高中物理整体法和隔离法
- 格式:doc
- 大小:205.50 KB
- 文档页数:4
整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法.采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了.运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法.可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来。
③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图。
④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解。
3.整体和局部是相对统一的,相辅相成的.隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用。
无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力F N。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用).可得F m m m F BA B N += 点评:这个结论还可以推广到水平面粗糙时(A 、B 与水平面间μ相同);也可以推广到沿斜面方向推A 、B 向上加速的问题,有趣的是,答案是完全一样的。
专题01隔离法和整体法-高中物理八大解题方法隔离法和整体法是高中物理中常用的解题方法之一、在解题的过程中,有时我们需要将问题进行隔离,逐步分析求解;而有时候我们又需要将问题作为一个整体考虑,从整体出发进行分析和求解。
隔离法是指通过将问题进行隔离,将其划分为多个独立、相对简单的小问题进行逐步求解。
这种方法适用于问题比较复杂,需要进行多次分析和求解的情况。
例如,在力学中,我们经常会遇到复杂的力的合成和分解问题。
此时,我们可以通过将力进行分解成多个独立的分力,分别分析并求解每个分力的作用,最后再将各个分力的作用结果进行合成,得到最终的结果。
整体法则是指将问题看作一个整体,从整体出发进行分析和求解。
这种方法适用于问题比较简单,无需进行多次分析和求解的情况。
例如,在电路中,我们经常会遇到串联和并联电路的问题。
此时,我们可以将串联电路看作一个整体,总电压等于各个电压的代数和;将并联电路看作一个整体,总电流等于各个电流的代数和。
通过这种整体法,我们可以更加简洁和快速地求解问题。
在解题过程中,我们需要根据具体问题的要求和条件选择合适的解题方法。
有时候可能需要同时运用隔离法和整体法。
例如,在力学中,当我们需要求解多个力的合力时,可以首先使用隔离法将问题分解为每个力的分解,并分别求解每个分力的作用;然后再使用整体法将各个分力的作用结果进行合成,得到最终的合力。
总之,隔离法和整体法是高中物理中常用的解题方法,具有较强的普适性和实用性。
在解题过程中,我们应根据具体问题的要求和条件进行选择和运用,以期更有效地解决物理问题。
受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。
当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。
3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。
考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。
3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。
(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。
(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。
(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。
1. 物体的受力分析(隔离法与整体法)2. 共点力作用下的物体的平衡【要点扫描】一、物体的受力分析(隔离法与整体法)(一)物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象:也就是说根据解题的目的,从体系中隔离出所要研究的某一个物体,或从物体中隔离出某一部分作为单独的研究对象,对它进行受力分析。
所选择的研究对象要与周围环境联系密切并且已知量尽量多;对于较复杂的问题,由于物体系各部分相互制约,有时要同时隔离几个研究对象才能解决问题.究竟怎样选择研究对象要依题意灵活处理。
②对研究对象周围环境进行分析:除了重力外查看哪些物体与研究对象直接接触,对它有力的作用。
凡是直接接触的环境都不能漏掉分析,而不直接接触的环境千万不要考虑进来.然后按照重力、弹力、摩擦力的顺序进行力的分析,根据各种力的产生条件和所满足的物理规律,确定它们的存在或大小、方向、作用点。
③审查研究对象的运动状态:是平衡状态还是加速状态等等,根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断。
④根据上述分析,画出研究对象的受力分析图;把各力的方向、作用点(线)准确地表示出来。
3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
(二)隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中用整体法比较方便,但整体法不能求解系统的内力。
2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
浅谈高中物理教学中的隔离法与整体法隔离法与整体法是高中物理教学中常用的思维方法,所谓隔离法,就是把所研究的对象从整体或系统中隔离出来进行研究,这种方法称为隔离法。
所谓整体法,就是将整个系统看做一个整体,对系统进行整体研究,这种方法称为整体法。
下面就其应用介绍如下。
一、隔离法的应用1.物块a和b用轻绳相连后悬挂在轻弹簧下端静止不动,如图(甲)所示;连接a和b的绳子被烧断后,a上升到某一位置时速度的大小为v,这时b的下落速度大小为u,如图(乙)所示。
已知a和b的质量分别为m和m。
从甲状态到乙状态的过程中,弹簧的弹力作用于物块a的冲量等于多少?解:设弹力对a的冲量为i,取向上为正方向,根据动量定理:对a物体:i-mgt=mv-0(1)对b物体:-mgt=m(-u)-0(2)由(2)式得:t=,代入(1)式得:i=m(v+u)a、b都停止时相距s,s=l+s0+sa-sb=l+s02.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场方向垂直纸面向里,三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动,比较他们的质量应有()a.a油滴质量最大b.b油滴质量最大c.c油滴质量最大d.abc质量一样大解:对于a粒子:ma g=qe ma=qe/g对于b粒子:mbg+qvb=qemb=q(e-vb)/g对于c粒子:mcg=qvb+qemc=q(e+vb)/g故mc>ma>mb二、整体法的运用3.质量为m的木块在光滑水平面上以速度v1向右运动,质量为m的子弹以速度v2水平向左射入木块,要使木块停下来,必须发射子弹数目为(子弹留在木块中不穿出)()a.b.c.d.解:以n颗子弹和m组成的系统动量守恒,n颗子弹入射前为初状态,子弹入射后木块停下来为末状态,以子弹方向为正。
nmv2=m-v1=0 n=4.在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量为m1和m2的木块,m1>m2,如图所示。
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程; (2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
【例1】如图1-7-7所示,F 1=F 2=1N ,分别作用于A 、B 两个重叠物体上,且A 、B 均保持静止,则A 与B 之间、B 与地面之间的摩擦力分别为() A .1N ,零B .2N ,零C .1N ,1ND .2N ,1N【例2】用轻质细线把两个质量未知小球悬挂起来,如图1-7-3所示,今对小球a 持续施加一个向左偏下30o 的恒力,并对小球b 持续施加一个向右偏上30o 的同样大的恒力,最后达到平衡,则表示平衡状态的图可能是( )【例3】四个相同的、质量均为m 的木块用两块同样的木板A 、B 夹住,使系统静止(如图1-7-4所示),木块间接触面均在竖直平面内,求它们之间的摩擦力。
补:人对平板的压力为N ,若要维持系统平衡,人的重力不得小于 N 。
6.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡(如图18),现将P 环向左图1-7-7DAC B 图1-7-3图1-7-2m 图18移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是:A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小 例7、如图7-1所示,两个完全相同重为G 的球,两球与水平面间的动摩擦因数都是μ,一根轻绳两端固结在两个球上,在绳的中点施一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。
问当F 至少多大时,两球将发生滑动?提示:结合整体法和隔离法列平衡方程可很快求解例8、如图7-3所示,光滑的金属球B 放在纵截面为等腰三角形的物体A 与竖直墙壁之间,恰好匀速下滑,已知物体A 的重力是B 的重力的6倍,不计球跟斜面和墙壁之间摩擦,问:物体A 与水平面之间的动摩擦因数μ是多少?上αT BC 三点A 、B 、C ,受到的作用力大小分别为F 1、F 2、F 3,如果将桶的直径加大,但仍小于2d ,则F 1、F 2、F 3的变化情况是()A 、F 1增大,F 2不变,F 3增大B 、F 1减小,F 2不变,F 3减小C 、F 1减小,F 2减小,F 3增大D 、F 1增大,F 2减小,F 3减小。
11、如图(2)所示,在光滑的水平面上,质量分别为M 、m 的两木块接触面与水平面的夹角为θ,用大小均为F 的水平力第一次向右推A ,第二次向左推B ,两次推动均使A 、B 一起在水平面上滑动,设先后两次推动中,A 、B 间的作用力大小为N 1与N 2。
则有() A 、N 1∶N 2=m ∶MB 、N 1∶N 2=mcos θ∶Msin θC 、N 1∶N 2=M ∶mD 、N 1∶N 2=Mcos θ∶msin θ牛顿运动定律应用专题: 整体法和隔离法解决连接体问题要点一整体法1.光滑水平面上,放一倾角为θ的光滑斜木块,质量为m 的光滑物体放在斜面上,如图所示,现对斜面施加力F . (1)若使M 静止不动,F 应为多大?(2)若使M 与m 保持相对静止,F 应为多大? 要点二隔离法2.如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g /2,则小球在下滑的过程中,木箱对地面的压力为多少? 题型1隔离法的应用【例1】如图所示,薄平板A 长L =5m,质量M =5kg,放在水平桌面上,板右端与桌边缘相齐.在A 上距其右端s =3m 处放一个质量m =2kg 的小物体B ,已知A 与B 之间的动摩擦因数μ1=0.1,A 、B 两物体与桌面间的动摩擦因数μ2=0.2,最初系统静止.现在对板A 向右施加一水平恒力F ,将A 从B 试现对斜面体施加一水平推力F ,要使应为多大?(设物体与斜面的最取10m/s 2) 【例3】如图所示,有一块木板静止在光滑足够长的水平面上,木板的质量为M =4kg,长度为L =1m;木板的右端停放着一个小滑块,小滑块的质量为m =1kg,其尺寸远远小于木板长度,它与木板间的动摩擦因数为μ=0.4,已知最大静摩擦力等于滑动摩擦力.求: (1)为使木板能从滑块下抽出来,作用在木板右端的水平恒力F 的大小应满足的条件. (2)若其他条件不变,在F =28N 的水平恒力持续作用下,需多长时间能将木板从滑块下抽出.1.如图所示,滑轮的质量不计,已知三个物体的质量关系是m 1=m 2+m 3,这时弹簧秤的读数为T .若把物体m 2从右边移到左边的物体m 1上,弹簧秤的读数T 将()A .增大B .减小C .不变D .无法确定2.如图所示,斜面体ABC 置于粗糙的水平地面上,小木块m 在斜面上静止或滑动时,斜面体均保持静止不动.下列哪种情况,斜面体受到地面向右的静摩擦力() A .小木块m 静止在BC 斜面上 B .小木块m 沿BC 斜面加速下滑C .小木块m 沿BA 斜面减速下滑D .小木块m 沿AB 斜面减速上滑3.如图所示,在平静的水面上,有一长l =12m 的木船,木船右端固定一直立桅杆,木船和桅杆的总质量为m 1=200kg,质量为m 2=50kg 的人立于木船左端,开始时木船与人均静止.若人匀加速向右奔跑至船的右端并立即抱住桅杆,经历的时间是2s,船运动中受到水的阻力是船(包括人)总重的0.1倍,g取10m/s 2.求此过程中船的位移4.间擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( )A.物块先向左运动,再向右运动B .物块向右运动,速度逐渐增大,直到做匀速运动C .木板向右运动,速度逐渐变小,直到做匀速运动D .木板和物块的速度都逐渐变小,直到为零 2.如图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( )A .0B .2g sin θ,方向沿斜面向下C .2g sin θ,方向沿斜面向上D .g sin θ,方向沿斜面向下3.如图所示是一种升降电梯的示意图,A 为载人箱,B 为平衡重物,它们的质量均为M ,上下均由跨过滑轮的钢索系住,在电动机的牵引下使电梯上下运动.如果电梯中人的总质量为m ,匀速上升的速度为v ,电梯即将到顶层前关闭电动机,依靠惯性上升h 高度后停止,在不计空气和摩擦阻力的情况下,h 为( )A. B. C. D.4.如图所示,小物块A 质量为M =10kg ,B 质量为m =2.5kg.A 、B 用一轻绳连接跨过无阻力的定滑轮且处于静止状态.A 与平台间动摩擦因数μ=0.25(与最大静摩擦因数相等).现用竖直向上的力F 拉A ,且F 由零线性增大至100N 的过程中,B 的下降高度恰为h =2m ,(A 未与滑轮相碰)则上述过程中的最大速度为(g =10m/s 2).( )A .1m/sB .2m/sC .3m/sD .05.如图所示,某斜面体由两种材料拼接而成,BC 界面平行于底面DE ,两侧面与水平面夹角分别为30°和60°.已知一物体从A 点静止下滑,加速至B 点,匀速至D 点.若该物的一端系一质量m =15kg 的重物.重物静止于地面上,有一质量m 1=10kg 的猴子,从绳的另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g 取10m/s 2) ( )A .25m/s 2B .5m/s 2C .10m/s 2D .15m/s 27.如图(a)所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图(b)所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下图所示的图象中可以表示力F 和木块A 的位移x 之间关系的是()8.如图所示的弹簧秤质量为m,挂钩下面悬挂一个质量为m0的重物,现用一方向竖直向上的外力F拉着弹簧秤,使其向上做匀加速直线运动,则弹簧秤的示数与拉力F之比为()A.m0:mB.m:m0C.m0:(m+m0) D.m:(m-m0)9.如图所示,一根轻质弹簧上端固定,下端挂一质量为m0的秤盘,盘中有物体质量为m,当盘静止时,弹簧伸长为l,现向下拉盘使弹簧再伸长Δl后停止,然后松开手,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于()A.(1+)(m+m0)gB.(1+)mgC.mgD.(m+m0)g10.如图所示,光滑水平面上滑动?12.如图所示,在光滑的桌面上叠放着一质量为m A=2.0kg的薄木板A和质量为m B=3kg的金属块B.A 的长度L=2.0m.B上有轻线绕过定滑轮与质量为m C=1.0kg的物块C相连.B与A之间的动摩擦因数μ=0.10最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间B从A的右端脱离(设A的右端距离滑轮足够远,取g=10m/s2).13.一个质量为0.2kg的小球用细线吊在倾角θ=53°的斜面顶端,如图所示,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.(g取10m/s2)。