人教版八年级数学下册19.3课题学习选择方案-同步练习(2)
- 格式:docx
- 大小:43.98 KB
- 文档页数:5
第十九章函数y1>y2.需在 x > (7)观察图像可知:①当上网时间__________时,选择方式A最省钱.②当上网时间__________时,选择方式B最省钱.③当上网时间_________时,选择方式C最省钱.2.自主归纳最优方案跟________的范围有关,可以通过解不等式或画函数图象确定_______的范围.三、自学自测1.某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为1000分钟,你认为采用哪种收费方式较为合算()A.计时制 B.包月制 C.两种一样 D.不确定2.如图,l1、l2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x(时)的函数图象,两种灯的使用寿命都是6000时,照明效果一样.(1)观察图象,你能得到哪些信息?(2)你能给买灯的小明同学提供一个参考意见吗?(3) 8000时,请你帮他设计最省钱的用灯方案.四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点:选择方案典例精析例某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:型号 A B成本(万元/台)200 240售价(万元/台)250 300课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片6-29)2.探究点1新知讲授(见幻灯片6-29)(1)该厂对这两种型号挖掘机有几种生产方案?Array(2)该厂如何生产获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)分析:可用信息:①A、B两种型号的挖掘机共_________台;②所筹生产资金不少于22400万元,但不超过22500万元;③所筹资金全部用于生产,两种型号的挖掘机可全部售出.1.某移动公司对于移动话费推出两种收费方式:A方案:每月收取基本月租费15元,另收通话费为0.2元/分;B方案:零月租费,通话费为0.3元/分.(1)试写出A,B两种方案所付话费y(元)与通话时间t(分钟)之间的函数关系式;(2)在同一坐标系画出这两个函数的图象,并指出哪种付费方式合算?2.抗旱救灾行动中,江津、白沙两地要向中山和广兴每天输送饮用水,其中江津每天输出60车饮用水,白沙每天输出40车饮用水,供给中山和广兴各50车饮用水.由于距离不同,江津到中山需600元/车,到广兴需700元/车;白沙到中山需500元/车,到广兴需650元/车.请你设计一个调运方案使总运费最低?此时总运费为多少元?二、课堂小结当堂检测1.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x________时,选用个体车较合算.。
新人教版数学八年级下册第十九章第三节选择方案课时练习一.填空题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.①②C.①③D.②③答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 答案:B.知识点:根据实际问题列一次函数表达式 解析:解答:由题意得:2y+x=24, 故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( ) A.y=20-x B .y=x+10 C .y=x+20 D .y=x+30 答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20; 由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10. 两式相减得:y-x=30, y=x+30. 故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30. 4.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A.B.C.D.答案:A知识点:一次函数的性质一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg 答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:设y 与x 的函数关系式为y=kx+b , 由题意可知⎩⎨⎧+=+=bk bk 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600, 当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4 答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h 和2h ;因此甲比乙早出发2小时; 在3h-4h 这一小时内,甲的函数图象与x 轴平行,因此在行进过程中,甲队停顿了一小时;两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h.故选D.分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A .23B .24C .25D .26 答案:B知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:设号数为x ,用水量为y 千克,直线解析式为y=kx+b . 根据题意得⎩⎨⎧+=+=b k bk 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水. 故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3t B.大于3t C.小于4t D.大于4t答案:D知识点:一次函数的性质一次函数的图像解析:解答:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件.故选D.分析:从图象得出,当x>4t时,盈利收入大于成本,即l1>l2.11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y 与x的函数关系用图象表示正确的是()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:由题意知,y与x的函数关系为分段函数.y= 2x(0≤x<4)和y= 4.5x-10(x≥4).故选C.分析:根据题意列出x与y之间的函数关系式,根据函数的特点解答即可.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:根据题意可知s=400-100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C .D .答案:B知识点:一次函数的性质 一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5). 以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5. 故选B .分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是( ) 新鞋码(y ) 225 245 … 280 原鞋码(x )3539…46A .270B .255C .260D .265 答案:D知识点:根据实际问题列一次函数表达式 一次函数的性质解析:解答:由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y=kx+b , 由题意得⎩⎨⎧+=+=b k bk 3924535225 解得⎩⎨⎧==505b k∴y 与x 之间的函数关系式为y=5x+50, 当x=43时,y=265. 故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系. 二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y与该排排数x之间的函数关系式为____(x为1≤x≤60的整数)答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y与x之间的关系式y=40+(x-1)×1,整理即可求解,注意x的取值范围是1到60的整数.17. 如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h.(2012答案:4知识点:一次函数的性质一次函数的图像解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时);故这两人骑自行车的速度相差:20-16=4(千米/时);故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.18. 一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____.答案:y=100x-40知识点:一次函数的性质一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x , ∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得, ⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式. 19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元. 品种水果糖 花生糖 软 糖 单价(元/千克) 10 12 16 重量(千克) 334答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答.20. 如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费____元.答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:由图象可得,点B (3,2.4),C (5,4.4), 设射线BC 的解析式为y=kt+b (t≥3),则⎩⎨⎧=+=+4.454.23b k b k解得⎩⎨⎧-==6.01b k所以,射线BC 的解析式为y=t-0.6(t≥3), 当t=8时,y=8-0.6=7.4元. 故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解. 三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t(0≤t≤32)分钟后师生二人离张勤家的距离分别为S1、S2.S1与t之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S2与t之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象;(3)张勤出发多长时间后在途中与李老师相遇?答案:(1)50米/分.(2)当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分. (2)根据题意得: 当0≤t≤6时,S 2=0,当6<t≤12时,S 2=200t-1200, 当12<t≤26时,S 2=1200, 当26<t≤32时,S 2=-200t+6400,(3)S 1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600, 解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇. 分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式; (3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元. (1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 答案: (1)甲材料每千克15元,乙材料每千克25元; (2)共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组) 解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1053240y x y x 解得⎩⎨⎧==2515y x所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m≥20, 又∵50-m≥28,解得m≤22, ∴20≤m≤22,∴m 的值为20,21,22, 共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元.(1)分别求出0≤x≤200和x >200时,y 与x 的函数表达式; (2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案: (1)y=0.7x-30;(2)210度.知识点:一次函数的性质根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ;当x>200时,y与x的函数表达式是y=0.55×200+0.7(x-200),即y=0.7x-30;(2)因为小明家5月份的电费超过110元,所以把y=117代入y=0.7x-30中,得x=210.答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x 件,则B种商品销售(100-x)件.依题意,得 10x+15(100-x)=1350解得x=30.∴100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∴w随a的增大而减小.∴当a=50时,所获利润最大W 最大=-5×50+3000=2750元. 200-a=150.答:应购进A 种商品50件,B 种商品150件, 可获得最大利润为2750元.分析:(1)设A 种商品销售x 件,B 种商品销售y 件,根据“销售A ,B 两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 答案: (1)乙工程队每天修公路120米; (2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组) 解析:解答:(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米. (2)设y 乙=kx+b ,则⎩⎨⎧=+=+720903b k b k解得:⎩⎨⎧-==360120b k所以y 乙=120x-360, 当x=6时,y 乙=360, 设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∴把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620, 解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数; (2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。
19.3 课题学习 选择方案 基础知识: 1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算( ). A.计时制 B.包月制 C.两种一样 D.不确定 2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是( ). A.①②③④ B.①③④ C.①②④ D.①②③ 3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法: ①售2件时甲、乙两家售价一样; ②买1件时买乙家的合算; ③买3件时买甲家的合算; ④买1件时,售价约为3元, 其中正确的说法有 .(填序号) 4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:( )
A. B. C. D. 5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( ) A.4小时 B.4.4小时 C.4.8小时 D.5小时 6、关于x的一次函数)2()73(axay的图像与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是 。 7、点A为 直线y=-2x+2上一点,点A到两坐标轴距离相等,则点A的坐标是
人教版初中数学八年级下册19.3课题学习选择方案分层作业夯实基础篇一、单选题:A.18B.12【答案】B【分析】先求出直线AB的解析式,当2千克时,每2千克葡萄的价格为将(2,38)、(4,70)代入得,238470k b k b,解得:166y x ,当6x 时,102y ,即萌萌一次购买6千克这种葡萄需要102元;她分三次购买每次购2千克这种葡萄需要383114 (元),∴11410212 (元),萌萌一次购买6千克这种葡萄比她分三次购买每次购2千克这种葡萄可节省12元.故选:B .【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,利用数形结合的思想解答.4.某电脑公司经营A ,B 两种台式电脑,分析过去的销售记录可以知道:每台A 型电脑可盈利200元,每台B 型电脑可盈利300元;在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍.已知该公司在同一时期内销售这两种电脑共210台,则该公司在这一时期内销售这两种电脑能获得的最大利润是()A .42000元B .46200元C .52500元D .63000元【答案】B【分析】设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍可得:168x ,而20030021010063000W x x x ,由一次函数性质可得答案.【详解】解:设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据题意得: 4210x x ,解得:168x ,∵ 20030021010063000W x x x ,1000 ,∴W 随x 的增大而减小,∴当168x 时,W 取最大值,最大值为1001686300046200 (元),答:该公司在这一时期内销售这两种电脑能获得的最大利润是46200元.故选:B .【点睛】本题考查一元一次不等式的应用,涉及一次函数的应用,解题的关键是读懂题意,列出不等式求出x 的范围.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算()A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定【答案】B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,则以下说法正确的是()①若通话时间少于120分,则A方案比B方案便宜②若通话时间超过200分,则B方案比A方案便宜③通讯费用为60元,则B方案比A方案的通话时间多④当通话时间是170分钟/时,两种方案通讯费用相等A.1个B.2个C.3个D.4个【答案】D【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【详解】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x-120)×[(50-30)÷(170-120)]=0.4x-18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70-50)÷(250-200)](x-200)=0.4x-30,所以当x≤120时,A 方案比B 方案便宜20元,故(1)正确;当x≥200时,B 方案比A 方案便宜12元,故(2)正确;当y=60时,A :60=0.4x-18,∴x=195,B :60=0.4x-30,∴x=225,故(3)正确;当A 方案与B 方案的费用相等,通话时间为170分钟,故(4)正确;故选:D .【点睛】本题考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题.7.某商场销售一种儿童滑板车,经市场调查,售价x (单位:元)、每星期销量y (单位:件)、单件利润w (单位:元)之间的关系如图1、图2所示.若某星期该滑板车单件利润为20元,则本星期该滑板车的销量为()A .94B .96C .1600D .1800【答案】D 【分析】先由图1求出y 与x 的函数解析式,再由图2求出x 与w 的函数解析式,然后把w =20代入即可.【详解】解:由图1可设y 与x 的函数解析式为y =kx +b ,把(92,1400)和(98,2000)代入得,140092200098k b k b解得:1007800k b,∴y 与x 的函数解析式为:y =100x ﹣7800;由图2可设x 与w 的函数解析式为x =mw +n ,把(18,98)和(24,92)代入得:98189224m n m n解得:1116m n ∴x 与w 的函数解析式为:x =﹣w +116,当w =20时,x =﹣20+116=96,y =100×96﹣7800=9600﹣7800=1800(件),∴本星期该滑板车的销量为1800件,故选:D .【点睛】本题考查一次函数的应用和待定系数法求函数解析式,关键是根据图象求出函数解析式.二、填空题:8.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x (2x )件,则应付款y (元)与商品数x (件)之间的关系式,化简后的结果是______.【答案】y =48x +20(x >2)/y=20+48x (x >2)【分析】根据已知表示出买x 件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x (x >2)件,∴李明应付货款y (元)与礼盒件数x (件)的函数关系式是:y =(60x -100)×0.8+100=48x +20(x >2),故答案为:y =48x +20(x >2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.9.某苹果种植合作社通过网络销售苹果,图中线段AB 为苹果日销售量y (千克)与苹果售价x (元)的函数图像的一部分.已知1千克苹果的成本价为5元,如果某天以8元/千克的价格销售苹果,那么这天销售苹果的盈利是_____元.【答案】6600【分析】根据图象求出线段AB 的解析式,求出当x =8时的y 值,再根据利润公式计算即可.【详解】解:设线段AB 的解析式为y =kx +b ,点A 、B 的坐标代入,得54000101000k b k b ,解得6007000k b,∴y =-600x +7000,当x =8时,y =600870002200 ,∴这天销售苹果的盈利是 852200 =6600(元),故答案为:6600.【点睛】此题考查了一次函数的实际应用,正确理解函数图象求出线段AB 的解析式是解题的关键.10.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金__元.【详解】设买入价x 与利润y 之间的函数关系式为:y kx b ,将4200x y ,6198x y代入得:20041986k b k b,解得:1204k b,故:204y x ,当197y 代入得:197204x ,解得:7x ,即:1吨水的买入价为7元,则买入10吨水共需71070 元.故答案为:70.【点睛】本题考查了一次函数,根据表格求出一次函数的关系式是解题的关键.13.某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB 、OC 分别表示每天生产成本1y (单位:元)、收入2y (单位:元)与产量x (单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.【答案】30【分析】根据题意可设AB 段的解析式为11y k x b ,OC 段的解析式为22y k x ,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即12y y ,可列出关于x 的等式,解出x 即可.【详解】根据题意可设AB 段的解析式为:11y k x b ,且经过点A (0,240),B (60,480),∴124048060b k b,解得:14240k b,∴AB 段的解析式为:14240y x ;设OC 段的解析式为:22y k x ,且经过点C (60,720),∴272060k ,解得:212k ,∴OC 段的解析式为:212y x .当该手工作坊某一天既不盈利也不亏损时,即12y y ,∴424012x x ,解得:30x .所以这天的产量是30千克.故答案为:30.【点睛】本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.三、解答题:14.乡村振兴作为“十四五”期间的重要战略,受到了广大人民群众的关注.党的二十大再次对全面推进乡村振兴进行部署.为了发展乡村特色产业,百花村花费3000元集中采购了甲种树苗700株,乙种树苗400株,已知乙种树苗单价是甲种树苗单价的2倍.(1)求甲、乙两种树苗的单价分别是多少元?(2)百花村决定再购买同样的两种树苗100株用于补充栽种.其中甲种树苗不多于33株,在单价不变,总费用不超过340元的情况下,最低费用是多少元?【答案】(1)甲种树苗的单价是2元,则乙种树苗的单价是4元(2)最低费用是334元.【分析】(1)设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得到等量关系建立方程求出其解即可;(2)设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,总费用为w 元,根据题意得2400w a ,然后根据一次函数性质即可解决问题.【详解】(1)解:设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得:70040023000x x ,解得:2x ,∴24 x ,答:甲种树苗的单价是2元,则乙种树苗的单价是4元;(2)解:设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,根据题意得:03324100340x a a,解得:3033a ,设总费用为w 元,∴ 24100w a a ,整理得2400w a ,∵20 ,∴w 随a 的增大而减小,∴当33a 时,w 最小,最小值为334,答:最低费用是334元.【点睛】本题考查了列一元一次方程解实际问题的运用,不等式组的运用,一次函数的应用,关键是正确理解题意,找出题目中的等量关系列出方程,找出不等关系列出不等式组,一次函数的关系式,利用一次函数的性质解答.15.为弘扬爱国精神,传承民族文化,某校组织了“诗词里的中国”主题比赛,计划去某超市购买A ,B 两种奖品共300个,A 种奖品每个20元,B 种奖品每个15元,该超市对同时购买这两种奖品的顾客有两种销售方案(只能选择其中一种).方案一:A 种奖品每个打九折,B 种奖品每个打六折.方案二:A ,B 两种奖品均打八折.设购买A 种奖品x 个,选择方案一的购买费用为1y 元,选择方案二的购买费用为2y 元.(1)请分别写出1y 、2y 与x 之间的函数关系式.(2)请你计算该校选择哪种方案支付的费用较少.【答案】(1)192700y x ,243600y x (2)购买A 种奖品超过180个时,方案二支付费用少;购买A 种奖品180个时,方案一和方案二支付费用一样多;购买A 种奖品少于180个时,方案一支付费用少【分析】(1)根据总费用A ,B 两种奖品费用之和列出1y 、2y 关于x 的函数关系式;(2)根据(1)中关系式分三种情况讨论即可.【详解】(1)由题意得:1200.9150.6(300)92700y x x x ;2200.8150.8(300)43600y x x x ,1y ∴与x 之间的函数关系式为192700y x ,2y 与x 之间的函数关系式为243600y x ;(2)当12y y 时,9270043600x x ,解得180x ,购买A 种奖品超过180个时,方案二支付费用少;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品180个时,方案一和方案二支付费用一样多;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品少于180个时,方案一支付费用少.【点睛】本题考查一次函数的应用以及一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,列出函数解析式.16.某地计划修建一条长36千米的乡村公路,已知甲工程队修路的速度是乙工程队修路速度的1.5倍,乙工程队单独完成本次修路任务比甲工程队单独完成多20天.(1)求甲、乙两个工程队每天各修路多少千米?(2)已知甲工程队修路费用为25万元/千米,乙工程队修路费用为20万元/千米.甲工程队先单独修路若干天后,接到其它任务需要离开,剩下的工程由乙工程队单独完成.若要使修路总时间不超过55天,总费用不超过820万元,且甲工程队所修路程需为整数,请问共有几种修路方案?哪种方案最省钱?【答案】(1)甲工程队每天修路0.9千米,乙工程队每天修路0.6千米(2)共有13种方案,其中甲单独干10天,剩下的乙单独修完,最省钱.【分析】(1)设乙工程队每天修路x 千米,则甲工程队每天修路1.5x 千米,根据乙工程队单独完成本次修路任务比甲工程队单独完成多20天,列出方程,进行求解即可;(2)设甲工程队修路a 天,根据修路总时间不超过55天,总费用不超过820万元,列出不等式组,求出a 的取值范围,确定方案,设花费的总费用为w ,列出一次函数解析式,利用一次函数的性质,即可得出结套乒乓球拍和羽毛球拍进行销售,其中购进乒乓球拍的套数不超过【点睛】本题考查了一次函数和二元一次方程组的应用,解题的关键是仔细审题,找到等量关系列出函数能力提升篇一、单选题:∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些.故选D.2.小明和小张是邻居,某天早晨,小明7:40先出发去学校,走了一段后,在途中停下吃早餐,后来发现上学时间快到了,就跑步到学校;小张比小明晚出发5分钟,乘公共汽车到学校.右图是他们从家到学校已走的路程y (米)和小明所用时间x (分钟)的函数关系图.则下列说法中不正确的是()A .小明家和学校距离1000米;B .小明吃完早餐后,跑步到学校的速度为80米/分;C .小张乘坐公共汽车后7:48与小明相遇;D .小张到达学校时,小明距离学校400米.【答案】C【分析】根据函数图像中各拐点的实际意义求解可得.【详解】解:A 、由图像可知,小明家和学校距离1000米,故此选项不符合题意;B 、小明吃完早餐后,跑步到学校的速度为: 1000360201280 (米/分),故此选项不符合题意;C 、小张乘公共汽车的速度为: 1000155100 (米/分),360100 3.6 (分),故小张乘坐公共汽车后7点48分36秒与小明相遇,故此选项符合题意;,故此选项不符合题意.二、填空题:4.本年度某单位常有集体外出学习活动,因此准备与出租车公司签订租车协议.现有甲、乙两家出租车公司供选择.设每月行驶x千米,应付给甲公司1y元,应付给乙公司2y元,1y、2y分别与x之间的函数关系如图所示,若这个单位估计每月需要行驶的路程为3500千米,那么为了省钱,这个单位应租__________公司.【答案】B【分析】先由表格中数据分别表示出A y、B y关于x的函数表达式,分别令A y=B y、A y>B y、A y<B y求解,即可做出判断.【详解】解:由题意可知:A y=0.1x,B y=20+0.05x,当A y=B y时,由0.1x=20+0.05x得:x=400,两种收费方式一样省钱;当A y>B y时,由0.1x>20+0.05x得:x>400,B种方式省钱;当A y<B y时,由0.1x<20+0.05x得:x<400,A种方式省钱,∴当每月上网时间多于400分钟时,选择B种方式省钱,故答案为:B.【点睛】本题考查一次函数的应用、解一元一次方程、解一元一次不等式,理解题意,正确列出函数关系式是解答的关键.三、解答题:【答案】(1)48y x ;(2)修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【分析】(1)分别求出A 型和B 型两种沼气池的修建费用,相加即可;(2)利用题意列出不等式组,再根据y 与x 之间的函数关系式得到y 的值最小时对应的x 的值,即可得到费用最少时的修建方案,以及此时修建完沼气池剩余的用地面积.【详解】解:(1) y 3x 224x x 48 ,∴y 与x 之间的函数关系式为48y x .(2)由题可得: 20152440010824220x x x x①②,由①得:8x ,由②得:14x ≤,∴814x ,∵48y x ,其中y 随x 的增大而增大;∴当8x 时y 最小,此时84856y ,2416x 因此方案为修建A 、B 两种型号的沼气池分别为8个、16个时总费用最少;用地面积剩余: 22010824220108824812x x (平方米),答:费用最少时的修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【点睛】本题涉及到了方案选择问题,考查了一次函数和一元一次不等式组的应用,要求学生能根据题意列出函数关系式和一元一次不等式组,能根据实际情况和函数的性质得到函数的极值,并确定出最优方案,考查了学生的综合分析与实际应用的能力.。
初中数学试卷
灿若寒星整理制作
八年级下一次函数应用(二)
1. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除了
收取每次6元包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分每千克10元加
收费用,设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg)
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?
2. 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电
脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑
的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。
①求y与x的关系式;
②该商店购进A型、B型各多少台,才能使销售利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,且限定商店最多购进A
型电脑70台。若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使
这100台电脑销售总利润最大的进货方案。
3.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3
小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、
乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.
(1)乙队调离时,甲、乙两队已完成的清雪总量为 吨;
(2)求此次任务的清雪总量m;
(3)求乙队调离后y与x之间的函数关系式.
4.某养殖专业户计划购买甲、乙两种牲畜.已知乙种牲畜的单价是甲种牲畜单价的2倍多200
元,买3头甲种牲畜和1头乙种牲畜共需5700元.
(1)甲、乙两种牲畜的单价各是多少元?
(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?
(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率
不低于97%且购买的总费用最低,应如何购买?
5. 甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲
商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件
优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.
(1)分别求出y1,y2与x之间的关系式;
(2)当甲、乙两个商场的收费相同时,所买商品为多少件?
(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
6. “黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分
的种子的价格打8折.
(Ⅰ)根据题意,填写下表:
购买种子的数量/kg 1 .5 2 3 .5 4 …
付款金额/元 7 .5 _________ 16 _________ …
(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;
(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.
7.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若
购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单位各是多少元?
(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不
大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)
之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.
8. 为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用
水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元
计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.
(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(5分)
(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水
多少吨?(5分)
9. 随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶
梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的
吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:
(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6 元收取;超过5吨的
部分,每吨按 2.4 元收取;
(2)请写出y与x的函数关系式;
(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月人均用了多少吨生
活用水?
10. 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨
道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,
甲的速度是乙的速度的1 .5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,
则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2= 40 米/分;
(2)写出d1与t的函数关系式;
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控
车的信号不会产生相互干扰?
11. 天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球.甲、乙两超市均以每
只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只得用户均实行优惠:甲超
市每只羽毛球按原价的八折出售;乙超市送15只,其余羽毛球每只按原价的九折出售.
(1)请你任选一超市,一次性购买x(100x且x为整数)只该品牌羽毛球,写出所付钱y(元)
与x之间的函数关系.
(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又
在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需付多少元钱?这时在甲、
乙两超市分别购买该品牌羽毛球多少只?
12. 为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获
九五折优惠;方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解
析式;
(2)若某人计划在商都购买价格为5 880元的电视机一台,请分析选择哪种方案更省钱?
13.在开展“美丽广西,清洁乡村”的活动中某乡镇计划购买A、B两种树苗共100棵,已知A
种树苗每棵30元,B种树苗每棵90元.
(1)设购买A种树苗x棵,购买A、B两种树苗的总费用为y元,请你写出y与x之间的函
数关系式(不要求写出自变量x的取值范围);
(2)如果购买A、B两种树苗的总费用不超过7560元,且B种树苗的棵树不少于A种树苗棵
树的3倍,那么有哪几种购买树苗的方案?
(3)从节约开支的角度考虑,你认为采用哪种方案更合算?
14.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下
列问题:
(1)该地出租车的起步价是 7 元;
(2)当x>2时,求y与x之间的函数关系式;
(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
15. 黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩
具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受
7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请
你帮助超市判断购进哪种玩具省钱.