FIR低通滤波器设计
- 格式:docx
- 大小:36.96 KB
- 文档页数:2
FIR滤波器设计实验报告实验报告:FIR滤波器设计一、实验目的:本实验旨在通过设计FIR滤波器,加深对数字信号处理中滤波器原理的理解,掌握FIR滤波器的设计方法和调试技巧。
二、实验原理:在窗函数法中,常用的窗函数有矩形窗、三角窗、汉明窗和黑曼窗等。
根据实际需求选择适当的窗口函数,并通过将窗口函数应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
三、实验步骤:1.确定滤波器的阶数和截止频率。
2.选择适当的窗口函数,如汉明窗。
3.计算出理想低通滤波器的冲激响应。
4.将选定的窗口函数应用到理想低通滤波器的冲激响应中。
5.得到FIR滤波器的冲激响应。
四、实验结果:假设要设计一个阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz。
1.选择汉明窗作为窗口函数。
2.根据采样频率和截止频率计算出理想低通滤波器的冲激响应。
假设截止频率为f_c,则理想低通滤波器的冲激响应为:h(n) = 2f_c * sinc(2f_c * (n - (N-1)/2))其中,sinc(x)为正弦函数sin(x)/x。
3.将汉明窗应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
具体计算过程如下:h(n) = w(n) * h_ideal(n)其中,w(n)为汉明窗:w(n) = 0.54 - 0.46 * cos(2πn/(N-1))h_ideal(n)为理想低通滤波器的冲激响应。
4.计算得到FIR滤波器的冲激响应序列。
五、实验总结:本次实验通过设计FIR滤波器,加深了对数字信号处理中滤波器原理的理解。
掌握了FIR滤波器的设计方法和调试技巧。
通过设计阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz的实例,了解了窗函数法设计FIR滤波器的具体步骤,并得到了滤波器的冲激响应。
【备注】以上内容仅为参考,具体实验报告内容可能根据实际情况有所调整。
电子科技大学信息与软件工程学院学院标准实验报告(实验)课程名称数字信号处理电子科技大学教务处制表电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理:1. FIR 滤波器FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。
M 阶FIR 滤波器的系统函数H(z)为()[]Mkk H z h k z-==∑其中H(z)是kz-的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z平面原点z=0有M 个极点.FIR 滤波器的频率响应()j H e Ω为 0()[]Mj jk k H e h k e Ω-Ω==∑它的另外一种表示方法为()()()j j j H e H e e φΩΩΩ=其中()j H e Ω和()φΩ分别为系统的幅度响应和相位响应。
若系统的相位响应()φΩ满足下面的条件()φαΩ=-Ω即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。
由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。
如果一个离散系统的频率响应()j H e Ω可以表示为()()()j j H e A e αβΩ-Ω+=Ω其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。
如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为[][]h k h M k =±-当h[k]满足h[k]=h[M-k],称h[k]偶对称。
当h[k]满足h[k]=-h[M-k],称h[k]奇对称。
按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。
2. 窗函数法设计FIR 滤波器窗函数设计法又称为傅里叶级数法。
基于汉明窗函数的FIR低通滤波器设计及性能分析FIR低通滤波器是一种常用的数字滤波器,用于处理数字信号中频率较低的成分,将高频成分滤除。
在设计FIR低通滤波器时,常使用汉明窗函数来实现。
本文将介绍基于汉明窗函数的FIR低通滤波器的设计方法和性能分析。
首先,要设计一个FIR低通滤波器,需要确定以下几个参数:滤波器阶数N、采样频率fs、截止频率fc和窗函数类型。
本文将以汉明窗函数为例,演示如何设计FIR低通滤波器。
1. 滤波器阶数N的确定:滤波器阶数N决定了滤波器的复杂度和性能。
一般来说,阶数越高,滤波器的性能越好,但计算复杂度也相应增加。
因此,需要在滤波器性能和计算复杂度之间做出平衡。
常用的方法是根据滤波器的截止频率和采样频率来确定阶数N。
一般可以使用公式N=4fs/fc来初步估计阶数N,然后根据实际需求进行调整。
2. 窗函数的选择:本文选择汉明窗函数作为设计FIR低通滤波器的窗函数。
汉明窗函数在频域上具有较好的副瓣抑制性能,适合用于低通滤波器设计。
3. 窗函数的定义:汉明窗函数的表达式为:w(n) = 0.54 - 0.46*c os(2πn/(N-1)), 0 ≤ n ≤ N-1其中,N为窗函数的长度,n为窗函数的离散时间索引。
4. FIR低通滤波器的设计:设计FIR低通滤波器的步骤如下:1)确定滤波器阶数N;2)选择截止频率fc;3)计算滤波器系数h(n);4)对滤波器系数h(n)进行归一化处理。
5. 滤波器系数的计算:滤波器系数h(n)的计算公式为:h(n) = wc/pi * sinc(wc*(n-(N-1)/2)/pi)其中,wc为归一化的截止频率,wc=2πfc/fs。
sinc(x)为正弦函数sin(x)/x。
6. 归一化处理:对滤波器系数h(n)进行归一化处理,即将系数乘以汉明窗函数的值。
即:hn(n) = h(n) * w(n),0 ≤ n ≤ N-17. 性能分析:设计完毕后,需要进行性能分析来评估滤波器的性能。
基于频率抽样法的低通FIR滤波器的设计频率抽样法是一种常用于低通FIR滤波器设计的方法。
该方法通过选择适当的截止频率和滤波器阶数,将输入信号在频域上进行采样和截断,从而实现低通滤波的效果。
下面将详细介绍基于频率抽样法的低通FIR滤波器的设计过程。
首先,我们需要确定滤波器的截止频率。
截止频率是指滤波器输出信号的频率不再受到滤波器影响的最高频率。
在设计过程中,我们可以根据具体的应用需求或者信号特性来确定截止频率。
接下来,我们需要确定滤波器的阶数。
阶数是指滤波器的系数个数,决定了滤波器的复杂度和性能。
一般来说,随着阶数的增加,滤波器的性能会提升,但也会增加计算量和存储空间的要求。
因此,我们需要在设计过程中综合考虑性能和复杂度的平衡。
设计过程中的下一步是根据截止频率和阶数来计算滤波器的频率响应。
频率响应是指滤波器在不同频率下的增益特性。
在频率抽样法中,我们可以通过使用窗函数来设计滤波器的频率响应。
常用的窗函数包括矩形窗、汉宁窗、布莱克曼窗等。
通过对频率响应和窗函数进行卷积操作,我们可以得到滤波器的时域响应。
时域响应是指滤波器对输入信号的时域影响。
具体的计算方法可以使用离散时间傅里叶变换(DFT)或者快速傅里叶变换(FFT)。
设计完成后,我们需要对滤波器进行实现和验证。
在实现过程中,我们可以使用各种软件工具或者硬件设备来生成滤波器的系数和实际滤波过程。
在滤波器验证过程中,我们可以使用各种信号源输入到滤波器中,并通过观察输出信号的频谱特性和滤波效果来验证滤波器的性能。
总结起来,基于频率抽样法的低通FIR滤波器的设计过程包括确定截止频率和阶数、计算频率响应、使用窗函数设计滤波器时域响应、滤波器实现和验证等步骤。
通过这些步骤,我们可以设计出滤波器满足特定的低通滤波需求,并在实际应用中实现信号的滤波和处理。
FIR滤波器的设计与性能评估一、引言滤波器在信号处理中起到了至关重要的作用。
滤波器可以根据信号的频率特性对信号进行处理,使我们可以去除噪声、增强感兴趣的频段等操作。
本文将介绍FIR(Finite Impulse Response)滤波器的设计原理和性能评估方法。
二、FIR滤波器的设计方法FIR滤波器是一种经典的数字滤波器,它利用有限的输入响应对输入信号进行滤波处理。
FIR滤波器具有线性相位和稳定性等优点,因此在许多应用中得到广泛应用。
1. 理想低通滤波器设计首先,我们需要确定FIR滤波器的设计参数,其中最基本的是滤波器的类型。
假设我们需要设计一个低通滤波器,即只保留低于一定频率的信号分量。
可以采用理想低通滤波器的方法进行设计。
2. 频率响应的离散化接下来,我们需要将理想低通滤波器的频率响应离散化,得到滤波器的系数。
常用的方法有频率采样法和窗函数法。
频率采样法通过在频域上均匀采样理想滤波器的频率响应得到系数,而窗函数法则需要选择一个窗函数来对离散化后的频率响应进行加窗。
3. 系数计算与滤波器实现根据离散化后的频率响应,可以通过逆变换得到滤波器的系数。
然后,我们可以将这些系数用于实现FIR滤波器。
常见的实现方式包括直接形式(Direct Form)、级联形式(Cascade Form)和线性相位形式(Linear Phase Form)等。
三、FIR滤波器的性能评估方法设计完成后,我们需要对FIR滤波器进行性能评估,以确保其能够满足我们的需求。
1. 幅频响应和相频响应在性能评估中,我们通常关注滤波器的幅频响应和相频响应。
幅频响应可以反映滤波器对不同频率分量的衰减或增益情况,而相频响应则描述了信号在滤波器中的相位变化。
2. 截止频率和过渡带宽对于低通滤波器而言,截止频率和过渡带宽是评估性能的重要指标。
截止频率是指滤波器开始起作用的频率,而过渡带宽则是指截止频率和衰减区域之间的频率范围。
3. 线性相位特性FIR滤波器具有线性相位的特点,这意味着不同频率分量的信号在滤波器中的延迟是相同的。
设计低通FIR滤波器。
通带边缘频率10KHz,阻带边缘频率22KHz,阻带衰减75dB,采样频率50KHz窗函数选定:阻带衰减75dB,选择blackman窗截止频率:2pi*(10+(22-10)/2)/50 = 0.64pi窗函数长度:blackman窗的过渡带宽为5.98,单位为2pi/N,而要设计的低通滤波器的过渡带宽为2pi*12/50=0.48pi,二者相等,得N=24.9,取25。
理想低通滤波器脉冲响应:h1[n] = sin(nΩ1)/n/pi = sin(0.64pi*n)/n/pi窗函数为:w[n] = 0.42 - 0.5cos(2pi*n/24) + 0.8cos(4pi*n/24)则滤波器脉冲响应为:h[n] = h1*w[n] |n|<=12h[n] = 0 |n|>12#include "DSP281x_Device.h"DSP281x Headerfile Include File#include "DSP281x_Examples.h"DSP281x Examples Include File#include "f2812a.h"#include"math.h"#define FIRNUMBER 25#define SIGNAL1F 1000#define SIGNAL2F 4500#define SAMPLEF 10000#define PI 3.1415926float InputWave();float FIR();float fHn[FIRNUMBER]={ 0.0,0.0,0.001,-0.002,-0.002,0.01,-0.009,-0.018,0.049,-0.02,0.11,0.28,0.64,0.28,-0.11,-0.02,0.049,-0.018,-0.009,0.01,-0.002,-0.002,0.001,0.0,0.0};float fXn[FIRNUMBER]={ 0.0 };float fInput,fOutput;float fSignal1,fSignal2;float fStepSignal1,fStepSignal2;float f2PI;int i;float fIn[256],fOut[256];int nIn,nOut;main(void){nIn=0; nOut=0;f2PI=2*PI;fSignal1=0.0;fSignal2=PI*0.1;fStepSignal1=2*PI/30;fStepSignal2=2*PI*1.4;while ( 1 ){fInput=InputWave();fIn[nIn]=fInput;nIn++; nIn%=256;fOutput=FIR();fOut[nOut]=fOutput;nOut++;if ( nOut>=256 ){nOut=0; /* 请在此句上设置软件断点*/ }}}float InputWave(){for ( i=FIRNUMBER-1;i>0;i-- )fXn[i]=fXn[i-1];fXn[0]=sin(fSignal1)+cos(fSignal2)/6.0; fSignal1+=fStepSignal1;if ( fSignal1>=f2PI ) fSignal1-=f2PI;fSignal2+=fStepSignal2;if ( fSignal2>=f2PI ) fSignal2-=f2PI;return(fXn[0]);}float FIR(){float fSum;fSum=0;for ( i=0;i<FIRNUMBER;i++ ) {fSum+=(fXn[i]*fHn[i]);}return(fSum);}。
DSP的FIR设计C语言编写FIR(Finite Impulse Response)滤波器是数字信号处理中常用的一种滤波器类型。
它具有有限的冲激响应,只对有限长度的输入信号做出响应。
低通滤波器是一种能够通过滤除高频分量而保留低频分量的滤波器。
FIR低通滤波器的设计可以通过数字滤波器设计方法来实现,其中一种常用的方法是窗函数法。
以下是一个用C语言编写的FIR低通滤波器设计实例:```c#include <stdio.h>#include <stdlib.h>#include <math.h>//FIR低通滤波器设计函数void fir_lowpass_filter_design(float *filter, int order, float cutoff_freq, float sampling_freq)int i;float omega_c = 2 * M_PI * cutoff_freq / sampling_freq;//计算滤波器系数for (i = 0; i <= order; i++)if (i == (order / 2))filter[i] = omega_c / M_PI;filter[i] = sin(omega_c * (i - (order / 2))) / (M_PI * (i - (order / 2)));}int mainint order = 51; // 滤波器阶数float cutoff_freq = 1000.0; // 截止频率float sampling_freq = 8000.0; // 采样频率float *filter = malloc((order + 1) * sizeof(float)); // 分配滤波器系数数组内存//调用FIR低通滤波器设计函数fir_lowpass_filter_design(filter, order, cutoff_freq, sampling_freq);//打印滤波器系数printf("Filter Coefficients:\n");for (int i = 0; i <= order; i++)printf("h[%d] = %f\n", i, filter[i]);}free(filter); // 释放滤波器系数数组内存return 0;上述代码中的`fir_lowpass_filter_design`函数用于计算滤波器系数,其参数`filter`是一个指向滤波器系数数组的指针,`order`是滤波器阶数,`cutoff_freq`是截止频率,`sampling_freq`是采样频率。
FIR低通滤波器的设计低通滤波器是一种常见的信号处理工具,它可以将高频信号从输入信号中滤除,只留下低频信号。
在很多应用中,低通滤波器被用于去除噪声、平滑信号、降低带宽等。
设计一个低通滤波器需要考虑多个因素,包括滤波器类型、阶数、截止频率、群延迟等。
以下是设计低通滤波器的步骤:1. 确定滤波器类型:首先需要选择滤波器的类型,常见的低通滤波器有巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等。
每种类型的滤波器有不同的特性和设计参数,选择合适的类型取决于具体的应用需求。
2.确定滤波器阶数:滤波器的阶数与其滤波特性的平滑程度有关,阶数越高,滤波曲线越陡峭。
一般来说,阶数越高,滤波器设计越复杂,实现难度也越大。
选择适当的阶数需要在设计要求和性能之间进行平衡。
3.确定截止频率:截止频率是指滤波器在此频率以下开始滤除高频信号的频率。
确定截止频率需要考虑到信号中的有用频率范围以及滤波器对信号的影响。
需要注意的是,低通滤波器的截止频率应该小于采样频率的一半,否则会导致混叠效应。
4.根据以上参数进行滤波器设计:根据选择的滤波器类型、阶数和截止频率,可以利用不同的设计方法进行滤波器设计。
常用的设计方法有频率变换法、零极点法、传递函数设计法等。
这些方法可以通过数学计算或者使用相关软件进行设计。
5.实现滤波器:设计好滤波器后,需要将其实现到具体的系统中。
这通常涉及到电子电路、数字信号处理器(DSP)或者软件实现。
具体的实现方式取决于应用要求和所使用的平台。
在设计低通滤波器时,还需要考虑一些其他因素,例如群延迟、通带波动、阻带抑制等。
群延迟是指滤波器对不同频率的信号引起的延迟差异,通常希望群延迟尽可能平均,以避免引起相移问题。
通带波动是指滤波器在通带内的幅频响应变化情况,阻带抑制是指滤波器在阻带内对高频信号的抑制能力。
总结来说,低通滤波器设计是一个综合考虑信号需求、滤波器特性和实现条件的过程。
FIR 低通滤波器设计报告信息工程 信息与通信工程 2111203024 xxx1. 设计内容本设计是基于FPGA 的一个FIR 低通滤波器设计,要求使用Verilog 语言编写滤波器模块,通过编译和综合,并通过Matlab 和modelsim 联合仿真验证设计结果。
2. 设计原理FIR 滤波器响应(简称FIR )系统的单位脉冲响应()h n 为有限长序列,系统函数()H z 在有限z 平面上不存在极点,其运算结构中不存在反馈支路,即没有环路。
如果()h n 的长度为N ,则它的系统函数和差分方程一般具有如下形式:10()()N n n H z h n z --==∑10()()()N m y n h m x n m -==-∑根据差分方程直接画出FIR 滤波器的结构,称为直接型结构。
如图所示:图2.1 FIR 滤波器直接结构FIR 滤波器的特点:单位脉冲响应序列为有限个;可快速实现;可得到线性相位;滤波器阶数较高。
对线性时不变系统保持线性相位的条件是:单位脉冲响应为偶对称或奇对称。
即:为设计线性滤波器,应保证h(n)为对称的。
1)若N 为偶数,其线性相位FIR 滤波器的对称结构流图:图2.2 若N为偶数线性相位FIR滤波器的对称结构流图图中:“ +1 ”对应偶对称情况,“ -1 ”对应奇对称情况。
当n为奇数时,最后一个支路断开。
2)若N为奇数,其线性相位FIR滤波器的对称结构流图:图2.3 N为奇数线性相位FIR滤波器的对称结构流图在本设计中,我们采用线性FIR低通滤波器,所采用的阶数N=8,所以是偶对称的,估采取图2.2的结构,其中“±1“取“+1”。
3.设计思路要在FPGA上实现FIR滤波器,首先要确定滤波器的抽头系数。
其系数的确定,我们可以通过两种办法来实现:第一种就是通过matlab编写FIR滤波器程序,然后直接导出抽头系数“h(n)”,另外一种办法就是使用matlab自带的FDATOOL简便地设计一个FIR滤波器,然后导出系数。
FIR 滤波器的设计一:性能要求1、用窗函数法设计一个线性相位FIR 低通滤波器,使用MATLAB 软件实现FIR 低通滤波器,设计指标如下:通带截止频率0.2p ωπ=,阻带截止频率0.3s ωπ=,阻带衰减不小于40dB ,通带衰减不大于3dB 。
画出滤波器的幅频响应曲线和相频响应曲线并说明窗口长度N 和窗函数类型。
2、设希望逼近的理想滤波器频率响应为()j d H e ω,其单位脉冲响应为()dh n 。
根据傅里叶变换定义,有()()j j nd dn H eh n eωω∞-=-∞=∑ (1-1)()()12jj nd dh n H e e d πωωπωπ-=⎰(1-2)同样,设要求设计的滤波器频率响应为()j H e ω,其单位脉冲响应为()h n 。
它们的傅里叶变换为()()j j nn H e h n eωω∞-=-∞=∑ (1-3)()()12j j n h n H e e d πωωπωπ-=⎰(1-4)由于()j d H eω为理想滤波器频率响应,一般为矩形频率响应曲线,故()dh n 是无限长序列,并且是非因果的;而所要设计的是物理可实现的FIR 数字滤波器,所以()h n 必须是有限长的。
因此,要用有限长序列()h n 的频率响应来逼近无限长序列()d h n 的频率响应。
为了构造一个长度为N 的线性相位FIR 数字滤波器,最有效的方法就是截取()d h n ,并保证所截取的()d h n 是关于12N n -=对称的,或者说,用一个有限长的窗函数序列()n ω来截取()d h n ,既()()()d h n n h n ω= (1-5)实际设计的滤波器的单位脉冲响应为()h n ,长度为N ,其系统函数为()H z ,这样用一个有限长的序列()h n 去代替()d h n ,肯定会引起误差,表现在频域就是通常所说的吉布斯效应。
该效应引起过渡带加宽以及通带和阻带内的波动,尤其使阻带的衰减减小,从而满足不了技术上的要求。
FIR滤波器设计与实现实验报告目录一、实验概述 (2)1. 实验目的 (3)2. 实验原理 (3)3. 实验设备与工具 (4)4. 实验内容与步骤 (6)5. 实验数据与结果分析 (7)二、FIR滤波器设计 (8)1. 滤波器设计基本概念 (9)2. 系数求解方法 (10)频谱采样法 (11)最小均方误差法 (14)3. 常用FIR滤波器类型 (15)线性相位FIR滤波器 (16)非线性相位FIR滤波器 (18)4. 设计实例与比较 (19)三、FIR滤波器实现 (20)1. 硬件实现基础 (21)2. 软件实现方法 (22)3. 实现过程中的关键问题与解决方案 (23)4. 滤波器性能评估指标 (25)四、实验结果与分析 (26)1. 实验数据记录与处理 (27)2. 滤波器性能测试与分析 (29)通带波动 (30)虚部衰减 (31)相位失真 (32)3. 与其他设计方案的对比与讨论 (33)五、总结与展望 (34)1. 实验成果总结 (35)2. 存在问题与不足 (36)3. 未来发展方向与改进措施 (37)一、实验概述本次实验的主要目标是设计并实现一个有限脉冲响应(Finite Impulse Response,简称FIR)滤波器。
FIR滤波器是数字信号处理中常用的一种滤波器,具有线性相位响应和易于设计的优点。
本次实验旨在通过实践加深我们对FIR滤波器设计和实现过程的理解,提升我们的实践能力和问题解决能力。
在实验过程中,我们将首先理解FIR滤波器的基本原理和特性,包括其工作原理、设计方法和性能指标。
我们将选择合适的实验工具和环境,例如MATLAB或Python等编程环境,进行FIR滤波器的设计。
我们还将关注滤波器的实现过程,包括代码编写、性能测试和结果分析等步骤。
通过这次实验,我们期望能够深入理解FIR滤波器的设计和实现过程,并能够将理论知识应用到实践中,提高我们的工程实践能力。
本次实验报告将按照“设计原理设计方法实现过程实验结果与分析”的逻辑结构进行组织,让读者能够清晰地了解我们实验的全过程,以及我们从中获得的收获和启示。
fir滤波器的设计及实现
FIR滤波器的设计及实现步骤如下:
1.调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示
xt及其频谱。
2.设计低通滤波器,从高频噪声中提取xt中的单频抑制载波调幅信
号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。
观察xt的频谱,确定滤波器指标参数。
3.根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用
MATLAB函数firl设计一个FIR低通滤波器,并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
4.重复步骤3,滤波器指标不变,但改用等波纹最佳逼近设计FIR
滤波器,调用MATLAB函数remezord和remez设计FIR数字滤波器。
比较两种设计方法的滤波器的阶数。
低通FIR数字滤波器设计(1)设计方案本设计利用窗函数法设计了一个低通FIR数字滤波器,利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图。
FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。
目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。
由于窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的,本设计方案选用窗函数法基本思路:从时域出发设计 h(n)逼近理想 hd(n)。
设理想滤波器的单位响应在时域表达为hd(n),则hd(n) 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器单位抽样响应 h(n),最直接的方法是先将hd(n)往右平移,再进行截断,即截取为有限长因果序列:h(n)=hd(n)w(n),并用合适的窗函数进行加权作为 FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,线性相位FIR数字低通滤波器的单位抽样响应h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,返个现象称为吉布斯(Gibbs)效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
MATLAB 设计 FIR 滤波器有多种方法和对应的函数。
从根本上讲,使用窗函数的目的就是消除由无限序列的截短而引起的Gibbs现象所带来的影响。
(2)MATLAB程序设计和仿真图MATLAB程序如下:f1=100;f2=200;%待滤波正弦信号频率fs=2000;%采样频率m=(0.3*f1)/(fs/2);%定义过度带宽M=round(8/m);%定义窗函数的长度N=M-1;%定义滤波器的阶数b=fir1(N,0.5*f2/(fs/2));%使用fir1函数设计滤波器%输入的参数分别是滤波器的阶数和截止频率figure(1)[h,f]=freqz(b,1,512);%滤波器的幅频特性图%[H,W]=freqz(B,A,N)当N是一个整数时函数返回N点的频率向量和幅频响应向量plot(f*fs/(2*pi),20*log10(abs(h)))%参数分别是频率与幅值xlabel('频率/赫兹');ylabel('增益/分贝');title('滤波器的增益响应');figure(2)subplot(211)t=0:1/fs:0.5;%定义时间范围和步长s=sin(2*pi*f1*t)+sin(2*pi*f2*t);%滤波前信号plot(t,s);%滤波前的信号图像xlabel('时间/秒');ylabel('幅度');title('信号滤波前时域图');subplot(212)Fs=fft(s,512);%将信号变换到频域AFs=abs(Fs);%信号频域图的幅值f=(0:255)*fs/512;%频率采样plot(f,AFs(1:256));%滤波前的信号频域图xlabel('频率/赫兹');ylabel('幅度');title('信号滤波前频域图');figure(3)sf=filter(b,1,s);%使用filter函数对信号进行滤波%输入的参数分别为滤波器系统函数的分子和分母多项式系数向量和待滤波信号输入subplot(211)plot(t,sf)%滤波后的信号图像xlabel('时间/秒');ylabel('幅度');title('信号滤波后时域图');axis([0.2 0.5 -2 2]);%限定图像坐标范围subplot(212)Fsf=fft(sf,512);%滤波后的信号频域图AFsf=abs(Fsf);%信号频域图的幅值f=(0:255)*fs/512;%频率采样plot(f,AFsf(1:256))%滤波后的信号频域图xlabel('频率/赫兹');ylabel('幅度');title('信号滤波后频域图');低通的FIR数字滤波器的仿真图如图8~图10所示:图8低通FIR滤波器的增益响应图9 滤波前的信号时域图和频域图图10 滤波后的信号时域图和频域图。
基于汉明窗函数的FIR低通滤波器的设计FIR(Finite Impulse Response)低通滤波器是一种常用的数字滤波器,常用于信号处理和通信系统中,可以用于信号去噪、信号平滑和频率分析等应用。
本文将讨论基于汉明窗函数的FIR低通滤波器的设计原理和步骤。
汉明窗函数是一种常用的窗函数,它能够在频域上对滤波器的频率响应进行调整,从而实现滤波器在频率上的截止效果。
汉明窗函数的特点是窗口两端的幅度衰减较慢,能够提供较好的低频衰减特性。
设计基于汉明窗函数的FIR低通滤波器,一般包括以下步骤:1. 确定滤波器的阶数和截止频率:阶数决定了滤波器的复杂度,而截止频率则决定了滤波器的频率截止效果。
根据具体应用需求,选择适当的阶数和截止频率。
2. 计算滤波器的理想频率响应:理想的低通滤波器频率响应在截止频率之前的幅度为1,截止频率之后的幅度为0。
根据滤波器的阶数和截止频率,计算出滤波器的理想频率响应。
3. 计算滤波器的单位冲激响应:使用逆离散傅里叶变换(IDFT)将滤波器的理想频率响应转换为单位冲激响应。
单位冲激响应描述了滤波器对单位冲激信号的响应。
4. 应用窗函数:将计算得到的单位冲激响应与汉明窗函数进行卷积操作,从而得到最终的滤波器冲激响应。
窗函数的作用是降低滤波器的频率响应在截止频率附近的波动,使滤波器具备较好的截止频率特性。
5. 设计具体的滤波器系数:通过对滤波器的冲激响应进行采样,得到滤波器的系数。
滤波器系数是滤波器的频率响应和相位响应的离散表示,决定了滤波器的实际滤波效果。
6. 优化滤波器性能:可以采用窗函数和滤波器阶数的调整来优化滤波器的性能。
调整窗函数可以改变滤波器的频率特性,调整阶数可以改变滤波器的频率截止效果。
在设计完成后,可以将设计得到的FIR低通滤波器应用于实际的信号处理或通信系统中。
通过滤波器的输入信号与滤波器系数的卷积运算,可以得到滤波器输出信号,从而实现对输入信号的滤波处理。
需要注意的是,在实际应用中,可能还需要考虑滤波器的响应时间、滤波器的实现形式(直接形式、级联形式等)等因素。
FIR低通滤波器设计
一、FIR低通滤波器的设计原理
FIR低通滤波器是通过截断滤波器的频率响应来实现的。
设计过程中,需要确定滤波器的截止频率和滤波器的阶数。
阶数越高,滤波器的性能越好,但需要更多的计算资源。
截止频率决定了滤波器的带宽,对应于滤波
器的3dB截止频率。
低通滤波器将高频部分去除,只保留低频部分。
二、FIR低通滤波器的设计步骤
1.确定滤波器的阶数N:根据滤波器的性能要求,确定阶数N,一般
通过试验和优化得到。
2.确定滤波器的截止频率:根据所需的频率特性,确定滤波器的截止
频率,可以根据设计要求选择合适的截止频率。
3. 建立理想的频率响应:根据滤波器的类型和截止频率,建立理想
的频率响应,例如矩形窗、Hamming窗等。
4.通过傅里叶反变换得到滤波器的冲激响应:将建立的理想频率响应
进行傅里叶反变换,得到滤波器的冲激响应。
5.通过采样和量化得到滤波器的离散系数:根据采样频率和滤波器的
冲激响应,得到滤波器的离散系数。
6.实现滤波器:利用离散系数和输入信号进行卷积运算,得到滤波器
的输出信号。
三、常用的FIR低通滤波器设计方法
1.矩形窗设计法:矩形窗设计法是一种简单的设计方法,通过选择合适的滤波器阶数和截止频率,利用离散傅里叶变换求解滤波器的系数。
矩形窗设计法的优点是简单易用,但是频率响应的副瓣比较高。
2. Hamming窗设计法:Hamming窗设计法是一种常用的设计方法,通过选择合适的滤波器阶数和截止频率,利用离散傅里叶变换求解滤波器的系数。
Hamming窗设计法可以减小副瓣,同时保持主瓣较窄。
3. Parks-McClellan算法:Parks-McClellan算法是一种常用的优化设计方法,通过最小化滤波器的最大截止误差来得到滤波器的系数。
Parks-McClellan算法可以得到相对较好的频率响应,但是计算量较大。
四、总结
FIR低通滤波器设计是数字信号处理中的关键任务之一、设计滤波器的阶数和截止频率是设计的关键步骤,采用不同的设计方法可以得到不同的滤波器性能。
常用的设计方法有矩形窗设计法、Hamming窗设计法和Parks-McClellan算法。
设计滤波器需要综合考虑滤波器的性能要求和计算资源的限制,选择合适的设计方法来实现滤波器的设计。