情况下不适用。 2。抗式消声器:是通过改变截面来消声的。我们常用的消声静压箱都是这个原理。一般降低中、低频噪音。对风系统没有具体的要求。 3。阻抗复合式:当然是结合二者的结构原理。可以消除低中高频噪音。但是对风系统的要求同阻式消声器 4、对于一般的民用空调通风系统,我个人认为选用阻抗复合消声器为好。 阻性消声器具有良好的中高频消声性能。按气流通道几何形状不同,可分为直管式、片式、折板式、迷宫式、蜂窝式、声流式、障板式、弯头式等。抗性消声器适用于消除中低频噪声或窄带噪声。按其作用原理不同,可分为扩张式、共振腔式和干涉式等多种型式。阻抗复合式消声器,有共振腔、扩张室、穿孔屏等声学滤波器件,综合了阻性消声器良好的中高频消声特性和阻抗性消声器较好的低频消声特性,因此其消声频带宽,它是最常用的标准消声器系列之一。适宜风速为6~8米/秒,最高可达到8~12米,可单独使用,也可串联使用。消声效果:低频10~15dB/m,中频15~25dB/m,高频25~30dB/m,平均阻力系数为0.4。根据《空气调节》,消声弯头,消声静压箱均属于消声器的一种。 (二)消声器的作用

消声器是一种既能允许气流通过,又能有效地阻止或减弱声能向外传播的装置。(三)静压箱 静压箱是送风系统减少动压、增加静压、稳定气流和减少气流振动的一种必要的配件,它可使送风效果更加理想。 (四)静压箱的作用 1、可以把部分动压变为静压使风吹得更远; 2、可以降低噪音 3、风量均匀分配 4、静压箱可用来减少噪声,又可获得均匀的静压出风,减少动压损失。而且还有万能接头的作用。把静压箱很好地应用到通风系统中,可提高通风系统的综合性能。 二、计算方法什么NR曲线,声学计算撇开不谈了,P601也不说了。收录网友言论仅供参考(排名不分先后)! 1、在设计静压箱时,如果按着规定的风速成进行设计,箱体将会很大;一般的静压箱长边要宽出风管边400mm,高度要宽出风管高度400mm。(tear1111)据yunflame 揭秘:tear1111的数值是从约克设计手册上搞来的,那是估算。 2、静压箱一般老工程师的经验是5~10db(a)/m,阻抗复合型(似乎空调通风系统一般都用这个)消声器10~15db(a)/m(flyforme-bj) 3、控制风速在2.5以内若体积太大可适当得提高一下风速关于长度一般大于1米没有其他得强制要求(zjh112275) 4、高度×深度=静压箱截面面积,静压箱截面面积×2.5m/s=风机风量,至于高度和深度怎么配,自己把握吧~~(水精灵) 5、用你机组的风量L÷3米/秒,可得到你静压箱一个面的面积,然后你根据你房子的高度,假如是4米,可你的机组是2米高,在减去软接头大概0.5米,上面留高0.5米,那你的静压箱只有1米高,那你就可以确定宽度了,有了两个数,第三个数

消声器的种类作用选用、评价

消声器的种类 如图10-9所示。除(1)~(7)为阻性消声器,(12)、(13)为阻抗复合型消声器外,其余均属于抗性消声器。 抗性 排气产生的噪声随气流从右侧的插入管1进入,通过穿孔管2在扩张室A中膨胀消声,气流再经隔板3上的孔进入扩张室B,又一次扩张消声,气流进入B后经过隔板5上的孔4进行收缩消声,然后进入扩张室C,又一次膨胀消声,再经过隔板6上的孔,进入扩张室D,再一次膨胀消声,经过穿孔管7气体收缩消声,最后经消声器的尾管8排入大气。 1.阻性消声器 阻性消声器,亦称吸收消声器(absorptive muffler),是利用吸声材料的吸声作用,使沿通道传播的噪声不断被吸收而逐渐衰减的装置。把吸声材料固定在气流通过的管道周壁,或按一定方式在通道中排列起来,就构成阻性消声器。其消声原理是:当声波进入消声器,便引起阻性消声器内多孔材料中的空气和纤维振动,由于摩擦阻力和粘滞阻力,使一部分声能转化为热能而散失掉,起到消声作用。 阻性消声器对中高频范围的噪声具有较好的消声效果,应用范围很广。它的型式有直管式、片式、蜂窝式、折板式、声流式、弯管式和迷宫式等多种,如图10-9中(1)~(7)所示。 2. 抗性消声器 抗性消声器,亦称反应消声器(reactive muffler),是由声抗性元件组成的消声器。声抗性元件类似于交流电路中的电抗性元件电容或电感,是对声压的变化、声振速度变化起反抗作用的元件,它们不消耗声能,但可贮蓄与反射声能。抗性消声器的特点是:它不使用吸声材料,而是在管道上连接截面突变的管段或旁接共振腔,利用声阻抗失配,使某些频率的声波在声阻抗突变的界面处发生反射、干涉等现象,从而达到消声的目的。抗性消声器对低中频范围的噪声具有较好的消声效果,它的型式有扩张室式、共振腔式、微穿孔板式和干涉型等多种,其结构简图见图10-9,(8)和(9)均是扩张室式,(10)是共振腔式,(11)是微穿孔板式,(14)是干涉型。 (1)扩张室消声器。扩张室消声器也称为膨胀室消声器,由管和腔适当组合而成,分为单节式和多节式,见图10-9(8)和(9)。它是利用管道截面的突变(即声抗的变化)使沿管道传播的声波向声源反射而通不过消声器,从而使声能反射回原处,达到消声目的。

燃煤电厂烟气高效除尘技术的选择及应用

燃煤电厂烟气高效除尘技术的选择及应用 发表时间:2018-07-05T15:20:25.287Z 来源:《电力设备》2018年第6期作者:王硕 [导读] 摘要:在当下供电系统当中,通过燃煤供电是供电的主要方式,但是在燃煤供电对社会提供用电便利的同时,也制造出了对环境污染的有害气体,如一氧化硫、二氧化碳等。 (国电南京自动化股份有限公司 210032) 摘要:在当下供电系统当中,通过燃煤供电是供电的主要方式,但是在燃煤供电对社会提供用电便利的同时,也制造出了对环境污染的有害气体,如一氧化硫、二氧化碳等。本文通过对当前燃煤电厂所排放的烟气组成和造成的危害进行研究分析,进而对烟气排放治理提出相关策略,并对燃煤电厂烟气高效除尘技术阐述。 关键词:燃煤电厂;除尘技术;选择;应用 现阶段,随着社会经济的不断进步和发展,工业化发展的速度也在不断的加快,这直接导致环境污染的程度越来越严重。雾霾天气的天数增加,对人们的生活和工作产生了严重的影响。因此国家也越来越重视和关注环境污染问题。我国针对空气污染问题,使用了很多的方法和技术对空气的质量进行保护。燃煤电厂烟气高效除尘技术在我国环境污染治理的过程中发挥着重要的作用。它不但在发展的过程中能够在最大程度上对环境进行保护,同时它可以促进我国国民经济的进步和发展。 1 烟气排放组成及危害影响 煤炭经历上亿年物理、化学变化而逐渐形成,包含碳、氮、硫和氧等多种元素,通过燃烧会产生大量烟气,其主要成分包括二氧化碳、一氧化碳、二氧化硫、二氧化氮以及许多杂质和矿物质微粒。当前部分燃煤电厂,已经针对自身的生产情况对其环保策略开展研究工作,比如说使用发电专用特种锅炉、将可吸收碳元素、硫元素的物质添加至燃烧的煤炭原料中等方法,以起到促进降低排放烟气中有害物质的含量。然而,相比其他工厂,燃煤电力工厂是依靠蒸汽发电作为动力来源,因此额定的蒸发量要相比其他工厂大,继而产生的有害气体量也巨大。 煤炭燃烧后产生的烟气中的有害微小颗粒,进入到大气后,造成大气质量下降,导致工农业生产的严重损失同时,还会对社会人群带来呼吸道疾病的隐患、困扰。在煤炭燃烧排放烟气中的二氧化碳、二氧化硫等物质会与大气中所含的水蒸气结合,致使雨水的pH值降低,继而形成酸雨。另外,燃煤电厂排放烟气中的微小颗粒,是促进空气中雾霾形成的重要原因。酸雨会导致地下水变质、土壤变质,影响农业发展的雾霾中包含20多种类的有毒、有害物质,对人体的健康危害极大,进入人体支气管,会导致肺部炎症,呼吸道、脑血管等多种病症。 2 燃煤电厂烟气的主要除尘技术 2.1 机械式除尘 机械式除尘该方式原理是烟气被机械设备带动旋转,在离心力作用下,将烟气之中的大颗粒烟尘向边缘偏离,该设备对漂浮在烟气中的尘埃物有有效吸附的作用。但是,其弊端在于直径小于10um的微小颗粒所受到的离心力小,机械除尘设备无法对其进行有效吸附。所以,其只能应用于初级除尘的领域。 2.2 布袋除尘 布袋除尘的原理是将燃烧后所产生的烟尘,通过无纺布、针刺毡等原料制作成的布袋进行过滤。但是,虽然布袋过滤除尘的效率极高,却也有问题存在,那就是烟气的硫、高温以及湿度都对布料性能提出巨大的考验,致使布袋除尘在应用上会有一定的限制。 2.3 联合除尘机制 静电除尘器和布袋除尘器本身都有一定的局限性和优缺点,因此很多专家把袋式除尘器和静电除尘器进行联合使用,以达到更好的应用效果。联合使用多种除尘系统的除尘机构将之有机结合,从而结合不同过滤器的优点,避免各种除尘系统的缺点,使整个联合除尘机构形成有效的补充形式。这种联合除尘机理的除尘效果和广泛的应用范围值得称道,但目前联合除尘机理正属于高效除尘技术的尖端研究方向。 2.4 电除雾器 目前,国内很多电厂都已经将电除雾器处理废弃的方式引入日常废弃处理工作中,该方法具有拖出效率高、能耗水品很低、设备寿命长、施工周期较短、成本低的多项有点,是发电企业十分理想的废弃处理手段。电除雾器的工作原理为通过静电对滞留高压发生装置进行控制,向除雾装置中将交流电转换成的直流电进行输送,进而在雾酸捕集板和电晕线之间产生强大电场,将空气分子电离,瞬间产生大量的正负离子以及电子,在电场力的作用下,电子、正负离子定向运动,构成媒介对酸雾进行捕集,令酸雾微粒荷电,使其在电场力作用下,向阳极板运动。最后,荷电将电子在极板上释放,酸雾被聚集,重力作用使其下流至储酸槽中,进而达到净化目的。 3 现行燃煤电厂烟气的高效除尘技术的选择和应用 除尘设备虽然能缓解排烟治理压力、以及自然的雾霾、酸雨现象,却无法从根本治理污染。因此,在保证经济可持续发展的前提下,应推动除尘技术的创新,实施技术创新的驱动战略,燃煤电厂须积极跟上国际治理烟气技术形式,不断将新技术、新设备引进到生产环境中,同时要注意发电设备的更新换代,有计划地推进环保。 3.1 脱硫技术在燃煤电厂烟气的高效除尘技术中的应用方法 3.1.1 炉内喷钙加尾部增湿活化脱硫工艺 炉内喷钙加尾部增湿活化脱硫工艺,主要使用石灰石粉作为吸收剂,在气力的作用下,将石灰石粉喷入炉膛850~1150℃温度区,在热力的作用下,石灰石粉分解为二氧化碳和氧化钙,氧化钙和烟气中的二氧化硫会产生反应,从而形成亚硫酸钙。因为在气固两相之间进行反应,在传质过程的作用下,反应速度缓慢,吸收剂的利用率也低。在尾部增湿活化反应过程中,增湿水以雾的形状喷进,和没有反应的氧化钙共同反应,形成Ca(OH)2,Ca(OH)2和烟气中的二氧化硫共同作用,再次对二氧化硫进行脱除。如果Ca/S大于等于2.5,则系统脱硫率在65%~80%之间。 3.1.2 吸收剂喷射同时脱硫脱硝技术 炉膛石灰(石)/尿素喷射工艺,主要是结合炉膛喷钙和选择非催化还原(SNCR),以此达到同步脱除烟气中的二氧化硫和氮氧化物的目的。由尿素溶液和各种钙基构成喷射浆液,其总含固量是30%,pH值在5~9之间,相比较

相关主题
文本预览
相关文档 最新文档