沪教版(五四制)七年级下册第十四章三角形综合练习
- 格式:docx
- 大小:657.60 KB
- 文档页数:5
沪教版(五四制)初一下册第十四章三角形综合练习【知识要点】1.三角形的概念及其差不多要素.2.三角形的内角3. 三角形的外角(1)三角形的一个外角等于和它不相邻的两个内角的和;(2)三角形的一个外角大于任何一个和它不相邻的内角.4.三角形的三边关系是指:(1)三角形任意两边之和大于第三边;(2)三角形任意两边之差小于第三边.5.三角形的三线:6.三角形全等的证题思路 【初试锋芒】 一.选择 1.下列长度的三条线段,能够组成三角形的是()A.4,2,2B.3,6,6C.2,3,6D.7,13,6 2.在△ABC 中,∠A=350,∠B=450,则与∠C 相邻的外角的度数是() A.350 B.450 C.800 D.1000 3.下列说法中错误的是() A.三角形的中线、角平分线、高线差不多上线段 B.任意三角形的三内角和差不多上1800C.三角形按角分可分为锐角、直角和等边三角形D.直角三角形的两锐角互余4.如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有()A.1对B.2对C.3对D.4对5.如图,已知:,AC=DB ,下列条件中不能使ΔABC ≌ΔBA D 的是() C D ∠=∠已知两边 找夹角 SAS找直角 HL找另一边 SSS已知一边一角 边为角的对边找任一角 AAS 边为角的邻边 找夹角的另一边 SAS找夹角的另一角 ASA找边的另角 AAS已知两角找夹角 ASA 找任一边 AASA.;B.;C.;D.AO=DB6.如图,ΔACD 中,AB ⊥CD,BD>CB,BC=BE,AB=BD,下列结论中: ○1ΔABC ≌ΔDBE ;○2ΔACB ≌ABD ;○3ΔCBE ≌ΔBED ;○4ΔACE ≌ΔADE, 其中正确的是()A.○1○2○3○4B.○1C.○1○3○4D.○2○3○4二.填空7.在△ABC 中,若AB=8,BC=6,则第三边AC 的长度m 的取值范畴是_______________.8.如图所示,点D 、E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE=AD ,要使△ABE ≌△ACD ,需添加一个条件是______________(只要求写一个条件).9. 如图所示:已知∠ABD =∠ABC ,请你补充一个条件:,使得△ABD ≌△ABC.10. 如图,①若AB=DC ,AC=DB ,则△ABC ≌△DCB 的道理是_________;②若∠A=∠D,∠ABC=∠DCB, 则△ABC ≌△DCB 的道理是__________;③若∠1=∠2,∠3=∠4, 则△ABC ≌△DCB 的道理是___________; ④若∠A=∠D=900,AC=DB, 则△ABC ≌△DCB 的道理是____________11. 如图所示,在△ABC 中∠C=90º,已知AC=AE ,∠ADC=55º,则∠CDE=____12. 如图,在Rt △ABC 中,∠ACB=90º,CD ⊥AB ,垂足为D ,若∠B =30º则∠ACD=______13. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使D 点落在BC 边的F 处, CAB DBA ∠=∠CB DA =AO BO =第4题图 第5题图 第6题图第8题图 第9题图 B A D1 23 4C第10题图若∠BAF=60º,则∠DAE=______14. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,如此做的道理是 15.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原先一样大小的三角形? 应该带16.如图.AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,若DE=5cm,则DF=_________17.如图所示,在△A BC 中,∠B=∠C=50°,BD=CF ,BE=CD ,则∠EDF 的度数是三.解答与证明1.已知:如图所示,B ,E ,F ,C 四点在同一条直线上,AB=DC ,B E=CF ,∠B=∠C.试证明:OA=OD.2.一个零件的形状如图,按规定∠A 应等于90°,∠B 、∠D 应分别是20°和30°.(1)李叔叔量得∠BCD=142°,依照李叔叔量得的结果,你能确信那个零件是否合格(∠A 应等于90°)?请说明你的结论.(2)你明白∠B 、∠D 、∠BCD 三角之间有何关系吗?(请写出你的结论,并说明理由)3.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB 是一个任意角,在边OA 、OB 上分别取OD=OE ,移动角尺,使角尺两边相同的第11题图 第12题图 第13题图第14题图 1234第15题图AB CD E F第16题图 第17题图刻度分别与D 、E 重合,这时过角尺顶点P 的射线OP 确实是∠AOB 的平分线,你能先说明△OPE 与△OPD 全等,再说明OP 平分∠AOB 吗?4. 在△ABC 中,∠ACB=90°,AC=BC ,直线MN 通过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有如何样的等量关系?请写出那个等量关系,并加以证明. 5.如图,△ABC 是等腰直角三角形,其中CA=CB ,四边形CDEF 是正方形,连接AF 、BD.观看图形,猜想AF 与BD 之间有如何样的关系,并证明你的猜想.6.已知:△ABC 、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl ,∠C=∠Cl.求证:△ABC ≌△A1B1C1.(请你将下列证明过程补充完整)(1)证明:分别过点B ,B1作BD ⊥CA 于D ,B1 D1⊥C1 A1于D1. 则∠BDC=∠B1D1C1=900,∵BC=B1C1,∠C=∠C1,∴△BCD ≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出那个结论.7.两组邻边分别相等的四边形我们称它为筝形,如图所示,在筝形ABC D 中,AB=AD ,BC=DC ,AC ,BD 相交于点O.(1)试说明:○1△ABC ≌△ADC ;○2OB=OD ,AC ⊥BD ;(2)假如AC=6,BD=4,求筝形ABCD 的面积.“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或C B A E D 图1 N M B A CD E MN 图2 A CB E D N M 图3敬畏的一种社会职业。
沪教版七年级数学第二学期第十四章三角形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是()A.3 B.4 C.5 D.62、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )A.12 B.14 C.16 D.183、下列各条件中,不能作出唯一的ABC的是()A .4AB =,5BC =,10AC =B .5AB =,4BC =,30A ∠=︒ C .90A ∠=︒,30B ∠=︒,5BC =D .60A ∠=︒,50B ∠=︒,5AB =4、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,OA =15米,OB =10米,A 、B 间的距离不可能是( )A .5米B .10米C .15米D .20米5、如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,∠EAB =72°,以下四个说法:①∠CDF =30°;②∠ADB =50°;③∠ABD =22°;④∠CBN =108°其中正确说法的个数是( )A .1个B .2个C .3个D .4个6、下列说法不正确的是( )A .有两边对应相等的两个直角三角形全等;B .等边三角形的底角与顶角相等;C .有一个角是45的直角三角形是等腰直角三角形;D .如果点M 与点N 到直线l 的距离相等,那么点M 与点N 关于直线l 对称.7、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).A .65°B .65°或80°C .50°或80°D .50°或65°8、根据下列已知条件,不能画出唯一ABC 的是( )A .60A ∠=︒,45B ∠=︒,4AB =B .30A ∠=︒,5AB =,3BC = C .60B ∠=︒,6AB =,10BC =D .90C ∠=︒,5AB =,3BC =9、如图,在Rt△ABC 中,∠ACB =90°,∠BAC =40°,直线a ∥b ,若BC 在直线b 上,则∠1的度数为( )A .40°B .45°C .50°D .60°10、满足下列条件的两个三角形不一定全等的是( )A .周长相等的两个三角形B .有一腰和底边对应相等的两个等腰三角形C .三边都对应相等的两个三角形D .两条直角边对应相等的两个直角三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把△ABC 绕点C 顺时针旋转某个角度α得到A B C '',∠A =30°,∠1=70°,则旋转角α的度数为_____.2、在平面直角坐标系中,△ABC 的顶点A 、B 、C 的坐标分别为(0,3)、(4,0)、(0,0),AB =5,点P 为x 轴上一点,若使得△ABP 为等腰三角形,那么点P 的坐标除点(78,0)外,还可以是_____.3、若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .4、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.5、已知a ,b ,c 是ABC 的三边长,满足()2720a b -+-=,c 为奇数,则c =______.三、解答题(10小题,每小题5分,共计50分)1、如图,在等腰△ABC 和等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE 且C 、E 、D 三点共线,作AM ⊥CD 于M .若BD =5,DE =4,求CM .2、如图,点D 在AC 上,BC ,DE 交于点F ,BA BD =,BC BE =,ABD CBE ∠=∠.(1)求证:ABC DBE ≌;(2)若20ABD ∠=︒,求∠CDE 的度数.3、如图,灯塔B 在灯塔A 的正东方向,且75km AB =.灯塔C 在灯塔A 的北偏东20°方向,灯塔C 在灯塔B 的北偏西50°方向.(1)求ACB ∠的度数;(2)一轮船从B 地出发向北偏西50°方向匀速行驶,5h 后到达C 地,求轮船的速度.4、如图,在等边ABC 中,D 为BC 边上一点,连接AD ,将ACD △沿AD 翻折得到AED ,连接BE 并延长交AD 的延长线于点F ,连接CF .(1)若20CAD ∠=︒,求CBF ∠的度数;(2)若a CAD ∠=,求CBF ∠的大小;(3)猜想CF ,BF ,AF 之间的数量关系,并证明.5、如图所示,四边形ABCD 中,∠ADC 的角平分线DE 与∠BCD 的角平分线CA 相交于E 点,已知:∠ACB =32°,∠CDE =58°.(1)求∠DEC 的度数;(2)试说明直线AD BC ∥6、已知∠POQ =120°,点A ,B 分别在OP ,OQ 上,OA <OB ,连接AB ,在AB 上方作等边△ABC ,点D 是BO 延长线上一点,且AB =AD ,连接AD(1)补全图形;(2)连接OC ,求证:∠COP =∠COQ ;(3)连接CD ,CD 交OP 于点F ,请你写出一个∠DAB 的值,使CD =OB +OC 一定成立,并证明7、如图,已知点B ,F ,C ,E 在同一直线上,AB ∥DE ,BF =CE ,AB =ED ,求证:∠A =∠D .8、如图,点A ,B ,C ,D 在一条直线上,AB CD =,AE CF ∥,E F ∠=∠.求证:BE DF =.9、命题:如图,已知,AC EF AC FE =∥,A D B F ,,,共线,(1),那么ABC FDE ∆≅∆.(1)从①AB FD =和②BC DE =两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);(2)根据你选择的条件,判定ABC FDE ∆≅∆的方法是________;(3)根据你选择的条件,完成ABC FDE∆≅∆的证明.10、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.-参考答案-一、单选题1、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.2、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.【详解】解:如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,∵折叠,∴AB=BM=CO=CD=PO=3x,∴纸条的宽为:MO=NO=3x+3x+x=7x,∴纸条的长为:2PN=2(7x+3x)=20x=40解得:x=2,∴纸条的宽NO=7×2=14.故答案为:B.【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.3、B【分析】根据三角形全等的判定及三角形三边关系即可得出结果.【详解】+<,不能组成三角形;解:A、AB BC ACB、根据SSA不可以确定选项中条件能作出唯一三角形;C、根据AAS可以确定选项中条件能作出唯一三角形;D、根据ASA可以确定选项中条件能作出唯一三角形;故答案为:B.【点睛】本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.4、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.5、D【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.6、D【分析】利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.【详解】解:A、有两边对应相等的两个直角三角形全等,正确;B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;C、有一个角是45的直角三角形是等腰直角三角形,正确;D、当点M与点N在直线l的同侧时,点M与点N关于直线l不对称,错误,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.7、D50︒可以是底角,也可以是顶角,分情况讨论即可.【详解】当50︒角为底角时,底角就是50︒,当50︒角为等腰三角形的顶角时,底角为(18050)265︒-︒÷=︒,因此这个等腰三角形的底角为50︒或65︒.故选:D .【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.8、B【分析】根据三角形存在的条件去判断.【详解】∵60A ∠=︒,45B ∠=︒,4AB =,满足ASA 的要求,∴可以画出唯一的三角形,A 不符合题意;∵30A ∠=︒,5AB =,3BC =,∠A 不是AB ,BC 的夹角,∴可以画出多个三角形,B 符合题意;∵60B ∠=︒,6AB =,10BC =,满足SAS 的要求,∴可以画出唯一的三角形,C 不符合题意;∵90C ∠=︒,5AB =,3BC =,AB 最大,∴可以画出唯一的三角形,D 不符合题意;故选B .本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.9、C【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.10、A【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS 对各选项进行一一判断即可.【详解】解:A 、周长相等的两个三角形不一定全等,符合题意;B 、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C 、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D 、两条直角边对应相等的两个直角三角形根据SAS 判定定理可判定全等,不符合题意. 故选:A .此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).二、填空题1、40︒##【分析】由旋转的性质可得30,A A 再利用三角形的外角的性质求解140,A CA A 从而可得答案.【详解】 解: 把△ABC 绕点C 顺时针旋转某个角度α得到A B C '',∠A =30°,30,A A ∠1=70°,140,A CA A40.故答案为:40︒【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解30A A '∠=∠=︒是解本题的关键.2、(1-,0)、(4-,0)、(9,0)【分析】先表示出PB =|a -4|,PB 2=a 2+9,AB =5,再分三种情况①当PB =AB 时.②当PA =PB 时,③当PA =AB 时,讨论计算即可.【详解】设P (a ,0),∵A(0,3),B(4,0),∴PB=|a-4|,PA2=a2+9,AB=5,∵△ABP是等腰三角形,∴①当PB=AB时,∴|a-4|=5,∴a=-1或9,∴P(-1,0)或(9,0),②当PA=PB时,∴(a-4)2=a2+9,∴a=78,∴P(78,0),③当PA=AB时,∴a2+9=25,∴a=4(舍)或a=-4,∴P(-4,0).即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0).【点睛】本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键.3、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm为底时,腰长应该是12(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,∵6+9=15>9,∴以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.4、7.5【分析】根据腰长是否为5,分两类情况进行求解即可.【详解】解:当腰长为5时,由周长可知:底边长为10,且1055=+故不满足三边关系,不成立,当腰长不为5时,则底边长为5,由周长可得:腰长为7.5满足三边关系,故腰长为7.5,故答案为:7.5.【点睛】本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.5、7【分析】绝对值与平方的取值均≥0,可知70a -=,20b -=,可得a 、b 的值,根据三角形三边关系a b c a b c+>⎧⎨-<⎩求出c 的取值范围,进而得到c 的值.【详解】 解:()2720a b -+-= 70a ∴-=,20b -=72a b ∴==,由三角形三边关系a b c a b c +>⎧⎨-<⎩可得95c c >⎧⎨<⎩ 59c ∴<<c 为奇数7c ∴=故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.三、解答题1、CM =7.【分析】根据题意由“SAS ”可证△AEC ≌△ADB ,可得BD =CE ,由等腰三角形的性质可得DM =ME =2进行分析计算即可得出答案.【详解】解:∵∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,∴∠BAD =∠CAE ,在△AEC 和△ADB 中,AE AD BAD CAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△ADB (SAS ),又∵BD =5,∴CE =BD =5,∵AD =AE ,AM ⊥CD ,DE =4, ∴114222ME DE ==⨯=, ∴CM =CE +EM =5+2=7.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.2、(1)证明见解析;(2)∠CDE =20°.【分析】(1)由“SAS ”可证△ABC ≌△DBE ;(2)由全等三角形的性质可得∠C =∠E ,由三角形的外角性质可求解.(1)证明:∵∠ABD =∠CBE ,∴∠ABD +∠DBC =∠CBE +∠DBC ,即:∠ABC =∠DBE ,在△ABC 和△DBE 中,BA BD ABC DBE BC BE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DBE (SAS );(2)解:由(1)可知:△ABC ≌△DBE ,∴∠C =∠E ,∵∠DFB =∠C +∠CDE ,∠DFB =∠E +∠CBE ,∴∠CDE =∠CBE ,∵∠ABD =∠CBE =20°,∴∠CDE =20°.【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.3、(1)70°;(2)15km/h【分析】(1)根据题意得∠BAC =70°,∠ABC =40°,根据三角形的内角和定理即可求得∠ACB ;(2)根据等腰三角形的判定可得BC=AB=75km ,进而由速度=路程÷时间求解即可.【详解】解:(1)根据题意得∠BAC =70°,∠ABC =40°,∴∠ACB =180°-∠BAC -∠ABC =180°-70°-40°=70°;(2)∵∠BAC =∠ACB =70°,∴BC=AB=75km ,∴轮船的速度为75÷5=15(km/h ).【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.4、(1)20°;(2)CBF α∠=;(3)AF = CF +BF ,理由见解析【分析】(1)由△ABC 是等边三角形,得到AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,∠EAD =∠CAD =20°,AC =AE ,则∠BAE =∠BAC -∠EAD -∠CAD =20°,AB =AE ,()1180=802ABE AEB BAE ==︒-︒∠∠∠,∠CBF =∠ABE -∠ABC =20°; (2)同(1)求解即可;(3)如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,先证明△AEF ≌△ACF 得到∠AFE =∠AFC ,然后证明∠AFE =∠AFC =60°,得到∠BFC =120°,即可证明F 、C 、G 三点共线,得到△AFG 是等边三角形,则AF =GF =CF +CG =CF +BF .【详解】解:(1)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,∠EAD =∠CAD =20°,AC =AE ,∴∠BAE =∠BAC -∠EAD -∠CAD =20°,AB =AE , ∴()1180=802ABE AEB BAE ==︒-︒∠∠∠, ∴∠CBF =∠ABE -∠ABC =20°;(2)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,EAD CAD α∠=∠=,AC =AE ,∴602BAE BAC EAD CAD α∠=∠-∠-∠=︒- ,AB =AE , ∴()1180=602ABE AEB BAE α==︒-︒+∠∠∠, ∴CBF ABE ABC α∠=∠-∠=;(3)AF = CF +BF ,理由如下:如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,∴AF =AG ,∠FAG =60°,∠ACG =∠ABF ,BF =CG在△AEF 和△ACF 中,=AE AC EAF CAF AF AF =⎧⎪∠∠⎨⎪=⎩,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.5、(1)90°;(2)见解析【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC 的度数和∠DCB 的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC 是∠BCD 的平分线∴32ACD ACB ∠=∠=︒∵180,58CDE DEC DCE CDE ∠+∠+∠=︒∠=︒∴∠DEC =180°-∠ACD -∠CDE =180°-32°-58°=90°;(2)∵DE 平分∠ADC ,CA 平分∠BCD∴∠ADC =2∠CDE =116°,∠BCD =2∠ACD =64°∵∠ADC +∠BCD =116°+64°=180°∴AD BC ∥【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.6、(1)见解析;(2)见解析;(3)∠DAB =150°,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ 上截取BE =AO ,连接CE ,由等边三角形的性质得,CA =CB ,∠ACB =60°由同角的补角相等得∠CAO =∠CBE ,由SAS 证得△CAO 和△CBE 全等,即可得证;(3)由∠DAB =150°, DA =AB ,得∠ADB =∠ABD =15°,由等边三角形性质,可得∠CAB =∠CBA =∠ACB =60°,故∠CAD =150°,由等边对等角得∠ADC =∠ACD =15°,由此∠DBC =∠DCB =75°,由等角对等边得DB =DC 再由∠POQ =120°,∠BDC =30°,得∠DFO =90°,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ 上截取BE =AO ,连接CE ,∵△ABC 为等边三角形,∴CA =CB ,∠ACB =60°∵∠POQ =120°,∴∠CAO +∠CBO =180°∵∠CBO +∠CBE =180°,∴∠CAO =∠CBE ,在△CAO 和△CBE 中,CA CB CAO CBE AO BE =⎧⎪∠=∠⎨⎪=⎩, ∴△CAO ≌△CBE (SAS ),∴CO =CE ,∠COA =∠CEB ,∴∠COE =∠CEB ,∴∠COP =∠COQ ;(3)∠DAB=150°,如图:∵∠DAB=150°,DA=AB,∴∠ADB=∠ABD=15°∵△ABC为等边三角形,∴∠CAB=∠CBA=∠ACB=60°,∴∠CAD=150°,∵AD=AC,∴∠ADC=∠ACD=15°,∴∠DBC=∠DCB=75°,∴DB=DC,∵∠POQ=120°,∠BDC=30°,∴∠DFO=90°∵AD=AC,∴DF=FC∴DO=OC∵DB=DO+OB,∴DB=CO+OB,∴CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.7、见解析【分析】根据平行线的性质得出∠B =∠E ,进而利用SAS 证明ABC DEF ≅,利用全等三角形的性质解答即可.【详解】证明:FB CE =,FB CF CE CF ∴+=+,即BC EF =.//AB DE ,B E ∴∠=∠.在ABC 和DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ()ABC DEF SAS ∴≅△△A D ∴∠=∠.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ABC DEF ≅是解题的关键.8、见解析【分析】根据平行线的性质得出A FCD ∠=∠,运用“角角边”证明△AEB ≌△CFD 即可.【详解】证明:∵AE CF ∥,∴A FCD ∠=∠,在△AEB 和△CFD 中,E F A FCD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△CFD ,∴BE DF =.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明. 9、(1)①(2)SAS(3)见解析【分析】(1)根据全等三角形的判定方法分析得出答案;(2)根据(1)直接填写即可;(3)利用SAS 进行证明.(1)解:∵AC EF ∥,∴∠A =∠F ,∴当AB FD =时,可根据SAS 证明ABC FDE ∆≅∆;当BC DE =时,不能证明ABC FDE ∆≅∆,故答案为:①;(2)解:当AB FD =时,可根据SAS 证明ABC FDE ∆≅∆,故答案为:SAS ;(3)证明:在△ABC 和△FDE 中,AC EF A F AB FD =⎧⎪∠=∠⎨⎪=⎩, ∴ABC FDE ∆≅∆.【点睛】此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键. 10、25°【分析】直接利用等腰三角形的性质得出∠ABC =∠ACB =65°,进而利用三角形内角和定理得出答案.【详解】∵AB =AC ,∠A =50°,∴∠ABC =∠ACB =65°,∵CD ⊥BC 于点D ,∴∠BCD 的度数为:180°−90°−65°=25°.此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.。
沪教版七年级下册数学第十四章三角形含答案一、单选题(共15题,共计45分)1、已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8B.10C.8或10D.122、已知a,b,c分别为三角形的三边长,则化简|a-b-c|+|b-c-a|+|c-a+b|的结果为()A.a+b+cB.–a+b–3cC.a+2b–cD.–a+b+3c3、如图,在△ABC中,∠ABC和∠ACB的平分线相交于O,∠A=60°,则∠BOC 的度数是()A.120°B.60°C.150°D.不能确定4、已知△ABC≌△A'B'C',CA=80°,∠B=40°,那么∠C'的度数为( )A.80°B.40°C.60°D.120°5、如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为()A.18B.20C.22D.246、现有两根木棒,它们的长分别是30cm和80cm,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.40cmB.50cmC.60cmD.130cm7、如图,△ABC是等边三角形,点D是AC的中点,DE⊥BC,CE=3,则AB等于()A.11B.12C.13D.148、如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE最小,则这个最小值是().A. B.4 C. D.59、将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°10、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11、如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB 于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A. =B.AD,AE将∠BAC三等分 C.△ABE≌△ACD D.S△ADH =S△CEG12、如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是().A.1B.2C.4D.813、在△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为()A.4B.4 +4C.8D.8 +814、如图,AB是⊙O的弦,OA、OC是⊙O的半径,,∠BAO=37°,则∠AOC的度数是()度.A.74B.106C.117D.12715、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E 分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图形中全等的三角形只有两对;②△ABC的面积等于四边形CDOE的面积的两倍;③CD+CE=OA;④AD2+BE2=DE2.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、定义:到三角形两边距离相等的点叫做三角形的准内心.已知在Rt△ABC 中,∠C=90°,AC=6,BC=8,点P是△ABC的准内心(不包括顶点),且点P在△ABC的某条边上,则CP的长为________。
全等三角形的概念及性质一、课本巩固练习1、如图,ABCD Y 中,对角线AC 、BD 交于点O . (1)写出图中所有的全等三角形;写出其中一对全等三角形的对应角和对应边. 2、下列说法,正确的是( ).A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形3、如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =_____cm ,NM =____cm ,NAB ∠=___ .4、如图2,△ABC ≌△AED ,∠BAC=25°,∠B=35°,AB=3cm ,BC=1cm ,则∠E= , ∠ ADE= ;线段DE= cm ,AE= cm .图1 图2 图3 已知ABC DEF ∆≅∆,若ABC ∆的周长为32,8AB =,12BC =,则DE = ,DF = .如图3,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 。
如图4,ABC ADE ∆≅∆,则AB= ,∠E= __.若∠BAE=120°,∠BAD=40°,则∠BAC= . 8、如图,在ABC ∆中,::2:5:11A B ACB ∠∠∠=,若将ACB ∆绕点C 逆时针旋转,使旋转前后的//A B C ∆中的顶点/B 在原三角形的边AC 的延长线上,求/BCA ∠的度数.9、如图,已知ABC AED ∆≅∆,AE AB =,AD AC =,20D E ︒∠-∠=,60BAC ︒∠=。
求C ∠的度数。
MDNB C 图4EDC BA图4 O DAED C B A DCA10、已知△ABC 中,AD 是BC 边上的中线.求证AB+AC>2AD.二、基础过关1、如右图,已知AB=DE ,∠B =∠E ,若要使△AB C ≌△DEF ,那么还要需要一个条件,这个条件可以是:_____________, 理由是:________;这个条件也可以是:_____________, 理由是:_________;2、如图⑴,已知CD AB =,若运用“..S A S ”公理判定ADC CBA ∆≅∆,从图中可得到的条件是 ,需要补充的条件是 .⑵ ⑶3、如图⑵,已知AB 与CD 相交于点O ,//AC BD ,如果需要AOC BOD ∆≅∆,则还应增加的条件 或 或 .如图⑶,已知AB AC =,BD CD =,F 在AD 上,那么图中共有 对全等三角形。
沪教版七年级数学第二学期第十四章三角形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形2、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°3、如图,在ABC 中,AB =AC ,D 是BC 的中点,∠B =35°,则∠BAD =( )A .110°B .70°C .55°D .35°4、如图,等边ABC 中,D 为AC 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ==,3QD =,在BD 上有一动点E ,则PE QE +的最小值为( )A .7B .8C .10D .125、下列说法错误的是( )A .任意一个直角三角形都可以被分割成两个等腰三角形B .任意一个等腰三角形都可以被分割成两个等腰三角形C .任意一个直角三角形都可以被分割成两个直角三角形D .任意一个等腰三角形都可以被分割成两个直角三角形6、已知,ABC ,DEF ,MNP △的相关数据如图所示,则下列选项正确的是( )A .ABC PNM ≌B .DEF PNM ≌C .PN EF =D .F A ∠=∠7、下列叙述正确的是( )A .三角形的外角大于它的内角B .三角形的外角都比锐角大C .三角形的内角没有小于60°的D .三角形中可以有三个内角都是锐角8、一副三角板如图放置,点A 在DF 的延长线上,∠D =∠BAC =90°,∠E =30°,∠C =45°,若BC //DA ,则∠ABF 的度数为( )A .15°B .20°C .25°D .30°9、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°10、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .30第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,已知点D E F 、、分别为BC AD CE 、、的中点,若△ABC 的面积为24m ,则阴影部分的面积为 _________ 2cm2、如图,ABC ADC ∠=∠,AB CD ∥,BE 平分ABC ∠交AD 于点E ,连接CE ,AF 交CD 的延长线于点F ,180BCD AEB DAF ∠+∠+∠=︒,若3ECD F ∠=∠,80BEC ∠=︒,则CED ∠的度数为______.3、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.4、如图,B BDE ∠=∠,点G 分别为AD 与CF 的中点,若3,5CE EF ==,则AC =______.5、如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为______________.三、解答题(10小题,每小题5分,共计50分)1、如图,在ABC 中,8AB cm =,6BC cm =,5AC cm =,BD 是ABC 的角平分线,点E 在AB 边上,2AE cm =.求AED 的周长.2、如图,在ABC 中,AB AC =,AD 是角平分线,E 是AB 边上一点,连接ED ,CB 是ACF ∠的平分线,ED 的延长线与CF 交于点F .(1)求证:BE CF =;(2)若46CDF ∠=︒,AD DF =,则ACF ∠=______度.3、如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求证:CE =CF ;(2)若CD =2,求DF 的长.4、如图,点C 是线段AB 上一点,ACF 与BCE 都是等边三角形,连接AE ,BF .(1)求证:AE BF;(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.①依题意补全图形;△的形状,并证明你的结论.②判断CMN5、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.6、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE =CE .7、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.8、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB ∠.求作:射线OC ,使AOC BOC ∠=∠.作法:如图,①在射线OA 上任取一点D ;②以点О为圆心,OD 长为半径作弧,交OB 于点E ;③分别以点D ,E 为圆心,大于12DE 长为半径作弧,在AOB ∠内,两弧相交于点C ; ④作射线OC .则OC 为所求作的射线.完成下面的证明.证明:连接CD ,CE由作图步骤②可知OD =______.由作图步骤③可知CD =______.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(________)(填推理的依据).9、如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE .10、如图,90B ∠=︒,90C ∠=︒,E 为BC 中点,DE 平分ADC ∠.(1)求证:AE 平分DAB ∠;(2)求证:AE DE ⊥;(3)求证:DC AB AD +=.-参考答案-一、单选题1、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x 、4x 、5x ,则3x +4x +5x =360°,解得,x =30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A .【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.2、A【分析】由折叠得到∠B =∠BCD ,根据三角形的内角和得∠A +∠B +∠ACB =180°,代入度数计算即可.【详解】解:由折叠得∠B =∠BCD ,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.3、C【分析】根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.【详解】解:∵AB=AC,D是BC的中点,∴AD⊥BC,∵∠B=35°,∴∠BAD=90°−35°=55°.故选:C.【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.4、C【分析】+的值最小,最小值作点Q关于BD的对称点Q',连接PQ'交BD于E,连接QE,此时PE EQ+=+'=',据此求解即可.PE PQ PE EQ PQ【详解】解:如图,∆是等边三角形,ABC∴=,BA BC∵D为AC中点,∴BD AC ⊥,4AQ =,3QD =,7AD DC AQ QD ∴==+=,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小.最小值PE QE PE EQ PQ +=+'=',4AQ =,7AD DC ==,3QD DQ ∴='=,4CQ BP ∴'==,10AP AQ ∴='=,60A ∠=︒,APQ ∴∆'是等边三角形,10PQ PA ∴'==,PE QE ∴+的最小值为10.故选:C .【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.5、B【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.【详解】解:A 、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;B 、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;C 、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;D 、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;故选:B .【点睛】本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.6、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.【详解】解:180307080C ∠=︒-︒-︒=︒,180308070F ∠=︒-︒-︒=︒,在ABC ∆与ΔΔΔΔ中,C D B E AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABC ∆≅ΔΔΔΔ,∴A F ∠=∠,A 、B 、C 三个选项均不能证明,故选:D .【点睛】题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.7、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.8、A【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.9、C【分析】根据全等三角形的性质可证得BC=CE ,∠ACB =∠DCE 即∠ACD =∠BCE ,根据等腰三角形的性质和三角形的内角和定理求解∠B =∠BEC 和∠BCE 即可.【详解】解:∵ABC DEC ≌△△,∴BC=CE ,∠ACB =∠DCE ,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.10、C【分析】根据题意在AB 上截取BE =BC ,由“SAS ”可证△CBD ≌△EBD ,可得∠CDB =∠BDE ,∠C =∠DEB ,可证∠ADE =∠AED ,可得AD =AE ,进而即可求解.【详解】解:如图,在AB 上截取BE =BC ,连接DE ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,在△CBD 和△EBD 中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△CBD ≌△EBD (SAS ),∴∠CDB =∠BDE ,∠C =∠DEB ,∵∠C =2∠CDB ,∴∠CDE =∠DEB ,∴∠ADE =∠AED ,∴AD =AE ,∴△ABC 的周长=AD +AE +BE +BC +CD =AB +AB +CD =27,故选:C .【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.二、填空题1、1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE +S △ACE =12S △ABC =12×4=2cm 2,∴S △BCE =12S △ABC =12×4=2cm 2,∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1cm 2.故答案为:1.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.2、80°【分析】先根据AB CD ∥,ABC ADC ∠=∠,得出180ADC BCD ABC BCD ∠+∠=∠+∠=︒,可证AD∥BC ,再证∠BAD =∠BCD ,得出∠AEB =∠F ,然后证∠ABC =2∠CBE =2∠F ,得出∠ADC =2∠F ,利用三角形内角和得出∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,根据平角得出∠AEB +∠CED =180°-∠BEC =180°-80°=100°,列方程∠F +180°-5∠F =100°求出∠F =20°即可.【详解】解:∵AB CD ∥,∴∠ABC +∠BCD =180°,∵ABC ADC ∠=∠∴180ADC BCD ABC BCD ∠+∠=∠+∠=︒,∴AD∥BC ,∵AB CD ∥,∴∠BAD +∠ADC =180°,∠BAF +∠F =180°,∵∠ADC +∠BCD =180°,∴∠BAD =∠BCD ,∵180BCD AEB DAF ∠+∠+∠=︒,∴180BAD AEB DAF ∠+∠+∠=︒,∵∠BAF =∠BAD +∠DAF ,∴∠BAF +∠AEB =180°,∴∠AEB =∠F ,∵AD∥BC ,∴∠CBE =∠AEB ,∵BE 平分ABC ∠,∴∠ABC =2∠CBE =2∠F ,∴∠ADC =2∠F ,∵3ECD F ∠=∠,在△CED 中,∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,∵80BEC ∠=︒,∴∠AEB +∠CED =180°-∠BEC =180°-80°=100°,∴∠F +180°-5∠F =100°,解得∠F =20°,∴18052018010080CED ∠=︒-⨯︒=︒-︒=︒,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC =2∠F . 3、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.故答案为:20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4、4【分析】根据SAS 证明ACG DFG ≅,由全等三角形的性质得AC DF =,A FDG ∠=∠,由FDG BDE ∠=∠,B BDE ∠=∠得B FDG A ∠=∠=∠,推出BDE ,ABC 都是等腰三角形,故得AC BC DF ==,设BE x =,则DE x =,5DF EF DE x =-=-,3BC CE BE x =+=+,列出等量关系式解出x ,即可得出3AC BC x ==+.【详解】∵点G 分别为AD 与CF 的中点,∴AG DG =,AGC DGF ∠=∠,CG FG =,∴()ACG DFG SAS ≅,∴AC DF =,A FDG ∠=∠,∵FDG BDE ∠=∠,B BDE ∠=∠,∴B FDG A ∠=∠=∠,∴BDE ,ABC 都是等腰三角形,∴AC BC DF ==,设BE x =,则DE x =,5DF EF DE x =-=-,3BC CE BE x =+=+,∴53x x -=+,解得:1x =,∴3314AC BC x ==+=+=.故答案为:4.【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键. 5、3【分析】根据题意依据等腰三角形的性质,即可得到BD =12BC ,进而分析计算即可得出结论.【详解】解:由题可得,AR 平分∠BAC ,又∵AB =AC ,∴AD 是三角形ABC 的中线,∴BD =12BC =12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题1、7cm【分析】由题意结合角平分线性质和全等三角形判定得出CBD EBD ≅,进而依据AED 的周长AE AD DE AE AD DC =++=++进行求解即可. 【详解】解:∵8AB cm =,6BC cm =,2AE cm =,∴826,BE AB AE cm BE BC =-=-==,∵BD 是ABC 的角平分线,∴CBD EBD ∠=∠,在CBD 和EBD △中,BE BC CBD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴CBD EBD ≅,∴CD DE =,∵5AC AD DC cm =+=,∴AED 的周长257AE AD DE AE AD DC cm =++=++=+=.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.2、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到∠B =∠ACB =∠BCF ,由AD 是角平分线,得到BD =CD ,证△BDE ≌△CDF 即可;(2)根据全等三角形的性质得到DE =DF =DA ,根据46CDF ∠=︒求得∠DAB ,进而求出∠B 的度数即可.【详解】(1)证明:∵AB AC =,∴∠B =∠ACB ,∵CB 是ACF ∠的平分线,∴∠ACB =∠BCF ,∴∠B =∠BCF ,∵AD 是角平分线,AB =AC ,∴BD =CD ,∵∠BDE =∠CDF ,∴△BDE ≌△CDF (AAS );∴BE CF =;(2)∵△BDE ≌△CDF ;∴ED =FD ,∵AD DF =,∴ED =AD ,∵46CDF ADE ∠=∠=︒, ∴180672ADE BAD ︒-∠∠==︒, ∴2134BAC BAD ∠=∠=︒,∴∠B =∠ACB =∠BCF =23°,∴246ACF BCF ∠=∠=︒,故答案为:46.【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.3、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得∠EDC =∠ECD =∠DEC =60°,再根据直角定义和三角形的外角性质证得∠F =∠FEC =30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.(1)证明:∵△ABC 是等边三角形,∴∠A =∠B =∠ACB =60°.∵DE∥AB,∴∠B=∠EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)解:由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.4、(1)证明见解析;△是等边三角形,证明见解析.(2)①补全图形见解析;②CMN【分析】=.结合题意易得出(1)由等边三角形的性质可知60=,CB CEACF BCE∠=∠=︒,AC FCACE FCB ∠=∠.即可利用“SAS ”证明ACE FCB ≅,即得出AE BF =;(2)①根据题意补全图形即可;②由全等三角形的性质可知CAM CFN ∠=∠,AE BF =.再由题意点M ,N 分别是AE ,BF 的中点,即得出AM FN =.即可利用“SAS ”证明ACM FCN ≅,得出结论CM CN =,ACM FCN ∠=∠.最后根据ACM FCM FCN FCM ∠-∠=∠-∠,即得出60ACF MCN ∠=∠=︒,即可判定CMN △是等边三角形.(1)∵ACF 与BCE 都是等边三角形,∴60ACF BCE ∠=∠=︒,AC FC =,CB CE =,∴ACF ECF BCE ECF ∠+∠=∠+∠,即ACE FCB ∠=∠,在ACE 和FCB 中,∴AC FC ACE FCB CE CB =⎧⎪∠=∠⎨⎪=⎩, ∴()ACE FCB SAS ≅,∴AE BF =.(2)①画图如下:②CMN △是等边三角形.理由如下:∵ACE FCB ≅,∴CAM CFN ∠=∠,AE BF =.∵点M ,N 分别是AE ,BF 的中点,∴AM FN =,在ACM △和FCN △中,∵AC FC CAM CFN AM FN =⎧⎪∠=∠⎨⎪=⎩, ∴()ACM FCN SAS ≅,∴CM CN =,ACM FCN ∠=∠,∴ACM FCM FCN FCM ∠-∠=∠-∠,即60ACF MCN ∠=∠=︒,∴CMN △是等边三角形.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.5、见解析【分析】利用AAS 即可证明△ABO ≌△EDO .【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.6、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE =∠BAC ,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE =AC ,结合∠2=60°可推出△AEC 为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.7、(1)120°(2)①图形见解析;②AC=【分析】(1)根据60∠=︒进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出A∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∠CAE=30°,∴∠CAF=12AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC =【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE ≌△ABC 是解本题的关键.8、OE ; CE ;全等三角形的对应角相等【分析】根据圆的半径相等可得OD =OE ,CD =CE ,再利用SSS 可证明OCD OCE ≌△△,从而根据全等三角形的性质可得结论.【详解】证明:连接CD ,CE由作图步骤②可知OD =___OE ___.由作图步骤③可知CD =__CE ___.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(__全等三角形对应角相等__)故答案为:OE ; CE ;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.9、见解析【分析】过A 作AF ⊥BC 于F ,根据等腰三角形的性质得出BF =CF ,DF =EF ,即可求出答案.【详解】证明:如图,过A作AF⊥BC于F,∵AB=AC,AD=AE,∴BF=CF,DF=EF,∴BF-DF=CF-EF,∴BD=CE.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.10、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E 是DF的中点,即可证明AE平分∠BAD;(2)由(1)即可用三线合一定理证明;(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.【详解】解:(1)如图所示,延长DE交AB延长线于F,∵∠B=∠C=90°,∴AB∥CD,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,∴AE⊥DE;(3)∵△CDE≌△BFE,∴CD=BF,∴AD=AF=AB+BF=AB+CD.【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.。
沪教版七年级(下)数学第十四章三角形单元练习卷一和参考答案七年级(下)数学第十四章三角形单元练卷一一、选择题(每题3分,共18分)1、如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是( )A、∠DAC =∠BCA。
B、AC=CA。
C、∠D =∠B。
D、AC=BC2、如图,D在AB上,E在AC上,且∠B =∠C,则在下列条件中,无法判定△ABE≌△ACD的是()A、AD=AE。
B、AB=AC。
C、BE=CD。
D、∠AEB=∠ADC3.如图,∠A+∠B+∠C+∠D +∠E=360°(D、E在AB、BC上),则∠A+∠C+∠E=()A、90°。
B、180°。
C、270°。
D、360°4.以下列各组线段为边,能组成三角形的是()A、2cm。
3cm。
4cm。
B、4cm。
6cm。
10cm。
C、1cm。
1cm。
3cm。
D、3cm。
4cm。
9cm5.三角形中至少有一个角大于或等于60°。
6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、斜角三角形二、填空题(每题3分,共33分)7.在△ABC中,∠A+∠B =∠C,则∠C=180°。
8.三角形按边分类,可分为:等边三角形和普通三角形;三角形按角分类,可分为:锐角三角形,直角三角形和钝角三角形。
9.三角形的三边之间的关系:三角形的第三边小于两边之和,大于两边之差;如右图,用式子表示为:< AC < AB + BC。
10.在△ABC中,已知两条边长为3和2,且第三边长为偶数,那么第三边长为4.11.等腰三角形周长为14,一腰长为6,则底边长为1.12.在△ABC中,AB=AC,∠B =70°,那么∠A =55°。
13.在等腰△ABC中,∠C =70°,那么∠A =55°。
沪教版(五四制)上海市七年级下册第十四章三角形综合测试两个条件才能使△ABC ≌△DEF ,不能添加的条件是( )。
A. ∠B=∠E ,BC=EFB. BC=EF ,AC=DFC. ∠A=∠D ,∠B=∠ED. ∠A=∠D ,BC=EF6.如图,已知AB=AC ,AD=AE ,则图中全等三角形的对数有( )。
A.3对B.4对C.5对D.6对7.如图,∠B=∠C ,则下列条件中,无法判定△ABE ≌△ACD 的是( )。
A.AD=AEB.AB=ACC.BE=CDD.∠AEB=∠ADC8.如图,AD=BC,要使△ABC ≌△CDA ,需要添加的一个条件可以是__________。
9. 如图,两个三角形_________全等。
(填“一定”或“不一定”)10.如图,两个三角形_________全等。
(填“一定”或“不一定”)11.如图,∠1=∠2,添加一个条件________________,第4、第6第9第10可使△ABC≌△ADC(A.A.S)12.如图,AB=CD,DE=AF,CF=BE,∠AFB=60°,∠CDE=80°,那么∠ABC=_________。
13.如图,在△ABC中,AB=AC,AD是BC边上的中线,则△ABD≌△ACD的依据是________,∠ADC=_______°第11第12第13第14第1514.如图,∠ABC=∠DEF,AB=DE,要使△ABC ≌△DEF。
(1)若以“S.A.S”为依据,还要添加的条件为___________________;(2)若以“A.S.A”为依据,还要添加的条件为___________________;(3)若以“A.A.S”为依据,还要添加的条件为___________________。
15.如图,E为△ABC边AC的中点,CN∥AB,过E点作直线交AB于M点,交CN于N 点,若MB=6cm,CN=4cm,则AB=________cm。
沪教版七年级数学第二学期第十四章三角形同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形的一个顶角是80°,则它的底角是().A.40°B.50°C.60°D.70°2、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180°D.∠B+∠ADC=90°3、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为()A.35°B.65°C.55°D.40°4、如图,在ABC 中,AB =AC ,D 是BC 的中点,∠B =35°,则∠BAD =( )A .110°B .70°C .55°D .35°5、如图,在ABC 中,40B ∠=︒,60C ∠=°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为( )A .30°B .20°C .10°D .15°6、下列所给的各组线段,能组成三角形的是:( )A .2,11,13B .5,12,7C .5,5,11D .5,12,137、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是( )A .3cmB .6cmC .10cmD .12cm8、如图,AB =AC ,点D 、E 分别在AB 、AC 上,补充一个条件后,仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BE =CD D .∠AEB =∠ADC9、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).A .65°B .65°或80°C .50°或80°D .50°或65°10、如图,点F ,C 在BE 上,AC =DF ,BF =EC ,AB =DE ,AC 与DF 相交于点G ,则与2∠DFE 相等的是( )A .∠A +∠DB .3∠BC .180°﹣∠FGCD .∠ACE +∠B第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,BD 和CD 分别是ABC ∠和ACB ∠的平分线,EF 过点D ,且EF BC ∥,若3BE =,4CF =,则EF 的长为______.2、如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.3、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.4、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)5、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)三、解答题(10小题,每小题5分,共计50分)=,1、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,AB CF∠=∠+∠.CEA B F(1)求证:EAB F∠=∠;BC=,求BE的长.(2)若102、如图,AD为△ABC的角平分线.(1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=;(2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;(3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为.(用含m,n的式子表示)3、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作图:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上).证明:由作图可知,在△O ′C ′D ′和△OCD 中,________O C OC C D OD ''=⎧''==⎪⎨⎪⎩, ∴△O ′C ′D ′≌ ,∴∠A ′O ′B '=∠AOB .(2)这种作一个角等于已知角的方法依据是 .(填序号)①AAS ;②ASA ;③SSS ;④SAS4、如图,已知点B ,F ,C ,E 在同一直线上,AB ∥DE ,BF =CE ,AB =ED ,求证:∠A =∠D .5、如图,AD ,BC 相交于点O ,AO =DO .(1)如果只添加一个条件,使得△AOB ≌△DOC ,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明AB =DC .6、已知AM ∥CN ,点B 在直线AM 、CN 之间,AB ⊥BC 于点B .(1)如图1,请直接写出∠A 和∠C 之间的数量关系: .(2)如图2,∠A 和∠C 满足怎样的数量关系?请说明理由.(3)如图3,AE 平分∠MAB ,CH 平分∠NCB ,AE 与CH 交于点G ,则∠AGH 的度数为 .7、如图,已知点E 、C 在线段BF 上,BE CF =,AB DE ∥,ACB F ∠=∠.求证:ΔΔΔΔ≅ΔΔΔΔ.8、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,ABC 中,7,9,10===AC BC AB ,P 为AC 上一点,当AP =_______时,ABP △与CBP 是偏等积三角形;(2)如图2,四边形ABED 是一片绿色花园,ACB △、DCE 是等腰直角三角形,()90090∠=∠=︒<∠<︒ACB DCB BCE .①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m,=BE ACD 的面积为22100m .如图3,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.9、如图,在△ABC 中,AB =AC ,CD ⊥AB 于点D ,∠A =50°,求∠BCD 的度数.10、如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点D 在BC 上,已知∠B =70°,求∠CDE 的大小.-参考答案-一、单选题1、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答.【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°.故选:B.【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.2、C【分析】由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.【详解】解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC 与△AEC 中,AC AC BAC EAC AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEC (SAS ),∴BC =EC ,∠B =∠AEC ,∵CB =CD ,∴CD =CE ,∴∠CDE =∠CED ,∴∠B =∠CDE ,∵∠ADC +∠CDE =180°,∴∠ADC +∠B =180°.故选:C .【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE ,CE .3、A【分析】先根据三角形内角和定理求出∠ACB =35°,再根据全等三角形性质即可求出∠CAD =35°.【详解】解:∵∠BAC =80°,∠ABC =65°,∴∠ACB =180°-∠BAC -∠ABC=35°,∵△ABC ≌△CDA ,∴∠CAD =∠ACB =35°.故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.4、C【分析】根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.【详解】解:∵AB=AC,D是BC的中点,∴AD⊥BC,∵∠B=35°,∴∠BAD=90°−35°=55°.故选:C.【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.5、B【分析】利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求EDB的度数.【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△ADC (SAS ),∴∠DEA =∠C 60=︒,∵40B ∠=︒,∠DEA =∠B +EDB ∠,∴604020EDB ∠=︒-︒=︒;故选:B【点睛】本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE ≌△ADC .6、D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A 不符合题意;∵5+7=12,∴B 不符合题意;∵5+5=10<11,∴C 不符合题意;∵5+12=17>13,∴D 符合题意;故选D .本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.7、C【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,x612,x所以A ,B ,D 不符合题意,C 符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.8、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB =AC ,A A ∠=∠,若B C ∠=∠,则根据()ASA 可以证明△ABE ≌△ACD ,故A 不符合题意;若AD =AE ,则根据(SAS)可以证明△ABE ≌△ACD ,故B 不符合题意;若BE =CD ,则根据()SSA 不可以证明△ABE ≌△ACD ,故C 符合题意;若∠AEB =∠ADC ,则根据()AAS 可以证明△ABE ≌△ACD ,故D 不符合题意;【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.9、D【分析】50︒可以是底角,也可以是顶角,分情况讨论即可.【详解】当50︒角为底角时,底角就是50︒,︒-︒÷=︒,当50︒角为等腰三角形的顶角时,底角为(18050)265因此这个等腰三角形的底角为50︒或65︒.故选:D.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10、C【详解】由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC与△DEF中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DEF (SSS ),∴∠ACB =∠DFE ,∴2∠DFE =180°﹣∠FGC ,故选:C .【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS ;SAS ;ASA ;AAS ;以及HL (直角三角形的判定方法).二、填空题1、7【分析】根据角平分线的定义和平行线的性质证明∠EBD =∠EDB ,∠FDC =∠FCD ,得到BE =DE ,CF =DF ,即可求解.【详解】解:∵EF∥BC ,∴∠EDB =∠DBC ,∠FDC =∠DCB ,又∵BD 和CD 分别是∠ABC 和∠ACB 的平分线,∴∠EBD =∠DBC ,∠FCD =∠DCB ,∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =DE ,CF =DF ,又∵BE =3,CF =4,∴EF =DE +DF =BE +CF =7.故答案为:7.【点睛】本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.2、20°度【分析】 根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算. 【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D , ∴1,122DBC ABC DCE ACE ∠=∠∠=∠, ∵∠ACE=∠A+∠ABC ,∠DCE=∠D +∠DBC ,∴∠D=∠DCE-∠DBC =11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.3【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.4、>【分析】找到点F ,连接,AF DF (见解析),根据等腰直角三角形的性质、网格特点即可得45B C A E A D F DA ∠∠>∠=︒=.【详解】解;如图,找到点F ,连接,AF DF ,则ADF是等腰直角三角形,∴∠=︒>∠,45DAF DAE又Rt ABC是等腰直角三角形,∴∠>∠,45DAF D∠=︒=BAC AE故答案为:>.【点睛】本题考查了等腰直角三角形、角的大小比较,正确找出点F是解题关键.5、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根据全等三角形的判定条件求解即可.【详解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS 证明△ABC≌△DCB,故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.三、解答题1、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠.(2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ABE △≌FCE △.∴BE CE =.∵10BC =,∴5BE =.【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.2、(1)3(2)12(3)2n n m- 【分析】(1)利用ASA 证明△AEF ≌△ABE ,得AE =AB =4,得出答案;(2)延长CG 、AB 交于点H ,设S △BGC =S △HGB =a ,用两种方法表示△ACH 的面积即可;(3)在AC 上取AN =AB ,可得CD =DN =n -m ,根据△ABD 和△ACD 的高相等,面积比等于底之比可求出CD 的长.(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵BE ⊥AD ,∴∠BEA =∠FEA ,在△AEF 和△AEB 中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△AEB (ASA ),∴AF =AB =4,∵AC=7∴CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设S△BGC=S△HGB=a,根据△ACH的面积可得:S△ABC+2a=2(6+a),∴S△ABC=12;(3)在AC上取AN=AB,如图,∵AD是△ABC的平分线,∴∠NAD =∠BAD ,在△ADN 与△ADB 中,AN AB NAD BAD AD AD ⎧⎪∠∠⎨⎪⎩===, ∴△ADN ≌△ADB (SAS ),∴∠AND =∠B ,DN =BD ,∵∠B =2∠C ,∴∠AND =2∠C ,∴∠C =∠CDN ,∴CN =DN =AC -AB =n -m ,∴BD =DN =n -m ,根据△ABD 和△ACD 的高相等,面积比等于底之比可得:CD AC BD AB=, ∴CD n n m m=-, ∴2()n n m n CD n m m-==-, 故答案为:2n n m-. 【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.3、(1)CD ,O ′D ′,△OCD ,(2)③【分析】(1)根据SSS 证明△D ′O ′C ′≌△DOC ,可得结论;(2)根据SSS 证明三角形全等.(1)证明:由作图可知,在△D ′O ′C ′和△DOC 中,O C OC C D CD O D OD ''=⎧⎪''=⎨⎪''=⎩, ∴△O ′C ′D ′≌△OCD (SSS ),∴∠A ′O ′B ′=∠AOB .故答案为:CD ,O ′D ′,△OCD ,(2)解:上述证明过程中利用三角形全等的方法依据是SSS ,故答案为:③【点睛】本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.4、见解析【分析】根据平行线的性质得出∠B =∠E ,进而利用SAS 证明ABC DEF ≅,利用全等三角形的性质解答即可.【详解】证明:FB CE =,FB CF CE CF ∴+=+,即BC EF =.//AB DE ,B E ∴∠=∠.在ABC 和DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ()ABC DEF SAS ∴≅△△A D ∴∠=∠.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ABC DEF ≅是解题的关键.5、(1)OB =OC (或A D ∠=∠,或B C ∠=∠);(2)见解析【分析】(1)根据SAS 添加OB =OC 即可;(2)由(1)得△AOB ≌△DOC ,由全等三角形的性质可得结论.【详解】解:(1)添加的条件是:OB =OC (或A D ∠=∠,或B C ∠=∠)证明:在AOB ∆和DOC ∆中AO BO AOB COD BO CO =⎧⎪∠=∠⎨⎪=⎩所以,△AOB ≌△DOC(2)由(1)知,△AOB≌△DOC所以,AB=DC.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键6、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=12∠MAB,∵CH平分∠NCB,∴∠BCF=12∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=12∠MAB+90°﹣12∠BCN=90°﹣12(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.7、见解析【分析】由平行线的性质可证明B DEF ∠=∠.再由BE CF =,可推出BC EF =.最后即可利用“ASA ”直接证明ABC DEF ≅.【详解】证明:AB DE ∥B DEF ∴∠=∠BE CF =BE EC CF EC ∴+=+,即BC EF =.∴在ABC 和DEF 中,B DEF BC EF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DEF ASA ∴≅.【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.8、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCE ACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下:过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒, 180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆∆≌,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒,ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等,ACD ∴∆与BCE ∆是偏等积三角形;②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆∆≌,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆∆≌和ACN CBE ∆∆≌是解题的关键,属于中考常考题型.9、25°【分析】直接利用等腰三角形的性质得出∠ABC =∠ACB =65°,进而利用三角形内角和定理得出答案.【详解】∵AB =AC ,∠A =50°,∴∠ABC =∠ACB =65°,∵CD ⊥BC 于点D ,∴∠BCD 的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B 的度数是解题关键.10、40【分析】先由旋转的性质证明,70,AB AD ADE B 再利用等边对等角证明70,ADB B 从而可得答案.【详解】 解: 把△ABC 绕点A 逆时针旋转得到△ADE ,∠B =70°,,70,AB AD ADE B 70,ADB B18040.CDE ADB ADE 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.。
三角形综合
【知识要点】
1.三角形的概念及其基本要素. 2.三角形的内角 3. 三角形的外角
(1)三角形的一个外角等于和它不相邻的两个内角的和; (2)三角形的一个外角大于任何一个和它不相邻的内角.
4.三角形的三边关系是指:(1)三角形任意两边之和大于第三边; (2)三角形任意两边之差小于第三边. 5.三角形的三线: 6.三角形全等的证题思路
【初试锋芒】 一.选择
1.下列长度的三条线段,能够组成三角形的是()
A.4,2,2
B.3,6,6
C.2,3,6
D.7,13,6 2.在△ABC 中,∠A=350,∠B=450,则与∠C 相邻的外角的度数是()
A.350
B.450
C.800
D.100
0 3.下列说法中错误的是() A.三角形的中线、角平分线、高线都是线段 B.任意三角形的三内角和都是1800
C.三角形按角分可分为锐角、直角和等边三角形
D.直角三角形的两锐角互余
4.如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有()
已知两边 找夹角 SAS 找直角 HL 找另一边 SSS
已知一边一角 边为角的对边找任一角 AAS
边为角的邻边 找夹角的另一边 SAS 找夹角的另一角 ASA 找边的另角 AAS 已知两角 找夹角 ASA
找任一边 AAS
A.1对
B.2对
C.3对
D.4对
5.如图,已知:,AC=DB ,下列条件中不能使ΔABC ≌ΔBAD 的是()
A.;
B.;
C.;
D.AO=DB
6.如图,ΔACD 中,AB ⊥CD,BD>CB,BC=BE,AB=BD,下列结论中: ○1ΔABC ≌ΔDBE ;
○2ΔACB ≌ABD ;○3ΔCBE ≌ΔBED ;○4ΔACE ≌ΔADE, 其中正确的是()
A.○1○2○3○4
B.○1
C.○1○3○4
D.○2○3○4 二.填空
7.在△ABC 中,若AB=8,BC=6,则第三边AC 的长度m 的取值范围是_______________. 8.如图所示,点D 、E 分别在线段
AB ,AC 上,BE ,CD 相交于点
O ,AE=AD ,要使
△ABE ≌△ACD ,需添加一个条件是______________(只要求写一个条件).
9. 如图所示:已知∠ABD =∠ABC ,请你补充一个条件:, 使得△ABD ≌△ABC.
10. 如图,①若AB=DC ,AC=DB ,则△ABC ≌△DCB 的道理是_________;
②若∠A=∠D,∠ABC=∠DCB, 则△ABC ≌△DCB 的道理是__________;
③若∠1=∠2,∠3=∠4, 则△ABC ≌△DCB 的道理是___________; ④若∠A=∠D=900,AC=DB, 则△ABC ≌△DCB 的道理是
C D ∠=∠CAB DBA ∠=∠CB DA =AO BO =第4题图
第5题图 第6题图
A
D
____________
11. 如图所示,在△ABC 中∠C=90º,已知AC=AE ,∠ADC=55º,则∠CDE=____
12. 如图,在Rt △ABC 中,∠ACB=90º,CD ⊥AB ,垂足为D ,若∠B=30º则∠ACD=______
13. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使D 点落在BC 边的F 处,
若∠BAF=60º,则∠DAE=______
14. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的 道理是 15.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形? 应该带
16.如图.AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,若DE=5cm,则DF=_________
17.如图所示,在△ABC 中,∠B=∠C=50°,BD=CF ,BE=CD ,则∠EDF 的度数是 三.解答与证明
1.已知:如图所示,B ,E ,F ,C 四点在同一条直线上,AB=DC ,
第8题图 第11题图
第12题图
第13题图
第14题图
1
234
第15题图
A
B
C
D
E F
第16题图
第17题图
BE=CF ,∠B=∠C. 试证明:OA=OD.
2.一个零件的形状如图,按规定∠A 应等于90°,∠B 、∠D 应分别是20°和30°.
(1)李叔叔量得∠BCD=142°,根据李叔叔量得的结果,你能断
定这个零件是否合格
(∠A 应等于90°)?请解释你的结论.
(2)你知道∠B 、∠D 、∠BCD 三角之间有何关系吗?(请写出你的结论,并说明理由)
3.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB 是一个任意角,在边OA 、OB 上分别取OD=OE ,移动角尺,使角尺两边相同的刻度分别与D 、E 重合,这时过角尺顶点P 的射线OP 就是∠AOB 的平分线,你能先说明△OPE 与△OPD 全等,再说明OP 平分 ∠AOB 吗?
4. 在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.
(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;
(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.
5.如图,△ABC 是等腰直角三角形,其中CA=CB ,四边形CDEF 是正方形,连接AF 、BD.观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想.
6.已知:△ABC 、△A 1B 1C 1均为锐角三角形,AB=A 1B 1,BC=B 1C l ,
C
A E D
图1
N
M
B A
C
D
E
M
N 图2
A
C B
E
D
N M
图3
∠C=∠C l.
求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整)
(1)证明:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1. 则∠BDC=∠B1D1C1=900,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论. 7.两组邻边分别相等的四边形我们称它为筝形,如图所示,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O.
(1)试说明:○1△ABC≌△ADC;○2OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求筝形ABCD的面积.
8.复习“全等三角形”的知识时,老师布置了一道作业题:“如图○1已知△ABC中,AB=AC,P是△ABC内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图○1的分析,证明了∠ABQ ≌△ACP,从而证明BQ=CP.之后他将点P移到等腰三角形ABC之外,原题中其他条件不变,发现“BQ=CP”仍然成立,请你就图○2给出证明.。