准晶形成机制
- 格式:docx
- 大小:16.21 KB
- 文档页数:2
准晶、准晶凝固及其在材料工程上的应用(一)朱祖昌;杨弋涛;陈思悦【摘要】准晶是不具有三维周期平移序,而只具有准周期长程平移序和旋转对称性的新固体结构形态.Shechtman发现准晶使人们对晶体的认识发生了根本性变化.正是因为如此,原来的“原子在空间的规则重复排列”的晶体定义已改为“具有本质的明锐衍射花样的任何固体”.准晶绝大多数出现在Al基合金中.准晶按热力学稳定程度分亚稳相和稳定相.在自然界还存在着一些天然态准晶.为此,准晶可由熔体快速凝固或慢速凝固予以制造,并且可以应用Bndgman和CzochrMski等方法制取准晶单晶.准晶具有一些独特的特性.准晶在材料工程上应用的核心点是在材料组织中出现准晶会使其力学性能得到提高.对铝基合金相应的方法可获得以准晶相为主体的组织和在固溶体的基体上出现准晶相.对钢铁材料是通过合金成分设计和热处理方法研究使在材料基体上弥散析出准晶相.【期刊名称】《热处理技术与装备》【年(卷),期】2017(038)001【总页数】7页(P68-74)【关键词】准晶;凝固;铝基合金;马氏体时效钢;弥散析出;应用【作者】朱祖昌;杨弋涛;陈思悦【作者单位】上海工程技术大学,上海201620;上海大学,上海200072;上海市机电设计研究院有限公司,上海200040【正文语种】中文【中图分类】TG111.4自从Shechtman1982年发现准晶和在1984年发表后,准晶的研究在全世界范围内风起云涌般地开展。
特别在1986年发现了热力学上稳定的准晶相和2009年在自然界存在天然态准晶以后,这就使研究和应用准晶进入了全新的时期。
本文对准晶的发现、分类、准晶凝固、准晶相关性能和应用作比较详细论述,使材料工作者有相当清楚的认识,并能从事准晶在材料工程方面的应用研究。
以色列海法(Haifa)市以色列理工学院材料工程系的材料科学博士丹尼尔·谢赫特曼(Daniel Shechtman)于1981~1983年参加美国Johns Hopkins大学访问度假工作时,与美国马里篮州盖瑟斯堡市的美国国家标准技术研究所(NIST)合作研究Al-过渡金属合金快速凝固项目。
单晶、多晶、非晶、微晶、无定形、准晶的区别何在?要理解这几个概念,首先要理解晶体概念,以及晶粒概念。
我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态固体又可分为两种存在形式:晶体和非晶体晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。
晶体共同特点:均匀性:晶体内部各个部分的宏观性质是相同的。
各向异性:晶体种不同的方向上具有不同的物理性质。
固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形:理想环境中生长的晶体应为凸多边形。
对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为离子晶体原子晶体分子晶体金属晶体显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。
可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。
与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。
一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。
首先提出这个概念的是凝固理论。
从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。
晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。
多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。
英文晶粒用Grain表示,注意与Particle是有区别的。
有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。
对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。
所以很多冶金学家材料科学家一直在开发晶粒细化技术。
准晶体的性能及其应用潘正根0943011041四川大学材料科学与工程学院摘要:1984年底, 美国国家标准局的Shechtman 等人报导了他们在急冷Al-Mn 合金中观测到五次对称电子衍射图的相, 它不具有传统晶体学的对称性,称这种具有5次对称而无周期平移序的物质为准周期性晶体(准晶)。
准晶体具有独特的属性,坚硬又有弹性、非常平滑,而且,与大多数金属不同的是,其导电、导热性很差,因此在日常生活中大有用武之地。
科学家正尝试将其应用于其他产品中,比如不粘锅和发光二极管等。
1准晶的性能1.1物理性能1.1.1密度准晶的密度比经过退火后得到的相同成分晶态相的密度约低2% , 这表明准晶中原子的排列虽然比较密集,但其有序度低于晶态合金。
1.1.2导电性与金属的导电性质相比,准晶显示出一种迥然不同的性质。
准晶一般有比较大的电阻;如在温度为4K 时二十面体准晶Al -Cu-Fe的电阻率ρ(4K)=4.3m Ω cm, I-Al-Cu-Ru 的电阻率ρ(4K)=30m Ω m。
当温度不太高时,准晶的电阻随温度的增加而减少,在AlCuCo 二维准晶中, 沿10次轴这个周期方向, 电阻随温度升高而增大(圆圈), 与金属中的情况一致;而在与此正交的准周期方向, 电阻随温度升高而减小(圆点), 与半导体相似。
这种反常的各向异性可能对制造电子器件有用。
美国贝尔实验室也在进行类似的研究。
准晶的电阻与其组分浓度有关。
实验发现,准晶的导电性能随样品质量的改善反而降低。
准晶异常的导电性能反映准周期结构对物理性能的影响,它可以从准周期系统中电子结构的异常性中得到解释。
1.1.3导热性与普通金属材料相比, 准晶材料的导热性较差。
在室温下准晶的导热率比铝和铜低两个数量级、比不锈钢低一个数量级,与常用的高隔热材料ZrO2 相近。
与准晶的电阻率一样,准晶的导热性也具有负的温度系数,并且对准晶结构的完整性也较为敏感,即准晶结构越完整其导热性越差。
准晶材料的制备整理:滕飞 2011-11-021以色列科学家丹尼尔-舍特曼 (Daniel Shechtman)因发现 准晶体而获得2011年诺贝尔 化学奖。
2准晶的概念准晶材料是介于周期结构与无序结构之间的一类 新发现的凝聚态,具有传统的晶体材料所不具备 的对称性,由于其结构的特殊性,例如它具有五 次和十次等特殊的对称性。
因此它具有许多优良 的机械性能、物理化学性能和光电磁性能。
准晶分类 ¾从热力学角度 热力学亚稳态准晶:在某个温度区间退火会变为晶体类似相 稳态准晶:热力学上是稳定的¾按结构可分为 一维准晶 二维准晶:八次、十次和十二次准晶 三维准晶:主要是二十面体3¾一维准晶:是由二维十面体准晶中的一个二次准周期轴(与十次轴正 交)变为二次周期轴而生成的,即一维准晶具有两个正交的周期方向 和一个与它们正交的准周期方向。
二维准晶:在一个平面上的两个方向上显示准周期性,而在其法线方 向呈现周期性。
二维准周期平面的特征可以用这个具有周期性的旋转 轴来表示,从而分为不同形态的二维准晶。
三维准晶:主要是二十面体,它指的是在空间中任何三个正交方向上 都呈现准周期性,而无任何周期性方向。
¾¾4准晶体的类型现在已在100多种金属合金体系中发现了准晶相,如已有报 导的准晶合金有基于Al、Cu、Mg、Ni、Ti、Zn、Zr等的 合金。
5影响准晶生长的因素准晶形成过程大致可有4种基本情况:气体→准晶体、溶体(熔体)→准 晶体、晶体→准晶体、非晶→准晶体。
影响准晶生长的因素合金成分,准晶只能在一定范围内形成; 合金成分 原子尺寸,主要元素的原子半径大小相近,以较小的原子为中心; 原子尺寸 电子结构,组元的电子结构与准晶的形成能力有内在联系; 电子结构 冷却速度,影响较大,冷却速度较大有利于准晶的形成,冷却速度过 冷却速度 高会导致过饱和固熔体先于准晶形成甚至出现非晶,因此冷去速度应 控制在一个适应的范围; 温度和压力,改变结构的束缚状态和结构熵, A1-Cu-Fe系合金,压力 温度和压力 增加有助于晶体等向准晶转变,增加压力可使冷却速度降低而保持效 果不变。
质疑和嘲笑声包括著名化学家、两届诺贝尔奖得主莱纳斯·鲍林在内的一些化学界权威纷纷质疑谢赫特曼的发现。
即便如此,谢赫特曼也并未动摇自己的信念。
在1984年夏,他们向《应用物理杂志(Journal of AppliedPhysics)》投了一篇稿件,可是,立即遭到了编辑的拒绝,稿件被退了回来。
晶体的定义应当是晶体是内部质点在3维空间呈周期性重复排列的固体或者说晶体是具有周期平移格子构造的固体。
准晶体的定义应当是准晶是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。
相对于晶体可以用一种单胞在空间中的无限重复来描述准晶体也可以定义为:准晶是由两种(或两种以上“原胞”在空间无限重复构成的这些“原胞”的排列具有长程的准周期平移序和长程指向序三维准晶、二维准晶和一维准晶指立体,平面、线条。
准周期性:一些事物运动的规律性不是很强,例如经济的运行,周期就有长有短,像这种不固定的周期就称准周期,以区别于上述意义上的周期.准,本来就是相近相似的意思.所以准周期就是近似意义上的周期。
二十面体准晶因具有磁各向异性而降低了磁导率纳米畴就是具有纳米结构的晶体,它的边界叫畴。
Laves相的晶体结构有三种类型:①MgCu2型属立方晶系,②MgZn2型属六方晶系,③MgNi2属六方晶系晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。
毫米级大块准晶难以制备的原因:生成过程包括成核和长大两个过程。
一般是通过极冷淬火,准晶物质通常是伴随过饱和固溶体和其它金属间化合物一起形成的。
准晶体形成过程虽然还不太楚,但大致可以有以下种基本情况,气体-准晶体,溶体、熔体-准晶体,晶体-准晶体,玻璃-准晶体。
光学性能(高的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性)。
准晶体的发现与应用周宸材料科学与工程2009051005 2011-12-132011年的诺贝尔化学奖公布之后,科学界“天本地裂”。
来自以色列的科学家丹尼尔·舍特曼因发现准晶体而获奖。
准晶体颠覆了常年来的权威,打破了晶体学固有的格局。
所以,我对准晶体很感兴趣,于是查找了许多文献资料。
准晶体的定义是,物质的构成由其原子排列特点而定。
原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,准晶是一种介于晶体和非晶体之间的固体。
准晶具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。
1982年,海法市以色列理工学院的丹尼尔•谢赫特曼(Daniel Shechtman)发现,一种铝锰合金好像具有五重对称性,也就是说,当其中的原子形成的图案旋转五分之一周(72度)时,图案看起来基本上是相同的。
其他研究人员都嘲笑该发现,因为当时这种排列被认为在数学上是不可能做到的。
然而,科学家们最终认识到,通过自身的排列,图案达到几乎重复但永远也不能重复时,固体中的原子可以得到这样的对称,变成“准晶体”。
先来讲一下为什么准晶体一直不被认为存在。
就像孩子们的简单游戏所证明的那样,该解释对晶体可能拥有的对称性提出了限制。
假如你想通过排列一模一样的瓷砖来铺盖桌面,利用重复的三角形瓷砖可以完成这项含有技巧的任务,所以有可能制造出具有三重对称性的晶体;利用四边形和六边形瓷砖也可以完成这项任务,因此也可以制造出四重和六重对称性的晶体。
但是,利用五边形瓷砖无法完成这项任务,因为瓷砖之间总会有空隙。
于是,不可能存在具有可重复排列的五重对称性晶体。
因此,准晶体难以存在。
但是,科学家可以这样做。
1982年4月8日上午,在马里兰州盖瑟斯堡市国家标准与技术研究院工作期间,谢赫特曼取了铝锰合金样品,为了防止结晶,他事先将样品速冻,并向其中发射了电子束。
如果这种材料中存在有序排列的原子,电子就会通过原子的表面衍射出来,并且以特定的角度显现出探测器可以辨认的图案。
准晶体的发现及意义提要:准晶是一种介于晶体和非晶体之间的固体,具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。
1982年准晶体的发现,给晶体学界带来了巨大的冲击,此后的数十年里,人们对于准晶体的探索从未停止,2009年,自然界发现天然准晶体化合物,时至今日,准晶体的原子排列组成与结构规律尚未被完全解析。
正文:原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,准晶是一种介于晶体和非晶体之间的固体。
准晶体具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。
物质的构成由其原子排列特点而定[1]。
以色列科学家丹尼尔-谢赫特曼(Daniel Shechtman)因发现准晶体而一人独享了2011年诺贝尔化学奖:2011年,70岁的谢赫特曼将获得1000万瑞典克朗(约合140万美元)的奖金,他发现了准晶体,这种材料具有的奇特结构,推翻了晶体学已建立的概念。
许多年以来,凝聚态物理学家们仅仅关心晶态的固体物质。
然而,在过去的几十年,他们逐渐把注意力转向“非晶”材料,如液体或非晶体,这些材料中的原子仅在短程有序,被称为缺少“空间周期性”。
准晶体的结构在20世纪之前就已经被建筑师熟知,例如在伊朗伊斯法罕的清真寺,上面瓷砖的图案就是按照准晶样式排列。
1961年,数学家王浩提出了用不同形状的拼图铺满平面的拼图问题。
数学家们已经知道,可以用单一形状的拼图拼满一个平面,例如任意形状的四边形或者正六边形,但是当增加拼图单元的种类时,就能够构造出更多的拼满一个平面的方法。
两年后,王浩的学生Robert Berger构造了一系列不具有周期性的拼图方法。
之后铺满平面所需要的拼图种类越来越少,1976年Roger Penrose构造了一系列只需要两种拼图的方法,这种方法拼出来的图案具有五次对称性。
1982年4月8日上午,在马里兰州盖瑟斯堡市国家标准与技术研究院工作期间,谢赫特曼取了铝锰合金样品,为了防止结晶,他事先将样品速冻,并向其中发射了电子束。
非晶合金 与 准晶1.非晶态合金的发现长期以来,提到合金指的就是晶态合金。
提到非晶 态,指的是玻璃态的硅酸盐。
上个世纪六十年代,非 晶态合金的出现,改变了这种情况。
60年代初Duwez等发展了溅射淬火技术,用快速冷 却的方法,使液态合金的无序结构冻结起来,形成非 晶态合金Au3Si,对传统的金属结构理论是一个不小的 冲击,由于非晶态合金具有许多优良性能:高强度、 良好的软磁性、耐腐蚀性等,很快成为重要的功能材 料,获得很快发展。
2.非晶态合金的结构特征非晶态合金与晶态合金最大的区别在于长程无 序。
晶态合金只要了解一个晶胞中原子的排布,由 于周期性,固体中所有原子的排布都知道了。
而非 晶态合金结构特点为短程有序、长程无序,即某一 个第一近邻、第二近邻原子是有固定排列的,而更 远的原子是无序的。
从X射线衍射强度图可以看出, 晶态有明确、锐利的衍射峰,而非晶态只有较圆滑 的峰,后面是一些不可分辨的曲线,即非晶态合金 不能从X射线衍射中获得太多的信息,目前用径向分 布函数来表征非晶态合金结构。
晶态材料与非晶态材料数值密度函数随距离变 化的示意图2.非晶态合金的结构特征非晶态固体与晶态固体相比,结构上的最本质的差别 是不存在长程有序性。
组成晶体的粒子在宏观尺度上 规则排列的周期性,就称为长程有序性。
在非晶态固体中,原子位置的空间分布并不是无规 则的,而是存在一种局域关联性,因此,在非晶态固 体中存在着极为明显的短程有序性。
所谓短程有序 性,就是在原子周围小区域内原子排列的规则性,一 般是用在任一特定原子的最近邻的原子数(即配位数) 来表示。
①非晶合金具有比普通金属更高的强度。
②非晶态合金因其结构呈长程无序,故在物理 性能上与晶态合金不同,显示出异常情况。
③非晶合金比普通金属具有更强的耐化学腐蚀 能力。
非晶态合金是均匀的多元固溶体,不 存在晶界、第二相、析出物等结构缺陷,有 利于抗化学腐蚀。
非晶态合金与晶态合金最大的区别在于长程无 序。
单晶多晶非晶微晶无定形准晶的区别单晶,多晶,非晶,微晶,无定形,准晶的区别要理解这几个概念,首先要理解晶体概念,以及晶粒概念。
我想学固体物理的或者金属材料的都会对这些概念很清楚~自然界中物质的存在状态有三种:气态、液态、固态固体又可分为两种存在形式:晶体和非晶体晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。
晶体共同特点:均匀性: 晶体内部各个部分的宏观性质是相同的。
各向异性: 晶体种不同的方向上具有不同的物理性质。
固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形: 理想环境中生长的晶体应为凸多边形。
对称性: 晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为离子晶体原子晶体分子晶体金属晶体显微学则从空间几何上来分,有七大晶系,十四种布拉维点阵,230种空间群,用拓扑学,群论知识去研究理解。
可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。
与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。
一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。
首先提出这个概念的是凝固理论。
从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。
晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。
多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。
英文晶粒用Grain表示,注意与Particle是有区别的。
有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。
对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。
所以很多冶金学家材料科学家一直在开发晶粒细化技术。
准晶体的发现及应用一.准晶体的定义准晶体是一种介于晶体和非晶体之间的固体。
物质的构成由其原子排列特点而定。
原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,介于这两者之间的叫做准晶体。
20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着以色列人达尼埃尔·谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。
从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。
二.准晶体的结构银铝准晶体的原子模型物质的构成由其原子排列特点而定。
晶体是指原子呈周期性排列的固体物质,单晶体都具有有规则的几何形状,像食盐晶体是立方体、冰雪晶体为六角形。
而原子呈无序排列的则叫做非晶体,非晶体没有一定的外形,介于这两者之间的叫做准晶体。
也就是说,准晶体具有完全有序的结构,然而又不具有晶体所应有的空间周期性。
人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。
尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffraction diagram)来代替原先的微观空间呈现周期性结构的定义。
三.准晶体的发展历程准晶体的发现,是20世纪80年代晶体学研究中的一次突破。
1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无平移周期性的合金像,在晶体学及相关的学术界引起了很大的震动。
不久,这种无平移同期性但有位置序的晶体就被称为准晶体。
准晶体是1982年发现的,具有凸多面体规则外形的,但不同于晶体的固态物质,它们具有晶体物质不具有的五重轴。
al-cu-cr系准晶及其类似相的形成规律
Al-Cu-Cr系准晶及其类似相的形成规律
Al-Cu-Cr合金是一种重要的准晶形成体系,其特点是具有高强度和高韧性。
准晶是一种结构类似晶体而非周期性的物质,可以被认为是一种介于晶体和非晶态之间的结构状态。
在Al-Cu-Cr系合金中,准晶是由Al-Cu-Cr晶粒和类似晶粒共同构成的,其中类似晶粒是指由Al-Cu-Cr晶粒和其它元素围绕形成的非晶态结构。
在Al-Cu-Cr合金中,准晶形成的规律主要包括四个方面:
1. 成分设计:合理的成分设计是准晶形成的关键。
在Al-Cu-Cr系合金中,Cu 和Cr元素是准晶形成的主要元素,而Al元素则是晶粒的主体元素。
通过合理地控制Cu和Cr的含量,可以使准晶形成的温度范围变宽,且具有更高的强度和韧性。
2. 降温速率:降温速率对准晶形成也有很大的影响。
在快速冷却的条件下,合金中的液态区域会在过冷状态下凝固,形成非晶态结构,随着温度的升高,非晶态结构会逐渐转变为准晶结构。
3. 淬火温度:淬火温度也是影响准晶形成的重要因素。
在合适的淬火温度下,
合金中的液态区域会在过冷状态下凝固,形成非晶态结构,随着温度的升高,非晶态结构会逐渐转变为准晶结构。
4. 元素配比:合金中各元素的含量和配比也是影响准晶形成的重要因素。
在Al-Cu-Cr系合金中,Cu和Cr元素的含量对准晶形成有很大的影响,过高或过低的含量都会影响准晶的形成。
综上所述,Al-Cu-Cr系准晶及其类似相的形成规律主要受到成分设计、降温速率、淬火温度和元素配比等因素的影响。
通过合理地控制这些因素,可以获得具有高强度和高韧性的准晶合金材料。
准晶形成机制
准晶是介于晶体与非晶体之间的一种结构,具有定向的局部有序性。
准晶的形成机制主要涉及以下几个方面:
1.原子排列周期性与无序性的共存:准晶的形成源于原子排
列周期性与无序性的共存。
在晶体中,原子排列具有长程
的周期性结构,而在非晶体中,原子排列则是无规则的。
准晶则具有介于这两者之间的有序-无序结构,有一定的
局部有序性。
2.簇组合理论:准晶形成可以通过簇组合理论来解释。
该理
论认为准晶是由特定大小的簇组合而成的,这些簇具有相
对稳定的结构和周期性排列性质。
这种簇组合可以通过统
计力学方法来预测和解释。
3.非整周期性:准晶的一个显著特征是非整周期性。
相比晶
体的简单周期性结构,准晶具有更为复杂的周期性,如五
重轴对称、十重轴对称等。
这种非整周期性是通过对称性
和周期性定则来描述和分类的。
4.增加的局部原子配位数:准晶的形成通常涉及原子的高配
位数。
传统晶体中,原子的配位数是有限的,而在准晶中,原子的配位数往往更高。
这种增加的配位数可以通过在晶
体中引入其他元素或非周期性原子排列来实现。
准晶形成机制是一个复杂的课题,目前仍未完全理解。
虽然有一些理论和模型可以解释准晶的形成,但准晶仍具有许多未解
之谜。
随着材料科学和准晶研究的不断发展,相信对准晶的形成机制将有更深入的认识和理解。