人教版(五四制)数学七年级下册全册课件【完整版】
- 格式:pptx
- 大小:5.17 MB
- 文档页数:485
18.2 三角形全等的判定第1课时一、教学目标 (一)学习目标1.经历探索三角形全等条件的过程,体验分类讨论的数学思想,体会利用操作、归纳获得数学结论的过程.2.经历探索利用 “边边边”判定两个三角形全等的过程,体会从特殊到一般的数学思维过程. 3.掌握三角形全等的判定“边边边”,初步体会并运用综合推理证明命题,掌握作一个角等于已知角的方法. (二)学习重点1.指导学生分析问题,寻找判定三角形全等的条件. 2.三角形全等的“边边边”条件的探索和运用. (三)学习难点1.理解证明的基本过程,初步学会证三角形全等的格式. 2.会用尺规作一个角等于已知角. 二、教学设计 (一)课前设计 1.预习任务(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”) (2)利用尺规作一个角等于已知角.其作法的根据是 边边边 . 2.预习自测(1)如图,AB=AD ,CB=CD ,则________≌_________. 根据是________.DCBA【知识点】全等三角形的判定:边边边 【思路点拨】图中的隐含条件公共边“AC=AC” 【答案】△ABC ,△ADC , 边边边 或SSS(2)如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,则下面的结论中不正确的是( ) A .△ABC ≌△BAD B .∠C=∠D C .∠CAB=∠DBA D .OB=ODOD CBA【知识点】全等三角形的判定:边边边,全等三角形的性质.【思路点拨】由题中两个条件和公共边可证得两个三角形全等,再根据全等三角形的性质得对应边相等. 【解题过程】由AC=BD ,AD=BC ,AB=BA,可证得△ABC ≌△BAD ,故A 正确;由△ABC ≌△BAD ,可得∠C=∠D ,故B 正确;由△ABC ≌△BAD ,可得∠CAB=∠DBA ,故C 正确;OB 和OD 不是△ABC 和△BAD 的对应边,故D 不正确. 故选:D(3)将下列推理过程补充完整.如图,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF . 求证:∠B=∠D.FEDC BA证明:∵AE=CF ∴AE+EF=CF+EF 即______=________. 在△ABF 和△CDE 中,⎪⎩⎪⎨⎧_______________________∴△ABF ≌△CDE ( ) ∴____________________.【知识点】全等三角形的判定定理:边边边,全等三角形的性质.【思路点拨】利用等式的性质,等式两边同时加上EF,可得AF=CE,再得△ABF≌△CDE,最后由全等三角形的性质得∠B=∠D.【答案】AF,CE,AB=CD,BF=DE,AF=CE,SSS,∠B=∠D(二)课堂设计1.知识回顾(1)能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.2.问题探究探究一:探索三角形全等的条件●活动①创设情境,提出问题问题:两个三角形全等,是否一定需要六个条件呢?如果只满足六个条件中的一部分,是否也能保证两个三角形全等呢?【设计意图】问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.●活动②建立模型,探索发现1.两个三角形满足六个条件中的一个条件,两个三角形全等吗?一个条件有几种情况?学生经过交流得出:一条边或一个角.2.(1)让学生画一个一边长为3cm的三角形,画后剪下来看与同桌的三角形能否重合. (2)让学生画一个一个角为30°的三角形,画后剪下来看与同桌的三角形能否重合.只给定一条边相等:只给定一个角相等:3.通过上面的操作,你得到了什么结论?学生讨论后得出结论.结论:两个三角形一条件相等不一定全等.【设计意图】学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类讨论的思想.●活动③1.两个三角形满足六个条件中的两个条件时两个三角形全等吗?两个条件有几种情况?学生分组交流讨论.结论:一条边和一个角相等、两个角相等、两条边相等.2.让学生画一个一边长为3cm和一个角为30°三角形,画好后剪下来看与同桌的三角形能否重合?①3cm3cm 3cm30︒30︒30︒3.让学生画一个两个角分别为30°和50°的三角形,画好后剪下来看与同桌的三角形能否重合.②50︒50︒30︒30︒4.让学生画一个两边分别为3cm和5cm的三角形,画好后剪下来看与同桌的三角形能否重合.5.通过上面的操作,你得到了什么结论?学生通过画一画,比一比,得出结论.结论:两个三角形两个条件相等不一定全等.【设计意图】学生动手操作自主探索、交流,获得新知,明确两条件不能判定两个三角形全等,为探究后面三个条件判定两个三角形全等作铺垫.探究二:探索三角形全等的判定“边边边”.1.师问:前面通过探究一个条件或两个条件的两个三角形不一定全等,那么当满足三个条件的两个三角形是否全等,三个条件有几种情况?学生分组讨论后,每组选代表发言.结论:三内角、三条边、两边一内角、两内角一边.师问:三个内角相等全等吗?请举例说明.通过学生的回答,全班明白三个内角相等的两个三角形不一定全等.2.画一个三角形的三条边长分别为3cm 、4cm 、5cm .画好后剪下来看与同桌的三角形能否重合.3.任意画一个△ABC ,根据前面作法,同样可以作出一个△A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,观察两个三角形能否重合. 4.通过上面的操作,你得到了什么结论?学生经过特殊到一般的思想,通过画一画,比一比,得出结论. 结论:两个三角形满足三条边相等时,这个两个三角形全等。
18.1 全等三角形一、教学目标(一)学习目标1.认识全等形、全等三角形的概念和全等三角形的对应元素;2.理解寻找全等三角形中对应元素的方法;3.掌握三角形全等变换方式和性质,利用全等三角形的性质解决简单的问题.(二)学习重点全等三角形的概念、性质.(三)学习难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个三角形的对应元素.二、教学设计(一)课前设计1.预习任务能够完全重合的两个图形叫做全等形;完全重合的两个三角形叫做全等三角形;一个图形经过平移、翻折、旋转后位置变化了,但形状大小都没有改变,即平移、翻折、旋转前后的图形全等;把两个全等三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角;全等三角形的对应边相等,对应角相等.2.预习自测(1)下列各图形中,不是全等图形的是()【知识点】全等图形【解题过程】解:A两个图形不能重合,不是全等图形;B、C、D两个图形都能重合,是全等图形.故选A.【思路点拨】能够完全重合的两个图形叫做全等形,由此可判断各选项.【答案】A.(2)下列四个汽车标志图案中,不存在全等图形的标志图案是()【知识点】全等图形【解题过程】解:A、B、D存在全等图形、C不存在全等图形.故选C.【思路点拨】能够完全重合的两个图形叫做全等形,由此可判断各选项.【答案】C.(3)如图,△ABC≌△DEF,∠B=60°,则∠E的度数为()A.30°B.45°C.60°D.90°【知识点】全等三角形的性质.【解题过程】解:∵△ABC≌△DEF,∴∠B=∠E=60°;故选:C.【思路点拨】全等三角形对应角相等.【答案】C.(4)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5 B.4 C.3 D.2【知识点】全等三角形的性质.【解题过程】解:∵△ABC≌△DEF,∴AB=DE;∵BE=4,AE=1∴AB=DE=4+1=5故选:A.【思路点拨】全等三角形对应边相等.【答案】A.(二)课堂设计1.知识回顾(1)三角形:由不在同一条直线上的三条线段首尾顺次相接组成的图形.(2)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变.2.问题探究探究一:全等形、全等三角形的概念.●活动①回顾旧知,回忆构成三角形的元素学生活动:(1)三个顶点;(2)三条边;(3)三个内角.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动②整合旧知,探究全等形、全等三角形的概念.问题1:一位哲人曾经说过:“世界上没有两片完全相同的叶子”,但是在我们的周围却有着好多形状、大小完全相同的图案。
二元一次方程组【教学目标】1.亲历解二元一次方程组的探索过程,体验分析归纳得出二元一次方程组的解法,进一步发展学生的探究、交流能力。
2.掌握二元一次方程组的解法。
3.熟练运用二元一次方程的解法、二元一次方程组的解法。
【教学重难点】重点:掌握了解什么是二元一次方程、二元一次方程组。
难点:熟练运用二元一次方程的解法、二元一次方程组的解法。
【教学过程】一、直接引入师:今天这节课我们主要学习二元一次方程组的解法,这节课的主要内容有二元一次方程、二元一次方程组、二元一次方程的解、二元一次方程组的解,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课(1)教师引导学生在预习的基础上了解二元一次方程内容,形成初步感知。
(2)首先,我们先来学习二元一次方程的解,它的具体内容是:使二元一次方程两边得值相等的两个未知数的值,叫做二元一次方程的解。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
解二元一次方程 10x y += ① 216x y += ②满足方程①,且符合问题的实际意义的x y ,的值有下表的值。
由上表可知,以上x y ,的值可使方程10x y +=两边的值相等,它们都是方程10x y +=的解。
如果不考虑与实际问题的联系,那么1110.59.5x y x y =-===,,,;……也都是这个方程的解。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
根据例题的解题方法,让学生自己动手练习。
练习:填表,使上下每个对x y ,的值是方程25x y -+=的解。
由例1的计算方法可得答案:1.5,2.5,2.7,3.5,2,1,5-,3 (3)接着,我们再来看下二元一次方程组的解的内容,它的具体内容是: 由例1我们可以发现,64x y ==,既满足方程①,又满足方程②。
也就是说,64x y ==,是方程①,方程②的公共解。
我们把64x y ==,叫做二元一次方程组10216x y x y +=⎧⎨+=⎩,的解。
§19.1.1 平均数(1)主备人:课型:新授课时间:年月日一、教学目标:1、认识和理解数据的权及其作用。
2、通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。
二、教学重点:加权平均数的概念以及运用加权平均数解决实际问题。
教学难点:对数据的权及其作用的理解。
三、教学准备:多媒体,直尺,彩粉笔。
四、教学过程:(一)创设情境、出示目标:1、求下列数据的平均数:3,0,-1,4,-22、求下列数据的平均数:x1, x2, x3,…,x n3、若4,6,8,x的平均数是8,且4,6,8,x,y的平均数是9,求x,y的值。
(二)自主学习、感受新知:1、认真阅读教材P124-127,细心体会一下,谈一谈你所理解的加权平均数的含义。
“权”的含义是什么?2、某市三个郊县的人数及人均耕地面积如下表:这个市郊县的人均耕地面积是多少?(精确到0.01公顷)(1)小明同学求得这个市郊县的人均耕地面积为:318 .021.015.0++=x=0.18(公顷)你认为小明的做法有道理吗?为什么?(2)这个市的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少?(3)三个郊县的人数(单位:万)15、7、10在计算人均耕地面积时有何作用?你能正确理解数据的权和三个数的加权平均数吗?(4)若n个数x1,x2,…x n的权分别是w1,w2…w n,则这n个数的加权平均数是多少?应试者听说读写甲85 83 78 75(三)发现研讨、合作探究:例1、 一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁? 例2、 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:请你帮忙决出两人的名次。