数学广角鸽巢问题
- 格式:pptx
- 大小:5.73 MB
- 文档页数:31
六年级数学下册数学广角——鸽巢问题(含答案)人教版一、填空题1.六(1)班有50个学生,他们至少有(________)人会在同一个月过生日。
2.一副扑克牌54张,至少要抽取(________)张,才能保证其中至少有两张牌点数相同。
3.盒子里有同样大小的红、黄、蓝、白四种颜色的玻璃球各12个,要想摸出的球一定有2个是同色的,至少要摸出(________)个球;要想摸出的球一定有4个是同色的,至少要摸出(________)个球。
4.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少要取(______)个球,可以保证取到两个颜色相同的球;至少要取(________)个球,可以保证取到两种颜色的球。
5.有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25根。
在黑暗中至少应摸出(________)根筷子,才能保证摸出的筷子至少有8双(每两根花筷子或两根同色的筷子为一双)。
6.从1至36个数中,最多可以取出(________)个数,使得这些数种没有两数的差是5的倍数。
7.一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分。
至少(________)人参加这次测验,才能保证至少有3人得得分相同。
8.袋中有外形完全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有(________)个小朋友摸球,才能保证一定有两个人摸的球颜色一样。
9.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出(______)个,可以保证取到2个颜色相同的球。
10.10只鸽子飞回3个鸽舍,至少有(________)只鸽子要飞进同一个鸽舍里。
11.李亮练习打靶,5次共打了33环,那么至少有一次不低于(________)环。
12.把6串葡萄放在5个盘子里,总有一个盘子里至少放(________)串葡萄;如果把这6串葡萄放在4个盘子里,那么总有一个盘子里至少放(________)串葡萄。
第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点一、鸽巢问题基本原理•定义:鸽巢问题,也被称为抽屉原理或鸽笼原理,是一种组合数学原理。
它描述的是,如果n 个物体被放入m 个容器(n > m),那么至少有一个容器包含两个或更多的物体。
••简单示例:••如果有 3 个苹果放入 2 个盒子中,至少有一个盒子包含 2 个或更多的苹果。
•如果有 5 只鸽子飞入 4 个鸽笼,至少有一个鸽笼包含 2 只或更多的鸽子。
二、鸽巢问题的数学表达•公式:物体个数÷ 鸽巢个数= 商…… 余数,至少个数= 商+ 1(当余数存在时)。
••应用:••如果有10 个苹果放入9 个抽屉,那么至少有一个抽屉包含至少 2 个苹果(因为10 ÷ 9 = 1 …… 1,至少个数= 1 + 1 = 2)。
三、鸽巢原理的变种•鸽巢原理(二):把多于kn 个物体任意分进n 个鸽巢中(k 和n 是非0自然数),那么一定有一个鸽巢中至少放进了(k+1) 个物体。
••应用:••如果有15 只鸽子飞入 4 个鸽笼,至少有一个鸽笼包含至少 4 只鸽子(因为15 = 3 × 4 + 3,所以至少有一个鸽笼包含3+1=4 只鸽子)。
四、摸球问题与鸽巢原理•摸同色球:•要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
•如果有两种颜色的球,至少需要摸 3 个球来保证有两个同色的球;三种颜色则需要摸 4 个球,以此类推。
•极端思想:•在摸球时,先考虑最不利的情况(即先摸出不同颜色的球),然后再考虑下一个球,以确保满足条件。
五、鸽巢原理的应用实例•生日悖论:在一个至少有23 人的群体中,存在至少两个人的生日在同一天的概率超过50%。
•选举投票:在一个有n 个候选人和超过n 个选民的选举中,至少有一个候选人获得了超过1/2 的选票(通过多轮投票或淘汰制)。
六、解题步骤1.分析题意:明确“鸽巢”和“物体”分别是什么。
人教版六年级下数学数学广角——鸽巢问题第十二周数学广角——鸽巢问题鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用。
鸽巣原理的最简单表达形式是:物体个数÷鸽巣个数=商……余数,至少个数=商+1.举例来说,如果有3个苹果放在2个盒子里,共有四种不同的放法,但无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。
摸2个同色球的计算方法是:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1.另外,可以使用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
在填空题中,可以通过运用鸽巣原理来解决问题。
例如,鱼岳三小六年级有30名学生是二月份出生的,那么六年级至少有3名学生的生日是在二月份的同一天。
又如,有3个同学一起练投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了6个球。
把6只鸡放进5个鸡笼,至少有2只鸡要放进同1个鸡笼里。
某班有个小书架,40个同学可以任意借阅,小书架上至少要有14本书,才可以保证至少有1个同学能借到2本或2本以上的书。
在解决问题时,我们可以运用鸽巣原理来求解。
例如,六(1)班有50名同学,至少有6名同学是同一个月出生的。
书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书,一次至少要拿出4本书。
把16支铅笔最多放入3个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支。
在拓展应用中,我们可以通过鸽巣原理来解决更加复杂的问题。
例如,把27个球最多放在4个盒子里,可以保证至少有1个盒子里有7个球。
教师引导学生规范解答:2、假设先取5只,全是红的,不符合题意,要继续取;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇推荐文章三年级《数学广角--集合》精品教案范文3篇热度:人教版三年级下册《数学广角--搭配》教案优秀范文热度:小学四年级数学下册《数学广角--鸡兔同笼》教案优秀范文热度:五年级数学上册《数学广角--植树问题》精品教案热度:小学五年级数学下册《数学广角──找次品》教案精选范文三篇热度:历史是时代的见证,真理的火炬,记忆的生命,生活的老师和古人的使者。
下面是小编给大家准备的小学六年级下册数学《数学广角──鸽巢问题》教案范文,供大家阅读。
小学六年级下册数学《数学广角──鸽巢问题》教案范文一教学目标1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点经历抽屉原理的探究过程,并对抽屉原理的问题模式化学生笔记(教师点拨) 学案内容一、知识回顾:(2分钟)二、学生自学:(15分钟)(1)自学例1把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1) 学生思考各种放法。
(2) 第一种放法:第二种放法:第三种放法:第四种放法:教学过程:5÷2=2……1 (至少放3本)7÷2=3……1 (至少放4本)9÷2=4……1 (至少放5本)1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。
为什么?如果每个文具盒只放( )铅笔,最多放( )枝,剩下( )枝还要放进其中的一个文具盒,所以至少有( )铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例21、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。
剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?4. 你能用算式表示以上过程吗?你有什么发现?总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
数学广角鸽巢问题(共9篇)以下是网友分享的关于数学广角鸽巢问题的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇1第五单元数学广角——鸽巢问题第二课时教学设计:王玉环课题:“鸽巢问题”的具体应用教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。
教学目标:1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。
教学准备:课件。
教学过程:一、情境导入二、探究新知1、教学例3(课件出示例3的情境图).出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球。
学生通过“猜测验证→分析推理”的学习过程解决问题。
(1)猜测验证。
1、学生自由猜测。
可能出现:2个、3个、4个、5个等。
说说理由。
2、学生摸球验证:说明理由。
摸2个球可能出现的情况:1红1蓝,2个红球,2个蓝球。
摸3个球可能出现的情况:2红1蓝,2蓝1红,3红,3蓝。
4红,4蓝。
摸5个球可能出现的情况:4红1蓝,3蓝2红,3红2蓝,4蓝1红。
3、归纳总结:盒子里有同样大小的红球和蓝球个4个。
要想摸出的球一定有2个同色的,至少要摸3个球。
三、巩固练习1、完成教材第70页的“做一做”的第2题。
(学生独立解答,集体交流。
)2、完成教材第71页的练习十三的第3-4题。
(学生独立解答,集体交流。
)3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。
每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)四、课堂总结在本节课的学习中,你有哪些收获?学生自由交流各自的收获体会。
第五单元数学广角《鸽巢问题》(教案)一、教学目标1.认识和理解鸽巢问题的基本概念和规律;2.培养学生的观察力、分析、归纳和运算能力;3.通过数学游戏的方式激发学生的兴趣,提高学生的数学思维水平。
二、教学重点1.了解鸽巢问题的基本规律;2.学生能够运用基本规律解决实际问题。
三、教学难点1.让学生掌握鸽巢数问题的归纳和推理方法;2.培养学生运用所学知识解决鸽巢数问题的能力。
四、教学过程1.引入教师可以采取游戏的方式引入鸽巢问题,比如出示两个鸟巢和三只鸟,问学生这三只鸟可以分别住在哪两个鸟巢里,从而引出鸽巢问题。
2.巩固知识教师可以通过一些数学游戏和练习来巩固学生的知识,比如让学生组成几个小组,给每组一个数,让学生按照鸽子数量将这个数字分成几份,然后让学生找到其中必定有两份数字的和相同的情况。
3.讲解基本理论教师可以通过讲解和演示的方式让学生了解基本理论和规律,比如鸽巢问题的公式为:若将n+1个物体放到n个盒子中,则其中至少有一个盒子中放有两个物体。
4.解决实际问题教师可以引导学生通过解决实际问题来运用所学知识,比如:班级里有30个同学,请你算一下这个班级中至少有多少人生日是同一天的?5.拓展练习教师可以给学生一些拓展练习来提高学生的综合运用能力,比如:将15个QQ号码分到10个QQ群里,问你有多大几率在一个QQ群里看到两个号码是相同的?6.总结在教学结束时,教师可以让学生对所学知识进行总结,并鼓励学生将所学知识应用到生活中。
五、教学评价1.学生的反应与参与情况;2.学生的思维能力和数学素养;3.学生的作业完成情况。
六、教学方法1.游戏法游戏法是引入鸽巢问题的好方法,通过游戏的方式激发学生的兴趣,帮助学生更好地理解鸽巢问题的基本概念和规律。
2.讲解法教师可以通过讲解和演示的方式,让学生更好地理解鸽巢问题的基本理论和规律,例如引导学生运用公式来解决具体问题。
3.归纳法归纳法是学生掌握鸽巢数问题规律的重要方法,教师可以通过多种例子引导学生对规律进行总结和归纳。
第五单元数学广角——鸽巢问题B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
在中国古代,文案亦作" 文按"。
公文案卷。
《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。
"《晋书·桓温传》:"机务不可停废,常行文按宜为限日。
" 唐戴叔伦《答崔载华》诗:"文案日成堆,愁眉拽不开。
"《资治通鉴·晋孝武帝太元十四年》:"诸曹皆得良吏以掌文按。
"《花月痕》第五一回:" 荷生觉得自己是替他掌文案。
"旧时衙门里草拟文牍、掌管档案的幕僚,其地位比一般属吏高。
《老残游记》第四回:"像你老这样抚台央出文案老爷来请进去谈谈,这面子有多大!"夏衍《秋瑾传》序幕:"将这阮财富带回衙门去,要文案给他补一份状子。
"文案音译文案英文:copywriter、copy、copywriting文案拼音:wén àn现代文案的概念:文案来源于广告行业,是"广告文案"的简称,由copy writer翻译而来。
多指以语辞进行广告信息内容表现的形式,有广义和狭义之分,广义的广告文案包括标题、正文、口号的撰写和对广告形象的选择搭配;狭义的广告文案包括标题、正文、口号的撰写。
精品案例数学广角“鸽巢问题”教学设计文|丁海生观察人教版小学数学教材,可以发现每册教材中都有一个单元是关于“数学广角”的内容,但它的作用是什么呢?为什么教材要这样设置呢?“数学广角”为什么不直接叫做“数学单元应用”呢?其实仔细阅读后可以发现在这一部分的课题中,教材着重向学生渗透一些数学思想及方法,使学生深入理解本册教材中抽象的数学理念、公式、定理,并加以综合应用,将数学问题与实际生活相联系,使数学原理不再是束之高阁的真理,而是平易近人的解决方式,培养学生的数学核心素养。本文将以人教版小学数学六年级下册的“数学广角”单元的“鸽巢问题”教学设计为例,观察“数学广角”单元在教学中发挥的独特作用。一、教学目标绎初步认识“鸽巢问题”;通过观察、比较、判断、归纳等方法,经历“鸽巢问题”的探究过程;理解几个不同原理虽然使用的名字不同,但是其本质相同。绎明白“鸽巢问题”的推导过程,掌握“鸽巢问题”的一般形式;能够应用“鸽巢问题”解决实际问题。绎通过“鸽巢问题”的灵活运用,对数学推理有进一步的认识,对数学的严密性和科学性有更深的体会;感受数学的独特魅力,渗透数学的模型思想。二、教学重、难点教学重点:理解“鸽巢问题”的具体内容,掌握先“平均分”,再分配的方法。教学难点:学生理解“总有”“至少”词语的意义,知道数量与种类之间的联系;建立鸽子与鸟巢的数学模型。三、教材分析“鸽巢问题”中包含着一个重要而又基础的数学问题,应用其中的原理可以解决很多问题,本节课学生初步认识这一问题中蕴含的定理,了解定理的由来,通过几个直观的数学情境,明白重点词汇下的组合分配方式,在理解的基础上,对一些简单的实际问题加以“模型化”,应用“鸽巢问题”解决。在模型的不断建立过程中,加深对“鸽巢问题”的理解应用,从而在复杂的数学问题中可以拓展应用。四、学情分析学生对“平均分”有一定的了解。“数学是思维的体操”,“鸽巢问题”就是学生应用数学知识推理得出结论的过程。但由于“鸽巢问题”关键是一个抽象的存在性问题,学生理解易存在偏差,故教师教学中要把握实际与抽象转换的界限,使学生深刻理解数学原理,并建立起自己的思维模型,这具有一定的挑战性。五、教学过程(一)复习旧知,导入主题师:同学们,老师家里有两个苹果,但是却有四个家人需要分享苹果,应该怎么分配呢?生:我知道!可以将苹果对半切开,然后就可以进行平均分配了。(引导学生说出“平均分”的概念)师:看来大家都很聪明呢!那如果老师需要分配的物品不能拆分呢,现在老师家里养了四只鸽子,需要将它们放在三只鸟笼里,你还会分配吗?(教师通过“平均分”概念导入,但是与之前平均分配问题不同的是本节课中的物品不可拆分,引导学生从平均分配的状态进入推理分配的情境)(设计意图:通过两个小的生活情境导入,第一情境采用可以拆分的物品,学生可以采用平均分的方式进行分配,第二个情境采用不可拆分物品进行提问,二者形成对比,学生借此思考在不同物品状态下的推理。导入今天的新课,不可拆分物品下的分配状态。)25教学·现场(二)创设情境,引出问题师:看来同学们对“鸽子的家在哪里”都很感兴趣,那现在我们一起动手操作模拟一下这个情境。教师指导学生利用身边力所能及的物品模拟情境。用铅笔替代鸽子,笔筒代替鸟笼,以小组为单位,尝试将物品进行分配。师:如果将四支铅笔放入三个笔筒,你会怎么分配呢?(引导学生再次明确探究的问题,关注问题本质,不单单是某个物体或者情境,而是类似情境需要解决问题的迁移)(设计意图:指导学生进行情境的模拟,为之后的动手操作作准备,也使学生了解到这个问题并不是仅仅只存在特定情境下,而是通过不同的生活情境总结出的一类问题的特性。)(三)自主探究,解决问题学生探究,分小组反馈成果。(学生操作,教师巡视指导)1.直观列举这一组学生认为鸽子只有四只,数量不多,可以将所有的可能情况列出再进行探究。他们将四支铅笔进行分配,分配方式有四种:0000图1第一种,所有笔筒先进行平均分配,采用之前所学的除法算式进行列式,发现余下一支铅笔,而这只铅笔只能随机分配给其中的一个笔筒,才能保证所有的铅笔都能有笔筒放置。第二种,笔筒的大小并未确定,这组学生认为可以直接都放进一个笔筒,这样就不存在分配的问题。第三种,在上一组学生的影响下发现有两个笔筒处于空置状态,如果只有一个笔筒空置的话,我们就可以将四支铅笔平均放入两个笔筒中。第四种,有一个笔筒空置的情况时,我们可以将其余两个笔筒中的一个放入三支,一个放入一支,也不失为一种分配方式。在进行完情况的模拟后,他们还进行了作图列举,如图1。2.理论推理
《数学广角——鸽巢问题》教案谈话导入:(3分)1、同学们,今年是2023年,老师是一位预言家,你不信?请你在纸上写三位你的好朋友的名字,我预言你的三位好朋友中至少有两位是同性,对不对?。
2、你想不想当一名预言家?谁来试试?从一副扑克牌中抽出大小王,还剩下52张,任意抽取5张牌,谁预言一下总有一种花色至少有几张牌?(学生预测,贴黑板上展示)前四张牌没有花色相同的,大家觉得这位预言家的运气怎么样?你现在的心情怎么样?为什么?(预测成功,我们给他5秒钟的掌声)(起立,上课)一、由难到易,认识原理。
(15分)1、出示难题:师:在最不利的情况下,他的预言都能实现,那么其他的情况呢?(生:一定能够实现)(板书:一定)师:其实在我们的数学世界里有些情况也是一定会发生的,我们一起来研究好不好?(点击课件)“集会问题”1947年的匈牙利全国数学竞赛上有这样一道题目,后来刊登在1958年6月号的《美国数学月刊》上,曾经难倒了很多的数学家:在任意6个人的集会上,一定可以找到3个互相认识的人,或者3个互相不认识的人。
师:这道题有人能够解决吗?挺难的是吧,当我们面对一个很困难的问题时要把它搞懂,可以采用一种有效地策略,退一步,从简单情况入手(板书:化难为易)2、化难为易,理解原理(1)4进3把4支笔任意放进3个笔筒里,有哪些摆法?出示合作要求:同桌左右两个同学一组,可以写一写,画一画,摆一摆,用你喜欢的方法演示一下,并用你喜欢的方式在纸上记录下结果。
(可以有空笔筒)用一个圆圈表示笔筒,用一竖线表示笔。
学生思考,摆放、画图。
全班交流,(板书:枚举、画图、分解、假设)(2)5进4……n+1进n师:如果把5支笔放进4个笔筒里会出现什么样的结果?可以画可以不画。
师:把6支笔放进5个笔筒里呢?师:把7支笔放进6个笔筒里呢?把8支笔放进7个笔筒里呢?……把100支笔放进99个笔筒里呢?你发现了什么?生:我发现铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
六年级数学下册第五单元5.1《数学广角—鸽巢问题》教案教学目标:1.知识与技能:知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。
2.过程与方法:通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。
3.情感态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。
教学重难点:把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。
教学准备:多媒体课件一、情景引入(课件展示)我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?二、导入新课例1、把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生动手操作:方法一:把各种情况都摆出来。
(列举法)方法二:把4分解成3个数。
(分解法)例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
例2、把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?如果有8本书会怎样呢?10本书呢?方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。
所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
8÷3=2余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。
人教新课标六年级数学下册 5《数学广角——鸽巢问题》教案一. 教材分析《数学广角——鸽巢问题》是人教新课标六年级数学下册的一章内容。
本章主要让学生了解并掌握鸽巢问题的基本原理和解决方法,培养学生运用数学知识解决实际问题的能力。
本节课的内容对于学生来说是一个比较新的概念,需要通过实例和活动来帮助学生理解和掌握。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和问题解决能力,但是对于鸽巢问题这样的数学问题可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和活动来激发学生的兴趣,引导学生主动参与和思考。
三. 教学目标1.让学生了解并掌握鸽巢问题的基本原理和解决方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.鸽巢问题的基本原理和解决方法。
2.如何运用数学知识解决实际问题。
五. 教学方法1.实例教学:通过具体的实例来引导学生理解和掌握鸽巢问题的解决方法。
2.小组合作:通过小组合作的方式让学生共同解决问题,培养学生的团队合作能力。
3.问题解决:引导学生运用数学知识解决实际问题,培养学生的问题解决能力。
六. 教学准备1.准备相关的实例和活动材料。
2.准备鸽巢问题的相关练习题。
七. 教学过程导入(5分钟)教师通过向学生提出一个问题:“如果有5只鸽子要放在3个鸽巢里,每个鸽巢至少要放几只鸽子?”来引起学生的兴趣和思考。
呈现(10分钟)教师通过展示一些实际的例子,如5个学生要坐3张桌子,每张桌子至少要坐几名学生?让学生直观地理解和感受鸽巢问题的解决方法。
操练(10分钟)教师引导学生进行小组合作,让学生自己尝试解决一些类似的鸽巢问题。
教师可以提供一些提示和指导,帮助学生解决问题。
巩固(10分钟)教师提供一些练习题,让学生独立解决。
教师可以选取一些学生的解答进行讲解和分析,巩固学生对鸽巢问题的理解和掌握。
拓展(10分钟)教师引导学生思考一些拓展性的问题,如:“如果有8只鸽子要放在5个鸽巢里,每个鸽巢至少要放几只鸽子?”让学生运用所学的知识和方法解决更复杂的问题。