准晶纳米晶非晶和液晶结构
- 格式:docx
- 大小:37.00 KB
- 文档页数:2
什么是纳米晶?非晶是如何制备的?
一、什幺是纳米晶?
首先要知道什幺是非晶。
金属在制备的过程中,从液态到固态是个自然冷却慢慢凝固的过程。
这个过程中原子会自行重新有规则的排列,这时形成的结构就是晶体,实际上是多晶的结构。
如果在它的凝固过程中,用一个超快的冷却速度冷却,这个时候原子在杂乱无序的状态,还来不及重新排列就会瞬间被冻结,这时候形成的结构就是非晶态。
纳米晶是在非晶态的基础上,通过特殊的热处理,让它形成晶核并长大,但要控制晶粒大小在纳米级别,不要形成完全的晶体,这时形成的结构就是纳米晶。
二、非晶是如何制备的?
非晶的制备过程原理非常简单,就是将母合金融化后,通过喷嘴包喷射在一个高速旋转的冷却辊上,瞬间冷却形成像纸一样薄薄的带子,但是整个工艺实现起来难度非常大,它有几个特点:
高温,液态合金的温度基本在1400℃~1500℃,瞬间凝固到接近室温,需要极高的冷却速度,冷却速度达到了每秒百万度的级别。
准晶体的概念
准晶体(quasicrystal)亦称为“准晶”或“拟晶”,是一种介于晶体和非晶体之间的固体结构。
具有与晶体相似的长程有序的原子排列,但是准晶体不具备晶体的平移对称性。
因而可以具有晶体所不允许的宏观对称性。
准晶体的发现,是20世纪80年代晶体学研究中的一次突破。
”然而,1987年,法国和日本科学家成功地在实验室中制造出了准晶体结构;2009年,科学家们在俄罗斯东部哈泰尔卡湖获取的矿物样本中发现了天然准晶体的“芳踪”,这种名为icosahedrite(取自正二十面体)的新矿物质由铝、铜和铁组成;瑞典一家公司也在一种耐用性最强的钢中发现了准晶体,这种钢被用于剃须刀片和眼科手术用的手术针中。
金属材料的非晶态与纳米晶态金属材料是工业生产中最重要的材料之一,其特殊性能和优异的物理力学性能已经被广泛应用于各个领域。
随着人们对材料性能的要求越来越高,金属材料的非晶态和纳米晶态也逐渐引起人们的关注。
本文将探讨金属材料的非晶态和纳米晶态的概念、制备方法以及应用前景。
一、非晶态金属材料非晶态金属材料是一种具有非晶结构的材料,其原子排列没有规则的长程周期性。
它的金属原子是以一种无序排列的方式分布于空间中的,因此称为“非晶态”。
它是介于晶态和液态之间的一种结构状态。
一般来说,非晶态材料由高温下迅速冷却而成,这个过程被称为快速凝固或淬火。
这种材料的熔点相对较高,可以达到晶态材料的熔点,但其热膨胀系数小,机械性能优异,导电性能良好。
因此,在很多领域都具有广泛的应用前景。
制备非晶态金属材料的方法有很多种,比如快速凝固法、气冷快速凝固法、感应熔化法、电子束辐照法等等。
其中,最常用的就是快速凝固法,这种方法可以制备出大面积、高稳定性的非晶态金属材料,并且可以制备出很多种不同的金属和合金。
例如,Fe-Si、Fe-Co、Fe-Ni-Cr、Zr-Cu-Ni-Al等合金都可以用快速凝固法制备。
另外,非晶态金属材料的制备技术也在不断发展和改进中。
例如,现在已经出现了一种叫做“烷基辅助快速凝固法”的新方法,该方法利用烷基分子作为快速凝固材料,可以获得非常高的凝固速度和均匀度,从而获得更好的非晶态金属材料。
二、纳米晶态金属材料纳米晶态金属材料是一种由纳米晶组成的材料,其晶粒尺寸一般小于100纳米,因此也被称为“纳米材料”。
这种材料相比于普通金属材料具有更好的力学性能、电学性能、热学性能和光学性能等等,可能成为未来各种领域的重要材料。
目前制备纳米晶态金属材料的方法有很多种,包括机械碾磨、高温球磨、溶液化学合成、气相合成等等。
其中,机械碾磨和高温球磨是比较常用的制备方法。
这两种方法可以通过机械剪切和冲击力对金属粉末进行加工,形成纳米晶态金属材料。
要理解这几个概念,首先要理解晶体概念,以及晶粒概念。
我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态固体又可分为两种存在形式:晶体和非晶体晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。
晶体共同特点:均匀性:晶体内部各个部分的宏观性质是相同的。
各向异性:晶体种不同的方向上具有不同的物理性质。
固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形:理想环境中生长的晶体应为凸多边形。
对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为离子晶体原子晶体分子晶体金属晶体显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。
可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。
与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。
一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。
首先提出这个概念的是凝固理论。
从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。
晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。
多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。
英文晶粒用Grain表示,注意与Particle是有区别的。
有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。
对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。
所以很多冶金学家材料科学家一直在开发晶粒细化技术。
科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。
纳米晶磁芯和非晶磁芯-概述说明以及解释1.引言1.1 概述磁芯作为电子器件中的重要组成部分,其性能对设备的工作稳定性和效率起着至关重要的作用。
在磁芯的不断研发和改良过程中,纳米晶磁芯和非晶磁芯成为了研究的热点。
纳米晶磁芯是一种由纳米级晶粒组成的磁性材料,其在磁性能、导磁性和饱和磁感应强度方面具有显著的优势。
相比于传统的晶体磁芯,纳米晶磁芯具有更高的饱和磁感应强度、更低的磁导率和较小的矫顽力损耗。
这些特点使得纳米晶磁芯在高频应用领域具有广阔的市场前景,尤其适用于电力电子设备、通信设备以及电动车等领域。
非晶磁芯是一种非晶态材料,其具有无定形的结构特点。
相比于晶态材料,在非晶磁芯中,原子的排列更加无规律,形成了非晶态结构。
非晶磁芯具有低的矫顽力损耗、高的导磁性能和较高的饱和磁感应强度,尤其适用于高频应用。
目前,非晶磁芯广泛应用于变压器、电感器、磁存储器以及电力传输和变换装置等领域。
本篇文章将对纳米晶磁芯和非晶磁芯的特点和应用进行详细阐述,并对两者进行对比分析。
同时,还将展望纳米晶磁芯和非晶磁芯在未来的发展趋势和应用前景。
通过深入了解纳米晶磁芯和非晶磁芯的特点和应用,我们可以更好地理解它们对电子器件性能的影响,以及它们在各个领域中的潜在应用价值。
1.2 文章结构文章结构部分的内容:本文共分为引言、正文和结论三个部分。
引言部分主要概述了纳米晶磁芯和非晶磁芯的研究背景和意义,并介绍了本文的目的和结构。
正文部分主要分为纳米晶磁芯和非晶磁芯两个小节。
在纳米晶磁芯小节中,将详细介绍纳米晶磁芯的特点和应用。
特点方面,将分析其磁性能、热稳定性、晶粒尺寸等方面的优势。
应用方面,将介绍纳米晶磁芯在电力系统、电子设备等领域的具体应用情况。
在非晶磁芯小节中,将详细介绍非晶磁芯的特点和应用。
特点方面,将分析其饱和磁化强度、磁导率、磁滞损耗等方面的特点。
应用方面,将介绍非晶磁芯在变压器、电感器等领域的具体应用情况。
结论部分将对比纳米晶磁芯和非晶磁芯的优势与劣势,总结各自的适用范围和特点。
非晶纳米晶复合结构1.引言1.1 概述非晶纳米晶复合结构是一种由非晶材料和纳米晶材料组成的新型结构。
非晶材料具有无定形的特点,而纳米晶材料具有具有纳米级晶粒的特点。
通过将这两种材料结合起来,可以获得一种材料,综合了它们各自的优势。
非晶材料具有较高的强度、优异的韧性和良好的耐蚀性。
然而,由于其无定形结构,非晶材料在某些方面存在一定的局限性,如较低的塑性和热稳定性。
相比之下,纳米晶材料由于其纳米级晶粒,在力学性能、热稳定性和化学活性等方面具有独特的优势。
非晶纳米晶复合结构的优点在于综合了非晶材料和纳米晶材料的优势,弥补了它们各自的不足。
非晶材料的高强度和优异的韧性能够增加纳米晶材料的力学性能,并提高其抗腐蚀性能。
同时,纳米晶材料的热稳定性能够增加非晶材料的热稳定性,从而提高整个复合结构的热稳定性。
此外,非晶纳米晶复合结构还具有较高的塑性,能够在拉伸和变形过程中具有较好的延展性。
这种非晶纳米晶复合结构具有广泛的应用潜力。
在材料科学领域,这种结构可以应用于制备高性能的结构材料、功能材料和生物材料。
例如,在航空航天领域,非晶纳米晶复合结构的高强度和热稳定性可应用于制备轻质高强度的航空材料。
在能源领域,这种结构的优异性能可以用于制备高效的电池材料和光电转换材料。
另外,由于非晶纳米晶复合结构具有良好的生物相容性,也可以应用于生物医学领域,如骨科植入材料和药物传递材料。
总之,非晶纳米晶复合结构通过充分发挥非晶材料和纳米晶材料的优势,具有广泛的应用前景。
进一步的研究和探索将有助于揭示其更多的特性和潜在应用领域,为材料科学和工程技术的发展做出重要贡献。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在概述并介绍本文的整体架构,以帮助读者更好地理解文章的内容和逻辑顺序。
首先,本文将分为三个主要部分:引言、正文和结论。
每个部分包含了相关的内容和讨论。
在引言部分,我们将对本篇文章的主题进行概述和介绍,以便读者能够对非晶纳米晶复合结构有一个基本的了解。
准晶及准晶材料概览准晶及准晶材料是一类具有独特结构和性质的材料。
它们的结构介于晶体和非晶体之间,具有有序周期结构,但缺少长程周期性。
准晶材料是独特的,因为它们在原子层中存在着一种五倍旋转对称性,这与传统的晶体对称性不同。
本文将对准晶及准晶材料进行概览。
准晶材料是由国际准晶学会(IUCr)于1982年首次定义的。
根据IUCr的定义,准晶材料是一种具有不具备平移对称性的有序周期结构的材料。
准晶材料的结构单位称为“集晶”(cluster),它是准晶材料中具有原子或分子固定结构的最小重复单元。
准晶材料的特点是它们的结构中存在二次、五次、十次乃至更高的旋转对称性,这与传统的晶体仅具有两次三次等对称性是不同的。
准晶材料的发现是在20世纪60年代末70年代初。
当时,日本化学家铃木敬三首次在金铝合金中观察到了准晶结构。
此后,准晶材料的研究逐渐扩展到其他合金体系和无机材料中。
准晶材料的研究进展证明,它们具有许多独特的物理、化学和机械性质,使得它们在各个领域都引起了广泛的兴趣。
准晶材料的丰富性质是由于它们的特殊结构所决定的。
准晶材料的结构单位可以是单原子、分子或者离子,它们以一种特定的方式排列形成不同的集晶。
每个集晶都具有一定的对称性,如五重旋转对称性,这使得整个准晶材料具有高度的非周期性和对称性。
准晶材料的原子或分子之间的相对位置和角度是固定的,这使得准晶材料具有较好的稳定性和机械性能。
与传统的晶体材料相比,准晶材料具有较高的硬度、耐磨性、耐腐蚀性和热稳定性。
准晶材料在材料科学和工程中具有广泛的应用。
例如,准晶材料可以用于制备高强度和高耐磨性的涂层材料,还可以用于制备高性能的电子器件和光学元件。
准晶材料还可以用于制备高效的催化剂和吸附剂,被广泛应用于化学工业和环境保护领域。
此外,准晶材料还可以用于制备新型的复合材料和纳米材料,具有潜在的应用前景。
总之,准晶及准晶材料是一类具有独特结构和性质的材料。
准晶材料具有有序周期结构,但缺少长程周期性,其结构单位为集晶,具有二次、五次、十次乃至更高的旋转对称性。
准晶纳米晶非晶和液晶结构
首先是准晶结构,准晶是指具有部分有序和部分无序排列的结构。
与晶体相比,准晶的原子排列稍微有一些规则性,但并不具备完全规则的晶体结构。
准晶具有特定的旋转对称性,常见的准晶有五重轴对称结构、十重轴对称结构等。
准晶具有比纯随机无序结构更多的规则性,具备一些晶体的性质,如有一些可预测的物理性质。
其次是纳米晶结构,纳米晶是指晶体的晶粒尺寸在纳米级别范围内的材料。
晶体的晶粒尺寸在纳米级别时,由于晶界面面积相对较大,可以导致材料的物理、化学性质发生显著变化。
与传统晶体相比,纳米晶材料具有更高的韧性、更优异的力学性能和更高的强度。
纳米晶结构的材料还具有较高的表面能,有助于提高催化活性和电化学性能。
第三是非晶结构,非晶是指材料缺乏长程有序结构,具有完全无序的原子或分子排列。
非晶结构没有明确的晶格,无法通过传统的晶体学方法来描述。
非晶材料在玻璃、金属合金和一些塑料中广泛存在。
非晶材料具有高硬度、高抗磨损性、良好的抗腐蚀性能和优异的电学性能。
非晶结构的材料还具有较好的弹性形变能力和高温稳定性。
最后是液晶结构,液晶是介于固体和液体之间的新型物质状态。
液晶材料在较低的温度下表现出有序排列的液体行为,同时又具备晶体的一些性质。
液晶的分子在空间中呈现出有序排列的特点,可以形成不同的液晶相,如向列型液晶、扭曲向列型液晶等。
液晶材料具有响应外界电场和温度的特性,在显示技术和光电器件等领域有广泛应用。
总之,准晶、纳米晶、非晶和液晶结构是材料科学中常见的四种晶体结构。
每种结构具有独特的原子或分子排列方式和特性,对材料的性质和
应用有着重要的影响。
通过研究和利用这些不同的结构,可以设计和制造出具有特定性能和功能的材料。