当前位置:文档之家› 人教版初中数学圆的经典测试题及答案解析

人教版初中数学圆的经典测试题及答案解析

人教版初中数学圆的经典测试题及答案解析
人教版初中数学圆的经典测试题及答案解析

人教版初中数学圆的经典测试题及答案解析

一、选择题

1.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )

A .3

B .2

C .3

D .2 【答案】D

【解析】

【分析】

先根据题意,画出图形,令直线y= 3x+ 23与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;

然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-,并利用垂线段最短求得PA 的最小值即可.

【详解】

如图, 令直线3x+23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H , 当x=0时,y=3D (0,3

当y=033,解得x=-2,则C (-2,0),

∴222(23)4CD =

+=, ∵12OH?CD=12

OC?OD , ∴OH=

2334?= 连接OA ,如图,

∵PA 为⊙O 的切线,

∴OA ⊥PA ,

∴2221

PA OP OA OP

=-=-,

当OP的值最小时,PA的值最小,

而OP的最小值为OH的长,

∴PA的最小值为22

(3)12

-=.

故选D.

【点睛】

本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

2.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm 处,铁片与三角尺的唯一公共点为B,下列说法错误的是()

A.圆形铁片的半径是4cm B.四边形AOBC为正方形

C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2

【答案】C

【解析】

【分析】

【详解】

解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,

∴OA⊥CA,OB⊥BC,

又∵∠C=90°,OA=OB,

∴四边形AOBC是正方形,

∴OA=AC=4,故A,B正确;

∴?AB的长度为:904

180

π

?

=2π,故C错误;

S扇形OAB=

2

904

360

π?

=4π,故D正确.

故选C.

【点睛】

本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.

3.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=2

5

,则线段AC的长为()

A.1 B.2 C.4 D.5

【答案】C

【解析】

【分析】

首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由

⊙O的半径是5,sinB=2

5

,即可求得答案.

【详解】

解:连接CO并延长交⊙O于点D,连接AD,

由CD是⊙O的直径,可得∠CAD=90°,

∵∠B和∠D所对的弧都为弧AC,

∴∠B=∠D,即sinB=sinD=2

5

∵半径AO=5,∴CD=10,

2 sin

105

AC AC

D

CD

===,

∴AC=4,

故选:C.

【点睛】

本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.

4.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()

A.3

4

B.

1

3

C.

1

2

D.

1

4

【答案】C

【解析】

【分析】

算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】

解:设小正方形的边长为1,则其面积为1.

Q圆的直径正好是大正方形边长,

∴22,∴2,

222

=,则小球停在小正方形内部(阴影)区域的概率为1

2

故选:C.

【点睛】

概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.

5.已知某圆锥的底面半径为3 cm,母线长5 cm,则它的侧面展开图的面积为()A.30 cm2B.15 cm2C.30π cm2D.15π cm2

【答案】D

【解析】

试题解析:根据圆锥的侧面展开图的面积计算公式得:

S=RL

π=15π

故选D.

6.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()

A .50°

B .60°

C .80°

D .90°

【答案】C

【解析】

【分析】 根据圆内接四边形的性质得:∠GBC =∠ADC =50°,由垂径定理得:··CM

DM =,则∠DBC =2∠EAD =80°.

【详解】

如图,∵四边形ABCD 为⊙O 的内接四边形,∴∠GBC =∠ADC =50°.

∵AE ⊥CD ,∴∠AED =90°,∴∠EAD =90°﹣50°=40°,延长AE 交⊙O 于点M .

∵AO ⊥CD ,∴··CM

DM =,∴∠DBC =2∠EAD =80°. 故选C .

【点睛】

本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.

7.如图,ABC V 中,90ACB ∠=?,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).

A .1

B .22

C .21-

D .222-

【答案】D

【解析】

【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.

【详解】

解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,

D ∴为ABC ?的内心,

OD ∴最小时,OD 为ABC ?的内切圆的半径,

,DO AB ∴⊥

过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F

,DE DF DO ∴==

∴ 四边形DFCE 为正方形,

O Q 为AB 的中点,4,AB =

2,AO BO ∴==

由切线长定理得:2,2,,AO AE BO BF CE CF r ======

sin 4522,AC BC AB ∴==??=

222,CE AC AE ∴=-=-

Q 四边形DFCE 为正方形,

,CE DE ∴=

222,OD CE ∴==-

故选D .

【点睛】

本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.

8.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD 等于( )

A.20°B.25°C.30°D.32.5°

【答案】A

【解析】

【分析】

连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.

【详解】

解:连接OD,

∵OC⊥AB,

∴∠COB=90°,

∵∠AEC=65°,

∴∠OCE=180°﹣90°﹣65°=25°,

∵OD=OC,

∴∠ODC=∠OCD=25°,

∴∠DOC=180°﹣25°﹣25°=130°,

∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,

∴由圆周角定理得:∠BAD=1

2

∠DOB=20°,

故选:A.

【点睛】

本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.

9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()

A.B.C.D.

【答案】D

【解析】

解:如右图,

连接OP,由于OP是Rt△AOB斜边上的中线,

所以OP=1

2

AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以

O为圆心的圆弧上,那么中点P下落的路线是一段弧线.

故选D.

10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()

A.5B.5C.5或5cm D.3或3

【答案】C

【解析】

连接AC,AO,

∵O的直径CD=10cm,AB⊥CD,AB=8cm,

∴AM=1

2

AB=

1

2

×8=4cm,OD=OC=5cm,

当C点位置如图1所示时,

∵OA=5cm,AM=4cm,CD⊥AB,

∴OM=2222

54

OA AM

-=-=3cm,

∴CM=OC+OM=5+3=8cm,

∴AC=2222

4845

AM CM

+=+=cm;

当C点位置如图2所示时,同理可得OM=3cm,

∵OC=5cm,

∴MC=5?3=2cm,

在Rt△AMC中,AC=2222

4225

AM CM

+=+=cm.

故选C.

11.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()

A.23B.13C.4 D.32

【答案】B

【解析】

【分析】

如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.

【详解】

如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;

∵△BAC 是等腰直角三角形,AD ⊥BC ,

∴BD=CD=AD=3;

∴OD=AD-OA=2;

Rt △OBD 中,根据勾股定理,得: OB= 22BD OD 13+=

故答案为:B.

【点睛】

本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.

12.如图,在ABC ?中,5AB =,3AC =,4BC =,将ABC ?绕一逆时针方向旋转40?得到ADE ?,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )

A .1463

π- B .33π+ C .3338π- D .259

π 【答案】D

【解析】

【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.

【详解】

∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,

∴△ACB ≌△AED ,∠DAB=40°,

∴AD=AB=5,S △ACB =S △AED ,

∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,

∴S 阴影=

4025360π?=259

π, 故选D.

【点睛】

本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.

13.如图,在Rt ABC △中,90ACB ∠=?,30A ∠=?,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )

A .302,

B .602,

C .360,

D .603, 【答案】C

【解析】

试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2,

∴∠B=60°,AC=BC×cot ∠33AB=2BC=4,

∵△EDC 是△ABC 旋转而成,

∴BC=CD=BD=

12AB=2, ∵∠B=60°,

∴△BCD 是等边三角形,

∴∠BCD=60°,

∴∠DCF=30°,∠DFC=90°,即DE ⊥AC ,

∴DE ∥BC ,

∵BD=12

AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影=

12DF×CF=1233 故选C .

考点:1.旋转的性质2.含30度角的直角三角形.

14.如图,ABC ?是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ?的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).

A .

16 B .6π C .8π D .5

π 【答案】B

【解析】

【分析】

由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=

4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.

【详解】

解:∵AB=5,BC=4,AC=3,

∴AB 2=BC 2+AC 2,

∴△ABC 为直角三角形,

∴△ABC 的内切圆半径=

4+3-52=1, ∴S △ABC =

12AC?BC=12

×4×3=6, S 圆=π,

∴小鸟落在花圃上的概率=

6π , 故选B .

【点睛】

本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.

15.已知线段AB 如图,

(1)以线段AB 为直径作半圆弧?AB ,点O 为圆心;

(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交?AB 于点E F 、;

(3)连接,OE OF .

根据以上作图过程及所作图形,下列结论中错误的是( )

A .CE DF =

B .??AE BF =

C .60EOF ∠=?

D . =2C

E CO

【答案】D

【解析】

【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.

【详解】

根据HL 可判定ECO FDO ?V V ,得CE DF =,A 正确;

∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,

CE 为OA 的中垂线,AE OE =

在半圆中,OA OE =

∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;

∴圆心角相等,所对应的弧长度也相等,??AE BF

=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误

【点睛】

本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.

16.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )

A .2π

B .3π

C .6π

D .8π

【答案】B

【解析】

【分析】 圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.

解:圆锥的侧面积为:12

×2π×1×3=3π, 故选:B .

【点睛】

此题考查圆锥的计算,解题关键在于掌握运算公式.

17.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=?,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )

A .99?

B .100?

C .101°

D .102?

【答案】D

【解析】

【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.

【详解】

解:连接OB ,

∵AB=AC ,

∴∠ABC=∠ACB=56°,

∴∠A=180°-56°-56°=68°=

12

∠BOC , ∴∠BOC=68°×2=136°,

∵OB=OC ,

∴∠OBC=∠OCB=(180°-136°)÷2=22°,

∴∠OBE=∠EBC-∠OBC=56°-22°=34°,

∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.

故选D.

本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.

18.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()

A.30°B.45°C.60°D.90°

【答案】B

【解析】

分析:接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.

详解:连接OB,OC,

∵四边形ABCD是正方形,

∴∠BOC=90°,

∴∠BPC=1

2

∠BOC=45°.

故选B.

点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.

19.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.

图1图2

有如下四个结论:

①勒洛三角形是中心对称图形

②图1中,点A到BC上任意一点的距离都相等

③图2中,勒洛三角形的周长与圆的周长相等

④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动

上述结论中,所有正确结论的序号是()

A.①②B.②③C.②④D.③④【答案】B

【解析】

【分析】

逐一对选项进行分析即可.

【详解】

①勒洛三角形不是中心对称图形,故①错误;

②图1中,点A到BC上任意一点的距离都相等,故②正确;

③图2中,设圆的半径为r

∴勒洛三角形的周长=

120

32

180

r

r

π

π?=

g g

圆的周长为2r

π

∴勒洛三角形的周长与圆的周长相等,故③正确;

④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误

故选B

【点睛】

本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 20.如图,用半径为12cm,面积2

72cm

π的扇形无重叠地围成一个圆锥,则这个圆锥的高为()

A.12cm B.6cm C.6√2 cm D.3

【答案】D

【解析】

【分析】

先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.

【详解】

72π=

2

12 360 nπ?

解得n=180°,

∴扇形的弧长=18012180

π?=12πcm . 围成一个圆锥后如图所示:

因为扇形弧长=圆锥底面周长

即12π=2πr 解得r=6cm ,即OB=6cm 根据勾股定理得22126=63-,

故选D .

【点睛】

本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.

经典初中数学题大全

一、填空题: 1.一个正数a的平方根,用符号“________”表示,其中a叫做________,根指数是________. 2.平方根等于它本身的数是________,算术平方根等于它本身的数是________.3.________的平方根有两个,________的平方根只有一个,并且________没有平方根. 4.0.25的算术平方根是________. 5.9的算术平方根是________,的算术平方根是________. 6.36的平方根是________,若,则x=________. 7.的平方根是________,的平方根是________,的算术平方根是________.8.81的平方根是________,算术平方根是________,算术平方根的相反数是 ________,平方根的倒数是________,平方根的绝对值是________.9.,则x=________. 10.当 a________时,有意义. 二、判断并加以说明. 1.3 的平方是9;() 2.1的平方根是1;() 3.0的平方根是0;() 4.无理数就是带根号的数;() 5.的平方根是;() 6.是25的一个平方根;() 7.正数的平方根比它的平方小;() 8.除零外,任何数都有两个平方根;() 9.的平方根是;() 10.没有平方根;()

11.零是最小的实数;() 12.23是的算术平方根.() 三、选择题: 1.下列说法正确的是(). A.的算术平方根是 B.的平方根是 C.的算术平方根是 D.的平方根是 2.在四个数0,,2,中,有平方根的是(). A.0与 B.0,与 C.0与 D.0,2与 3.若,则x为(). A.1 B. C. D. 4.的平方根是(). A.3 B. C.9 D. 5.的算术平方根是(). A.16 B. C.4 D. 6.如果有意义,则x的取值范围是(). A.x≥0 B.x>0 C.x> D.x≥ 7.如果一个自然数的平方根是(a≥0),则下一个自然数的平方根为().A. B. C. D. 8.下列叙述正确的是(). A.是7的一个平方根 B.11的平方根是 C.如果x有算术平方根,则x>0 D. 9.计算的平方根,下列表达式正确的是(). A. B. C. D.

初中数学经典几何题及答案解析

第 1 页 共 14 页 4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B

第 2 页 共 14 页 P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

初二数学试题及答案(免费)

初二数学试题 (时间:120分钟 满分:150分) 一、选择题:本题共14小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共56分,错选、不选或选出的答案超过一个,均记0分. 1、下列说法中正确的是( ) A. x 的次数是0 B. y 1是单项式 C. 2 1 是单项式 D. a 5 的系数是5 2、下列说法中,不正确的是 ( ) A.单项式中的数字因数叫这个单项式的系数 B.单独一个数或字母也是单项式 C.一个单项式中,所有字母的指数的和叫这个单项式的次数 D.多项式中含字母的单项式的次数即为多项式的次数 3、下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是( ) A . B . C .

4、只含有z y x ,,的三次多项式中,不可能含有的项是 ( ) A.32x B.xyz 5 C.37y - D.yz x 24 1 5、与方程12x x -=的解相同的方程是( ) A 、212x x -=+ B 、21x x =+ C 、21x x =- D 、1 2 x x += 6、把方程112 3 x x --=去分母后,正确的是( ) A 、32(1)1x x --= B 、32(1)6x x --= C 、3226x x --= D 、3226x x +-= 7、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A 、赚16元 B 、赔16元 C 、不赚不赔 D 、无法确定 8、已知线段长3.现延长到点C ,使3.取线段的中点D , 线段的长为( ) A 、4.5 B 、6 C 、7 D 、7.5. 9、在下列单项式中,不是同类项的是( ) A . 2 12 y 和2 B .-3和0 C .2和2 c D .和-8 10、若都是4次多项式, 则多项式的次数为( ) A.一定是4 B.不超过4. C.不低于4. D.一定是8. 11、方程042=-+a x 的解是2-=x ,则a 等于( )

初中数学经典习题资料

232-2 -11-11O x y (第7题) (第 4题) O x P · 1 2 1 -1 1 y -1 1 -2 2 2 -2 2 3 3 选择题 1.|2|-等于 ( ) A .2 B .2- C . 2 1 D .2 1- 2.下列长度的三条线段,能组成三角形的是 ( ) A .1、1、2 B .3、4、5 C .1、4、6 D .2、3、7 3.下列计算正确的是 ( ) A .331-=- B .632a a a =? C .1)1(2 2 +=+x x D .22223=- 4.如图,在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( ) A .(2,2) B .( -4,2) C .(-1,5) D .(-1,-1) 5.一个多边形的内角和是900?,则这个多边形的边数为( ) A .6 B .7 C .8 D .9 6.若? ? ?==21 y x 是关于x ,y 的二元一次方程13=-y ax 的解,则a 的值为( ) A .-5 B .-1 C .2 D .7 7.如图,关于抛物线2)1(2 --=x y ,下列说法错误的是( ) A .顶点坐标为(1,-2) B .对称轴是直线x =1 C .开口方向向上 D .当x >1时,y 随x 的增大而减小 8.如上右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表 面上,与 汉字“美”相对的面上的汉字是 ( ) A .我 B .爱 C .长 D .沙 9.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图, 根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的 ( )

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

最新初中数学数据分析经典测试题附答案

最新初中数学数据分析经典测试题附答案 一、选择题 1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.() A.3,2 B.3,4 C.5,2 D.5,4 【答案】B 【解析】 试题分析:平均数为(a?2 + b?2 + c?2 )=(3×5-6)=3;原来的方差: ;新的方差: ,故选 B. 考点:平均数;方差. 2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为() A.7,6 B.7,4 C.5,4 D.以上都不对 【答案】B 【解析】 【分析】 根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出1 3 (-2+b-2+c-2)的值;再由 方差为4可得出数据a-2,b-2,c-2的方差. 【详解】 解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15, ∴1 3 (a-2+b-2+c-2)=3, ∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4, ∴1 3 [(a-5)2+(b-5)2+(c-5)2]=4, ∴a-2,b-2,c-2的方差=1 3 [(a-2-3)2+(b-2-3)2+(c--2-3)2] = 1 3 [(a-5)2+(b-5)2+(c-5)2]=4, 故选B.【点睛】

本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键. 3.对于一组统计数据:1,1,4,1,3,下列说法中错误的是() A.中位数是1 B.众数是1 C.平均数是1.5 D.方差是1.6 【答案】C 【解析】 【分析】 将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】 解:将数据重新排列为:1、1、1、3、4, 则这组数据的中位数1,A选项正确; 众数是1,B选项正确; 平均数为11134 5 ++++ =2,C选项错误; 方差为1 5 ×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确; 故选:C. 【点睛】 本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式. 4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择() A.队员1 B.队员2 C.队员3 D.队员4 【答案】B 【解析】 【分析】 根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.

全国初中数学联赛试题及答案

2009年全国初中数学联合竞赛试题参考答案 第一试 一、选择题(本题满分42分,每小题7分) 1. 设71a = ,则32312612a a a +--= ( A ) A.24. B. 25. C. 4710. D. 4712. 2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC = ( C ) A.72 B. 10. C. 105 D. 3 3.用[]x 表示不大于x 的最大整数,则方程2 2[]30x x --=的解的个数为 ( C ) A.1. B. 2. C. 3. D. 4. 4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B ) A. 314. B. 37. C. 12. D. 47 . 5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE = ( D ) A.63 B. 23. C. 13 . D. 1010. 6.设n 是大于1909的正整数,使得 1909 2009n n --为完全平方数的n 的个数是 ( B ) A.3. B. 4. C. 5. D. 6. 二、填空题(本题满分28分,每小题7分) 1.已知t 是实数,若,a b 是关于x 的一元二次方程2 210x x t -+-=的两个非负实根,则2 2 (1)(1)a b --的最 小值是_____3-_______. 2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为___mn ___. 3.如果实数,a b 满足条件22 1a b +=,2 2 |12|21a b a b a -+++=-,则a b +=__1-____. 4.已知,a b 是正整数,且满足1515a b 是整数,则这样的有序数对(,)a b 共有___7__对. D C E

初中数学有理数经典测试题含答案

初中数学有理数经典测试题含答案 一、选择题 1.下面说法正确的是( ) A .1是最小的自然数; B .正分数、0、负分数统称分数 C .绝对值最小的数是0; D .任何有理数都有倒数 【答案】C 【解析】 【分析】 0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注 【详解】 最小的自然是为0,A 错误; 0是整数,B 错误; 任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确; 0无倒数,D 错误 【点睛】 本题是有理数概念的考查,主要需要注意0的特殊存在 2.若a 为有理数,且|a |=2,那么a 是( ) A .2 B .﹣2 C .2或﹣2 D .4 【答案】C 【解析】 【分析】 利用绝对值的代数意义求出a 的值即可. 【详解】 若a 为有理数,且|a|=2,那么a 是2或﹣2, 故选C . 【点睛】 此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 3.已知a b >,下列结论正确的是( ) A .22a b -<- B .a b > C .22a b -<- D .22a b > 【答案】C 【解析】 【分析】 直接利用不等式的性质分别判断得出答案. 【详解】 A. ∵a>b ,∴a ?2>b ?2,故此选项错误; B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;

C.∵a>b ,∴?2ab,∴a 2与b 2无法确定大小关系,故此选项错误; 故选:C. 【点睛】 此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义. 4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( ) A .1a b << B .11b <-< C .1a b << D .1b a -<<- 【答案】A 【解析】 【分析】 首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可. 【详解】 解:根据实数a ,b 在数轴上的位置,可得 a <-1<0<1< b , ∵1<|a|<|b|, ∴选项A 错误; ∵1<-a <b , ∴选项B 正确; ∵1<|a|<|b|, ∴选项C 正确; ∵-b <a <-1, ∴选项D 正确. 故选:A . 【点睛】 此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数. 5.下列四个数中,是正整数的是( ) A .﹣2 B .﹣1 C .1 D .12 【答案】C 【解析】

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

初中数学易错题集锦及答案解析

初中数学易错题及答案 (A )2 (B (C )2± (D ) 2,2 的平方根为2.若|x|=x ,则x 一定是( ) A 、正数 B 、非负数 C 、负数 D 、非正数 答案:B (不要漏掉0) 3.当x_________时,|3-x|=x-3。答案:x-3≥0,则x3 4. 2 2___分数(填“是”或“不是”) 答案:2 2是无理数,不是分数。 5.16的算术平方根是______。 答案:16=4,4的算术平方根=2 6.当m=______时,2m -有意义 答案:2 m -≥0,并且2m ≥0,所以m=0 7分式 4 622--+x x x 的值为零,则x=__________。 答案: 226040 x x x ?+-=? ?-≠?? ∴122,32x x x ==-??≠±?∴3x =- 8.关于 x 的一元二次方程2(2)2(1)10k x k x k ---++=总有实数根.则K_______ 答案:[]2 20 2(1)4(2)(1)0 k k k k -≠???----+≥??∴3k ≤且2k ≠ 9.不等式组2, .x x a >-??>? 的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-. 答案:D 10.关于x 的不234 a ≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。 答案:234a ≤< 11.若对于任何实数 x ,分式 2 1 4x x c ++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉4

初中数学经典试题

初中数学经典题目 1、如图,梯形ABCD 中,AD ∥BC , 点E 在BC 上,AE =BE ,点F 是CD 的中点,且AF ⊥AB ,若AD =2.7,AF =4,AB =6,则CE 的长为 A .2 2 B .23-1 C .2.5 D .2.3 2.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( ) A .6 B .8 C .9.6 D .10 3.如图,在Rt △ABC 中,∠ACB =90°,半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E , 连结DE 并延长,与线段BC 的延长线交于点P 。已知tan ∠BPD= 2 1 ,CE=2,则⊿ABC 的周长是 4.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P . (1)当AE =5,P 落在线段CD 上时,PD = ; (2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 . A G B H C F D E A B C D E F

5、如图所示,在ABC ,AB=BC=50,AC=60,点P 在折线AB-BC 方向向点C 运动,是5,点Q 从C 向A 运动,速度为3,当PQC 为等腰三角形时,CQ 的长为 P B A C E Q 6.如图,(1)将抛物线y 1=2x 2向右平移2个单位,得到抛物线y 2的图象,则y 2= ; (2)如图,P 是抛物线y 2对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x 、抛物线y 2交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足条件的t 的值,则t = . 7、四边形ABCD 中,G 、H 分别是AD 、BC 的中点,AB=CD .BA 、CD 的延长线交HG 的延长线于E 、F 。求证:∠BEH=∠CFH . 8、如图3所示,设BP 、CQ 是?A B C 的内角平分线,AH 、AK 分别为A 到 BP 、CQ 的垂线。 求证:KH ∥BC A B Q P H C K P y x y x = 2y O ·

(完整版)初一年级数学经典例题

数学天地: 初一年级数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算:2007 20061 ......431321211?+ +?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆 成 2 1 11211-=?,可利用通项 ()11111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式=)20071 20061(......413131212111-++-+-+-)()()( =20071 20061......41313121211- ++-+-+- =20071 1- =2007 2006 例2 已知有理数a 、b 、c 在数轴上的对应点 分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例3 计算:?? ? ??-??? ??-????? ??-??? ??-??? ??-211311 (9811991110011)

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

初中数学经典试题及答案

初中数学经典试题 、选择题: 1、图(二)中有四条互相不平行的直线L1、L 2、L 3、L4所截出的七个角。关于这七个角的度数关系,下列何者正确?() A.2=4+7 B.3=1+6 C.1+4+6=180 D.2+3+5=360 答案: C. 2、在平行四边形ABCD中,AB=6,AD=8,∠ B 是锐角,将△ ACD沿对角线AC折叠,点D 落在△ ABC所在平面内的点 E 处。如果AE过BC的中点,则平行四边形ABCD的面积等于( )A 、48 B 、10 6C 、12 7D 、24 2 答案: C. 3、如图,⊙ O中弦AB、CD相交于点F,AB=10,AF=2。若CF∶DF=1∶4,则CF 的长等于() A 、2 B 、 2 C 、3 D 、 2 2 答案: B. 4、如图:△ ABP与△ CDP是两个全等的等边三角形,且PA⊥PD。有下列四个结论:①∠ PBC =150;② AD∥BC;③直线PC与AB垂直;④四边形ABCD是轴对称图形。其中正确结论的个数为()

23 11 A 、1 B 、 2 C 、 3 D 、 4 答案: D. 5、如图,在等腰 Rt △ABC 中,∠ C=90o , AC=8,F 是 AB 边上的 中点,点 D 、E 分别在 AC 、BC 边上运动,且保持 AD=CE ,连接 DE 、 DF 、EF 。在此运动变化的过程中,下列结论: ① △ DFE 是等腰直角三角形; ② 四边形 CDFE 不可能为正方形; ③ DE 长度的最小值为 4; ④ 四边形 CDFE 的面积保持不变;⑤△ CDE 面积的最大值为 8 。 其中正确的结论是( ) A .①②③ B .①④⑤ C .①③④ D .③④⑤ 答案: B. 二、填空题: 6、已知 0 x 1. (1) 若 x 2y 6,则 y 的最小值是 (2). 若 x 2 y 2 3 , xy 1,则 x y = . 答案:(1)-3 ;(2)-1. 7、用 m 根火柴可以拼成如图 1 所示的 x 个正方形,还可以拼成如图 2 所示的 2y 个正方形, 那么用含 x 的代数式表示 y ,得 y = ____________ . 答 案: 31 y = x - 55 2 2 1 8、已知 m 2- 5m -1= 0,则 2m 2- 5m + 2= . m 答案: 28. 9、 ____________________ 范围内的有理数经过四舍五入得到的近 似数 答案:大于或等于且小于 . 10、如图:正方形 ABCD 中,过点 D 作 DP 交 AC 于点 M 、 交 AB 于点 N ,交 CB 的延长线于点 P ,若 MN = 1,PN = 3, 则 DM 的长为 . 11、在平面直角坐标系 xOy 中,直线 y x 3 与两坐标轴围成一个△ AOB 。现将背面完全 图1

初中数学三角形经典测试题及解析

初中数学三角形经典测试题及解析 一、选择题 1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于() A.45°B.30 °C.15°D.60° 【答案】C 【解析】 【分析】 先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果. 【详解】 解:∵ABCD是长方形, ∴∠BAD=90°, ∵∠BAF=60°, ∴∠DAF=30°, ∵长方形ABCD沿AE折叠, ∴△ADE≌△AFE, ∴∠DAE=∠EAF=1 2 ∠DAF=15°. 故选C. 【点睛】 图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为() A.8cm B.10cm C.12cm D.14cm 【答案】B 【解析】 【分析】 根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求

【详解】 ∵ BD 是∠ABC 的平分线, ∴ ∠ABD =∠EBD . 又∵ ∠A =∠DEB =90°,BD 是公共边, ∴ △ABD ≌△EBD (AAS), ∴ AD =ED ,AB =BE , ∴ △DEC 的周长是DE +EC +DC =AD +DC +EC =AC +EC =AB +EC =BE +EC =BC =10 cm. 故选B. 【点睛】 本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 3.下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cm B .7cm ,4cm ,2cm C .3cm ,4cm ,8cm D .3cm ,3cm ,4cm 【答案】D 【解析】 【详解】 A .因为2+3=5,所以不能构成三角形,故A 错误; B .因为2+4<6,所以不能构成三角形,故B 错误; C .因为3+4<8,所以不能构成三角形,故C 错误; D .因为3+3>4,所以能构成三角形,故D 正确. 故选D . 4.如图,在ABC V 中,AB AC =,30A ∠=?,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=?,则2∠的度数是( ) A .30° B .35° C .40° D .45° 【答案】C

初中数学应用题(含答案解析)

武汉中考数学22题专题-二次函数应用 1.(2014?武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习 过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料 板一些数据. 材料板的宽x(单位:cm )24 30 42 54 成本c(单位:元)96 150 294 486 销售价格y(单位:元)780 900 1140 1380 (1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围; (2)若一张材料板的利润w为销售价格y与成本c的差. ①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围; ②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少. 2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的 效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是 原销售量的y倍,且y是x的二次函数,它们的关系如表: x(十万元 )0 1 2 y 1 1.5 1.8 (1)求y与x的函数关系式; (2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数 关系式); (3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是 多少? 3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制, 会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤ x≤12)之间变化关系如表: 日产量x(千件/台)… 5 6 7 8 9 … 次品数p(千件/台)…0.7 0.6 0.7 1 1.5 … 已知每生产1千件合格的元件可以盈利 1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p (千件)与x(千件)的函数解析式; (2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量 x(千件)为多少时所获得的利润最大,最大利润为多少? 4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个) 的变化如下表: 价格x(元/个)…30 40 50 60 … 销售量y(万个)… 5 4 3 2 … 同时,销售过程中的其他开支(不含造价)总计40万元. (1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写 出y(万个)与x(元/个)的函数解析式. (2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为 多少元时净得利润最大,最大值是多少? (3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽 可能大,销售价格应定为多少元? 5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表x 10 12 14 16 y 300 240 180 120 (1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围) (2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销 售利润是多少? (3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润.

初中数学经典试题及答案初三复习资料.doc

初中数学经典试题 一、选择题: 1、图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。关于这七个角的度数关系,下列何者正确? ( ) A .742∠∠∠+= B .613∠∠∠+= C .?∠∠∠180641=++ D .?∠∠∠360532=++ 答案:C. 2、在平行四边形ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处。如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( ) A 、48 B 、610 C 、712 D 、224 答案:C. 3、如图,⊙O 中弦AB 、CD 相交于点F ,AB =10,AF =2。若CF ∶DF =1∶4,则CF 的长等于( ) A 、2 B 、2 C 、3 D 、22 答案:B. 4、如图:△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD 。有下列四个结论:①∠PBC =150 ;②AD∥BC;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形。其中正确结论的个数为( ) O F D C A

A 、1 B 、2 C 、3 D 、4 第10题图 P D C B A 答案:D. 5、如图,在等腰Rt△ABC 中,∠C=90o,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。在此运动变化的过程中,下列结论: ① △DFE 是等腰直角三角形; ② 四边形CDFE 不可能为正方形; ③ DE 长度的最小值为4; ④ 四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8。 其中正确的结论是( ) A .①②③ B .①④⑤ C .①③④ D .③④⑤ 答案:B. 二、填空题: 6、已知01x ≤≤. (1)若62=-y x ,则y 的最小值是 ; (2).若2 2 3x y +=,1xy =,则x y -= . 答案:(1)-3;(2)-1. 7、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________. 答案:y =5 3x -5 1 . 8、已知m 2-5m -1=0,则2m 2 -5m + 1 m 2 = . 答案:28. 9、____________________ 范围内的有理数经过四舍五入得到的近似数3.142. 答案:大于或等于3.1415且小于3.1425. 10、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3, 则DM 的长为 . 答案:2. 11、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。现将背面完全相同,正面分别标有数1、2、3、 21、3 1 的5张卡片洗匀后,背面朝上,从中任取一张,将… … … 图1 图2 第19题图P N M D C B A E F D C B A

初中中考数学试卷(含答案解析)

初中升学中考数学模拟试卷 一.选择题(共8小题) 1.﹣3的倒数是() A.B. 3 C.﹣3 D.﹣ 2.下面四个几何体中,其左视图为圆的是() A.B.C.D. 3.下面运算正确的是() A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6 4.宜宾今年5月某天各区县的最高气温如下表: 区县翠屏南溪长宁江安宜宾珙县高县兴文筠连屏山 最高气温 32 32 30 32 30 31 29 33 30 32 (℃) A.32,31.5 B.32,30 C.30,32 D.32,31 5.将代数式x2+6x+2化成(x+p)2+q的形式为() A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4 6.分式方程的解为() A. 3 B.﹣3 C.无解D. 3或﹣3

7.如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为() A.B.C.D. 8.给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称 轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题: ①直线y=0是抛物线y=x2的切线 ②直线x=﹣2与抛物线y=x2相切于点(﹣2,1) ③直线y=x+b与抛物线y=x2相切,则相切于点(2,1) ④若直线y=kx﹣2与抛物线y=x2相切,则实数k= 其中正确命题的是() A.①②④B.①③C.②③D.①③④ 二.填空题(共8小题) 9.分解因式:3m2﹣6mn+3n2= . 10.一元一次不等式组的解是. 11.如图,已知∠1=∠2=∠3=59°,则∠4= . 12.如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标 为.

相关主题
相关文档 最新文档