2016年八年级数学下学期期中复习测试题一新人教版
- 格式:doc
- 大小:154.50 KB
- 文档页数:5
最新人教版八年级下册数学期中测试题及答案班级___________ 姓名___________ 成绩_______满分:150 分;考试时间:120分钟一、选择题(本大题共10小题,每小题4分,共40分。
每小题都有四个选项,其中有且只有一个选项正确) 1.若二次根式2x -有意义...,则x 的取值范围是( )A . 2x >B .2x ≥C .2x <D .2x ≤2.下列二次根式中,属于最简二次根式的是( ) A .B .C .D .3.下列计算正确的是( ) A .B .=C .D .=﹣24.已知:如果二次根式是整数,那么正整数n 的最小值是( ) A . 1B .4C .7D .285.如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A .﹣1﹣B .1﹣C .﹣D .﹣1+6.下列各组数中,以a ,b ,c 为三边的三角形不是直角三角形的是( )A .a=1.5,b=2,c=3B .a=7,b=24,c=25C .a=6,b=8,c=10D .a=3,b=4,c=5 7.已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形8.已知:如图菱形ABCD 中,∠BAD =120°,AC =4,则该菱形的面积是( ) A .16 3 B .16 C .8 3 D .8第8题 第9题9.如图,在矩形ABCD 中,AB=24,BC=12,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( ) A .60B .80C .100D .9010.如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB=90°,若AB=6,BC=10,则EF 的长为( ).A . 1 B .2 C .3D .5二、填空题(本大题共6小题,每小题4分,共24分)11.计算:23)(= ;= .12. 在□ABCD 中, ∠A =120°,则∠D = .13.如图,在□ABCD 中,已知AD=8cm ,AB=6cm ,DE 平分∠ADC ,交BC 边于点E ,则BE= cm .14.如果最简二次根式与是同类二次根式,那么a= .15.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为 .16.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE 的长为 .三、解答题(本大题共9小题,共86分) 17.(本题满分8分,每小题4分)计算:(1)4+﹣; (2) (2)(2)18.(本题满分8分)在Rt △ABC 中∠C=90°,AB=25,AC=15,CH ⊥AB 垂足为H ,求BC 与CH 的长.19.(本题满分8分)如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F.求证:DF=BE.20.(本题满分8分) 已知:如图,四边形ABCD中,AB⊥BC,AB=2,BC=4,CD=4,AD=6,求四边形ABCD的面积.21.(本题满分8分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.如果梯子的顶端A 沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?22.(本题满分10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.若BC=2,求AB的长.23.(本题满分10分) 定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出5若干根,首尾依次相接组成三角形,进行探究活动.43小亮用12根火柴棒,摆成如图所示的“整数三角形”; 小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”. ⑴请你画出小颖和小辉摆出的“整数三角形”的示意图;⑵你能否也从中取出若干根摆出等边“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.24.(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF.(1)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (2)当t 为何值时,△DEF 为直角三角形?请说明理由.25.(本题满分14分)如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连结DP交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ; (2)当△ABQ 的面积是正方形ABCD 面积的61时,求DQ 的长; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形.参考答案一、选择题(本大题共10小题,每小题4分,共40分。
八年级数学下学期期中复习同步练习(答题时间:60分钟)一、选择题1. 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得三角形的周长可能是()A. 5.5B. 5C. 4.5D. 42. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A. S平行四边形ABCD=4S△AOBB. AC=BDC. AC⊥BDD. 平行四边形ABCD是轴对称图形3. 如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A. 1B. 2C. 3D. 44. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 80*5. 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C. 52D. 2*6. 如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;其中正确的个数是()A. 0B. 1C. 2D. 3*7. 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 53cmB. 25 cmC. 485 cmD. 245cm *8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8**9. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A. 32B. 33C. 4D. 34**10. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( )A. 2B. 3C. 4D. 5二、填空题11. 5082。
人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为 (A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是 (A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是(A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是 (A)24 (B)73(C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是 (A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21(B)33 (C)3 (D)27.以下各组线段为边,能组成直角三角形的是 (A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形 (C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为(A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分) 13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________;14. 计算:224c ba =________;a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式:311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以 2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时, t 的值为__________。
八年级数学测试题(时间:90分钟,满分:120分钟)一、选择题(每题3分共30分)1、在式子1a 、2xy π、2334a b c 、56x +、78x y +、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知函数x ky =的图象经过点(2,3),下列说法正确的是( )A .y 随x 的增大而增大 B.函数的图象只在第一象限C .当x <0时,必有y <0 D.点(-2,-3)不在此函数的图象上3、若分式392--x x 的值为0,则x 的值是( )A 、-3B 、3C 、±3D 、04、以下是分式方程1211=--x x x 去分母后的结果,其中正确的是( )A 、112=--xB 、112=+-xC 、x x 212=--D 、x x 212=+-5、如图,点A 是函数x y 4=图象上的任意一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C , 则四边形OBAC 的面积为( ) A 、2 B 、4 C 、8 D 、无法确定6、已知反比例函数)0(>=k x ky 经过点A (x1,y1)、B (x2,y2),如果y1<y2<0,那么( )A 、x2>x1>0B 、x1>x2>0C 、x2<x1<0D 、x1<x2<07、 使分式有意义的的取值范围是( )A. B . C. D .8、如果把分式y x xy+中的x 和y 都扩大2倍,即分式的值 ( )A 、扩大4倍;B 、扩大2倍;C 、不变;D 缩小2倍 9.在同一坐标系中,表示函数b ax y +=和x aby =(a ≠0,b ≠0)图象正确的D 10.如图,直角△且AB:AC=5:3,则BC=( )A .6B .8C .10D .12二、填空题(每题3分,共30分)11、 科学家发现一种病毒的直径为0.000043米,用科学记数法表示为___________米。
2015-2016学年人教版八年级下期中考试数学试题及答案DOA =OB ,则数轴上点A 表示的数是 。
13. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直 角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形 的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b ,下列说法:①;1322=+b a ②;12=b ③;1222=-b a ④6=ab其中正确结论序号是 __________14. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,1y 表示乌龟所行的路程,2y 表示兔子所行的路程).有下列说法: ①“龟兔再次赛跑”的路程为1 000米;②兔子和乌龟同时从起点出发;13121110O B AH C③乌龟在途中休息了10分钟;④兔子和乌龟同时到达终点.其中正确的说法是______________.(把你认为正确说法的序号都填上)15. 如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于点E ,AD=8,AB=6,则AE 的长为 . 16.在正方形ABCD 中,E 在BC 上,BE=2,CE=1,P 在BD 上,则PE 和PC 的长度之和的最小值为______________17.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P的坐标为__________________________ 18. 如图,依次连结第一个矩形各边的中点得到一个菱形,BA D CEC '14题15题16题14题再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1. 下列式子中,是分式的是()A.12a-B.3xπ-C. ﹣3xD.2xy+2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<26. 下列说法正确的是()A. 对角线相等四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 358. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 22﹣2C. 23﹣2D. 26﹣49. 若关于x方程333x m mx x++--=3的解为正数,则m的取值范围是()A. m<92B. m<92且m≠32C. m>﹣94D. m>﹣94且m≠﹣3410. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()5 B. 3 C. 213二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-值_____.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ 13. 若分式2||123x x x ---值为0,则x 的值为_____. 14. 如图,点D 是等边△ABC 外部一点,∠ADC =30°,BD =8,则四边形ABCD 面积的最小值为_____.三、解答题(共9小题,计58分)15. 因式分解:(1)x 3﹣8x 2+16x ;(2)x (x 2﹣5)﹣4x .16. 解不等式组253(2)123x x x x +≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来. 17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. 18. 如图,四边形ABCD 中,∠A =∠C =90°,若AB =BC .求证:BD 平分∠ABC .19. 已知在平面直角坐标系中,A (﹣2,0)、B (3,﹣1)、C (2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC ;(2)将△ABC 平移,使得平移后点C 的对应点为原点,A 、B 的对应点分别为A 1,B 1,请作出平移后的△A 1B 1O ,并直接写出平移的距离为 ;(3)将△ABC 绕点A 逆时针旋转90°,得到△AB 2C 2,B 、C 的对应点分别为B 2、C 2,请作出△AB 2C 2,并求出B 2、C 2点的坐标.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=12BC,连接DE,F是AD的中点,连接CF.(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A、B两种品牌消毒酒精捐赠当地医院,已知A品牌消毒酒精每桶的价格比B品牌消毒酒精每桶的价格多20元,用3000元购进A品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A品牌消毒酒精每桶的价格和B品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A,B两种品牌消毒酒精共40桶,其中A品牌消毒酒精的数量不低于B品牌消毒酒精数量的一半,小明有几种购买方案?22. 如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=32时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.答案与解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的) 1. 下列式子中,是分式的是( ) A. 12a - B. 3x π- C. ﹣3x D. 2x y + [答案]A[解析][分析]利用分式定义可得答案.[详解]解:A 、12a -的分母含字母,是分式,故此选项符合题意; B 、3x π-的分母不含字母,不是分式,是整式,故此选项不合题意; C 、﹣3x 的分母不含字母,不是分式,是整式,故此选项不合题意; D 、2x y +的分母不含字母,不是分式,是整式,故此选项不合题意; 故选:A .[点睛]本题考查分式的定义,熟练掌握分式的定义是解答本题的关键.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b[答案]D[解析][分析]根据不等式的性质逐一进行判断即可.[详解]解:∵a<b,∴﹣3a>﹣3b,故A错误;∵a<b,∴a﹣3<b﹣3,故B错误;∵a<b,当m>0时,am<bm,故C错误;∵a<b,∴2a<2b,故D正确.故选:D.[点睛]本题考查了不等式的性质,掌握知识点是解题关键.4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°[答案]C[解析][分析]根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.[详解]解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∵∠B=80°,∠C=35°,∴∠BAC=65°,∴∠BAD=∠BAC﹣∠DAC=65°﹣35°=30°,故选:C.[点睛]本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<2[答案]A[解析][分析]根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.[详解]解:∵点A(x+3,2﹣x)在第四象限,∴30 20 xx+>⎧⎨-<⎩,解得x>2. 故选:A.[点睛]本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. 下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形[答案]D[解析][分析]根据平行四边形的判定方法分别对各个选项进行判断即可.[详解]解:∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B不符合题意;C、∵一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C不符合题意;∵一组对边平行且相等的四边形是平行四边形,∴选项D符合题意;故选:D.[点睛]本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 35[答案]A[解析][分析]利用平行四边形的性质,三角形中位线定理即可解决问题.[详解]解:∵平行四边形ABCD的周长为52,∴BC+CD=26,∵OD=OB,DE=EC,∴OE+DE=12(BC+CD)=13,∵BD=18,∴OD=12BD=9,∴△DOE的周长为13+9=22.故选:A.[点睛]本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.8. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 2﹣2C. 3﹣2D. 6﹣4[答案]C[解析][分析]过点D作DJ⊥BC于J,根据勾股定理求出BC,利用等腰直角三角形的性质求出DJ、BJ、JC,利用平行线分线段成比例定理求出JC′即可解决问题.[详解]解:过点D作DJ⊥BC于J.∵DB =DC =2∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′, ∴DJ A B ''=C J C B''', 434C J ', ∴C′J =3∴JB′=4﹣3,∴BB′=2﹣(4﹣3=3 2.故选:C .[点睛]本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9. 若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A. m <92B. m <92且m≠32C. m >﹣94 D. m >﹣94且m≠﹣34 [答案]B[解析][详解]解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.10. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()A. 5B. 3C. 32D. 13[答案]D[解析][分析]取AB的中点F,连接NF、MF,根据直角三角形的性质得到∠CAB+∠CBA=90°,根据三角形中位线定理分别求出MF、NF,以及∠MFN=90°,根据勾股定理计算,得到答案.[详解]解:取AB的中点F,连接NF、MF,△ABC中,∵∠ACB=90°,∴∠CAB+∠CBA=90°, ∵AM=MD,AF=FB,∴MF是△ABD的中位线,∴MF=12BD=3,MF//BC,∴∠AFM=∠CBA,同理,NF=12AE=2,NF//AC,∴∠BFN=∠CAB,∴∠AFM+∠BFN=∠CAB+∠CBA=90°,∴∠MFN=90°,∴MN故选:D.[点睛]本题考查了三角形的中位线,平行线的性质,以及勾股定理等知识,三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-的值_____.[答案]2[解析][分析]根据完全平方公式解答即可.[详解]解:∵a﹣b=2,∴222a bab +-=2222a ab b-+=2 ()2a b -=222=2,故答案为:2.[点睛]本题主要考查了完全平方公式,熟记公式是解答本题的关键.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ [答案]7[解析][分析]根据凸n 边形的内角和为1440°,求出凸n 边形的边数,即可得出从一个顶点出发可引出(n ﹣3)条对角线.[详解]解:∵凸n 边形的内角和为1440°, ∴(n ﹣2)×180°=1440°,解得:n =10,∴:10﹣3=7.故答案为:7.[点睛]本题考查多边形内角和定理,解题关键是根据多边形内角和定理求出凸n 边形的边数.13. 若分式2||123x x x ---的值为0,则x 的值为_____. [答案]1[解析][分析]根据分子为零列出方程求解,然后验证分母是否为0可得答案.[详解]解:∵分式2||123x x x ---的值为0, ∴|x|﹣1=0,∴x=±1,当x=1时,x 2﹣2x ﹣3=-4≠0,当x=-1时,x 2﹣2x ﹣3=0,∴x =1,故答案为:1.[点睛]本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.14. 如图,点D是等边△ABC外部一点,∠ADC=30°,BD=8,则四边形ABCD面积的最小值为_____.[答案]163﹣16[解析][分析]过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,根据全等三角形的判定得△ABD≌△ACE,设等边三角形ABC的边长为a,等边三角形ADE的边长为b,根据等边三角形的性质、全等三角形的性质,得到四边形ABCD面积的表达式,进而即可求解.[详解]解:过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,如下图所示:∵DE⊥DC,∴∠EDC=90°,∵∠ADC=30°,∴∠EDA=60°,∵DE=DA,∴三角形ADE是等边三角形,∴AD =AE ,∠DAE =60°,∴∠CAE =∠CAD +∠DAE =∠CAD +60°,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∴∠BAD =∠BAC +∠CAD =60°+∠CAD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴CE =BD ,∵BD =8,∴CE =8,设等边三角形ABC 的边长为a ,等边三角形ADE 的边长为b ,直角三角形DEC 中,CE =8,DE =b ,∴2264DC b =-,在直角三角形AMD 中,∠ADC =30°,AD =b ,∴AM =12b , ∴DM =32b , ∴CM =264b -﹣32b , 在直角三角形ACM 中,222AC AM CM =+,∴222213()(64)22a b b b =+--, ∵ABCD S 四边形=S △ABC +S △ACD =12×a×32 a +12DC·AM=12×a×32a +12×12b×264b -, =222313()(64)422b b b ⎡⎤+--⎢⎥⎣⎦ +14b 264b -==∴当b²=32时,即b=,ABCDS四边形最小值1322⨯16,故答案为:16.[点睛]本题主要考查全等三角形的判定与性质、等边三角形的性质、旋转的性质,解题关键是根据题意求出边之间的关系.三、解答题(共9小题,计58分)15. 因式分解:(1)x3﹣8x2+16x;(2)x(x2﹣5)﹣4x.[答案](1)x(x﹣4)2;(2)x(x+3)(x﹣3).[解析][分析](1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.[详解]解:(1)原式=x(x2﹣8x+16)=x(x﹣4)2;(2)原式=x(x2﹣5﹣4)=x(x+3)(x﹣3).[点睛]此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16. 解不等式组253(2)123x xx x+≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来.[答案]﹣1≤x≤3,数轴见解析[解析][分析]先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可.[详解]解:253(2)123x x x x +≤+⎧⎪⎨-≤⎪⎩①②, 由①式得x≥﹣1,由②得x≤3,所以﹣1≤x≤3, .[点睛]本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. [答案]﹣2m ﹣6,﹣4.[解析][分析] 把m +2看成21m +,先计算括号里面的,再算乘法,化简后代入求值. [详解]解:(m +252m +-)324m m -÷- =(2512m m +--)()223m m-⋅-, ()2224523m m m m---=⋅--, ()()()332223m m m m m-+-=⋅-- =﹣2(m +3)=﹣2m ﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.[点睛]本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.18. 如图,四边形ABCD中,∠A=∠C=90°,若AB=BC.求证:BD平分∠ABC.[答案]详见解析[解析][分析]利用HL证明Rt△ABD≌Rt△CBD可得∠ADB=∠CDB,进而证明结论.[详解]证明:∵∠A=∠C=90°,在Rt△ABD和Rt△CBD中,AB=BC,BD=BD,∴Rt△ABD≌Rt△CBD(HL),∴∠ADB=∠CDB,∴BD平分∠ABC.[点睛]本题主要考查全等三角形的判定与性质,证明Rt△ABD≌Rt△CBD是解题的关键.19. 已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.[答案](1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)[解析][分析](1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.[详解]解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)[点睛]本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=1BC,连接DE,F是AD的中点,连接CF.2(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的性质得AD//BC,且AD=BC,证出DF=CE,即可得出四边形CEDF是平行四边形;(2)过点D作DH⊥BE于点H,由直角三角形的性质得CH=12CD=4,DH3CH=3由梯形面积公式即可得出答案.[详解](1)证明:在ABCD中,AD//BC,且AD=BC.∵F是AD的中点,∴AF=DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF//CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在ABCD中,∵∠B=60°,AD//BC,∴∠B=∠DCE=60°,CD=AB=8,BC=AD=10, ∴∠CDH=30°,∴CH=12CD=4,DH22843由(1)得:AF=12AD=5,∴四边形ABCF的面积=12(AF+BC)×DH=12(5+10)×33.[点睛]本题考查了平行四边形的判定与性质、勾股定理、含30°角的直角三角形的性质、梯形面积公式等知识;熟练掌握平行四边形的判定与性质是解题的关键.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半,小明有几种购买方案?[答案](1)A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)5种[解析][分析](1)设B 品牌消毒酒精每桶价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据“用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同”列出方程求解即可;(2)设购买A 品牌消毒酒精m 桶,根据“用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半”列出一元一次不等式组,求解即可.[详解]解:(1)设B 品牌消毒酒精每桶的价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据题意得, 3000180020x x=+, 解得,x =30,经检验:x =30是原分式方程的解,且符合题意,∴x +20=30+20=50,答:A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)设购买A 品牌消毒酒精m 桶,则购买B 品牌消毒酒精(40﹣m )桶,根据题意得,5030(40)15601(40)2m m m m +-≤⎧⎪⎨≥-⎪⎩, 解得,40183m ≤≤ , ∵m 为正整数,∴m =14或m =15或m =16或m =17或m =18,∴共有5种购买方案.[点睛]本题考查了分式方程的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,列出方程和不等式组是解题的关键.22. 如图,两个一次函数y =kx +b 与y =mx +n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (﹣2,0),l 2与x 轴交于点C (4,0)(1)填空:不等式组0<mx +n <kx +b 的解集为 ;(2)若点D 和点E 分别是y 轴和直线l 2上的动点,当p =32时,是否存在以点A 、B 、D 、E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.[答案](1)1<x <4;(2)E 点为(3,12),(﹣1,52),(﹣3,72). [解析][分析](1)观察图象即可求解; (2)已知点A 、B 、C 时,用待定系数法分别求出直线AB 与AC 的解析式;点A 、B 、D 、E 为顶点的四边形是平行四边形,有三种情况:①四边形ABDE 为平行四边形;②四边形EBDA 是平行四边形;③四边形EBAD 为平行四边形.[详解]解:(1)由图象可知满足0<mx +n <kx +b 的部分为A 点与C 点之间的部分,∴1<x <4;(2)∵p =32, ∴A (1, 32), 将点A 与B 代入y =kx +b ,得3220k b k b ⎧=+⎪⎨⎪-+=⎩,∴121k b ⎧=⎪⎨⎪=⎩,∴y =12x +1, 将点A 与点C 代入y =mx +n ,得3240m n m n ⎧+=⎪⎨⎪+=⎩, ∴122m n ⎧=-⎪⎨⎪=⎩,∴y =﹣12x +2, ①如图1:当四边形ABDE 为平行四边形时,∵E 在直线l 2上,此时,BD ∥AC ,∴BD 所在直线解析式为y =﹣12x ﹣1, ∴D (0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=12x﹣1,∵﹣12x+2=12x﹣1,可得x=3,∴E(3,12);②如图2:当四边形EBDA是平行四边形时, 则有BD∥AC,∴BD所在直线解析式为y=﹣12x﹣1,∴D(0,﹣1),∴AD的直线解析为y=52x+1,∵AD∥BE,∴BE所在直线解析为y=52x+5,∵﹣12x+2=52x+5,解得x=﹣1,∴E(﹣1,52 );③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣12m+2),此时AE的中点M的横坐标为12m +,BD中点M的横坐标为﹣1,∴﹣1=12m +,∴m=﹣3,∴E(﹣3,72 );综上所述:满足条件的E点为(3,12),(﹣1,52),(﹣3,72).[点睛]本题考查一次函数的综合应用;熟练掌握代入法求函数解析式,平行四边形的性质与直线平行的关系灵活结合是解题的关键.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.[答案](1)4+33;(2)115;(3)存在;365.[解析][分析](1)根据旋转的性质可知△BCB1是等边三角形,根据线段的垂直平分线的判定得A1B垂直平分线段CB1,利用勾股定理求出BD、A1D即可解决问题;(2)过A作AF⊥BC于F,过C作CE⊥AB于E,利用面积法求出CE的长,根据勾股定理求出BE的长,进而可求线段AB1的长;(3)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.[详解]解:(1)如图1中,∵CB=CB1,∠BCB1=60°,∴△BCB1是等边三角形,∴BC=BB1,∵A1C=A1B1,∴A1B垂直平分线段CB1,∴A1B⊥B1C,B1D=DC.∵△BCB1是等边三角形,BD是高,BC=6,∴∠CBD=30°,∴CD=12BC=3,∴BD =2263-=33, 在Rt △A 1DC 中,A 1D =221AC CD -=2254-=4, ∴A 1B =A 1D +BD =4+33,故答案为4+33;(2)过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图2:∵AB =AC ,AF ⊥BC ,BC =6,∴BF =CF =3,∴AF=2253=4-,∴S △ABC =12BC ×AF=12. ∵B 1C =BC =6, ,CE ⊥AB ,∴B 1B =2BE ,∵EC =2ABC S AB ∆=245, ∴BE=2224186=55⎛⎫- ⎪⎝⎭,则BB 1=365, 故AB 1=365﹣5=115; (3)如图3,过C 作CF ⊥AB 于F ,此时在Rt △BFC 中,∵112 2ABCAB CF S⋅==,∴CF=245,∴CF1=245,如图,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时EF1的最小值为245﹣3=95;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1最大值与最小值的差为9﹣95=365.[点睛]此题考查了旋转的性质、等边三角形的判定、等腰三角形的性质、线段的垂直平分线的判定和性质、勾股定理、三角形的面积等知识,关键是根据旋转的性质和三角形的面积公式进行解答.。
2020-2021学年度第二学期期中测试人教版八年级数学试题一.选择题(共10小题)1. 下列式子是最简二次根式的是( ) A. 8 B. 36 C. 21 D. 317- 2. 如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接DE .现测得AC =30m ,BC =40m ,DE =24m ,则AB =( )A. 50mB. 48mC. 45mD. 35m 3. x 取( )时,式子2x -在实数范围内有意义. A. x ≥1且x ≠2 B. x ≥2且x ≠1 C. x ≥2 D. 都不正确 4. 一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是( )A. 3尺B. 4尺C. 5尺D. 6尺5. 由线段a 、b 、c 组成的三角形不是直角三角形的是( )A. 7a =,24b =,25c =B. 41a =,4b =,5c =C. 54a =,1b =,34c =D. 13a =,14b =,15c = 6. 下列结论错误的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线互相垂直且相等的四边形是正方形D. 对角线互相垂直且相等的平行四边形是正方形7. 顺次连接矩形各边中点得到的四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形8. 如图,在平行四边形ABCD 中,∠A =130°,在AD 上取DE =DC ,则∠ECB 的度数是( )A. 65°B. 50°C. 60°D. 75° 9. 某广场上一个形状是平行四边形的花坛,分别种有红、黄、蓝、白、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法中错误的是( )A. 红花,白花种植面积一定相等B . 红花,蓝花种植面积一定相等C. 蓝花,黄花种植面积一定相等D. 紫花,橙花种植面积一定相等10. 如图,在四边形ABCD 中,90ABC ∠=︒ ,//,//AD BC AE CD 交BC 于E ,AE 平分BAC ∠ ,AO CO AD DC ==,,下面结论:①2AC AB = ;②ABO ∆是等边三角形;③3ADC ABE S S ∆∆=;④2DC BE =,其中正确的有A .1个B. 2个C. 3个D. 4个 二.填空题(共11小题)11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形A ,B ,C ,D 的边长分别是6,8,3,4,则最大正方形E 的面积是_____.12. 如图,在四边形ABCD 中,AD BC =,在不添加任何辅助线的情况下,请你添加一个条件_____,使四边形ABCD 是平行四边形. 13. 若x ,y 为实数,且|x+2|+3y -=0,则(x+y )2016的值为_____. 14. 已知3131x y =+=-,,求下列各式的值: (1)222x xy y ++;(2)22x y -.15. 已知a+1a =13,则a ﹣1a=________. 16. 已知一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边上的高为__;三角形的两边分别为3和5要使这个三角形组成直角三角形,则第三边长是__.17. 若菱形的对角线长分别是6cm 、8cm ,则其周长是________ ,面积是______________.18. 如图,在▱ABCD 中,BC =10,AC =8,BD =14,△AOD 的周长是__;△DBC 比△ABC的周长长__.19. 在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =__°,∠B =___°.20. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD 的度数为__________度.21. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.三.解答题(共7小题)22. (1)(24﹣12)﹣(168+);(2)3212⨯÷52;(3)(23+6)(23﹣6);(4)(32111234-)2.23. 有一个水池,水面是一个边长为12尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水的深度与这根芦苇的长度分别是多少?24. 如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.25. 在平行四边形ABCD 中,BD 是它的一条对角线,过A ,C 两点分别作AE ⊥BD ,CF ⊥BD ,E 、F 为垂足,求证:四边形AFCE 是平行四边形.26. 如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,BD 平分∠ABF ,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若∠ADB =30°,BD =12,求AD 的长.27. 已知:如图,在ABCD 中,,AE BC CF AD ⊥⊥,,E F 分别垂足.(1)求证:ABE CDF ∆∆≌;(2)求证:四边形AECF 是矩形.28. 如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点.DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F .(1)求证:AE =BF ; (2)如图2,如果点G 是BC 延长线上一点,其余条件不变,则线段AF 、BF 、EF 有什么数量关系?请证明出你的结论.答案与解析一.选择题(共10小题)1. 下列式子是最简二次根式的是()A. 8B. 36C. 21D. 317-【答案】C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、822=,不是最简二次根式,故本选项不符合题意;B、36=6,不是最简二次根式,故本选项不符合题意;C、21是最简二次根式,故本选项符合题意;D、37017-=-,不是最简二次根式,故本选项不符合题意;故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2. 如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A. 50mB. 48mC. 45mD. 35m【答案】B【解析】∵D是AC的中点,E是BC的中点,∴DE 是△ABC 的中位线,∴DE=12AB , ∵DE=24m ,∴AB=2DE=48m ,故选B .3. x 取( )时,式子21x x --在实数范围内有意义. A. x ≥1且x ≠2B. x ≥2且x ≠1C. x ≥2D. 都不正确【答案】C【解析】【分析】根据二次根式有意义可得x ﹣2≥0,根据分式有意义可得x ﹣1≠0,再解即可.【详解】解:由题意得:x ﹣2≥0且x ﹣1≠0,解得:x ≥2故选:C .【点睛】本题考查二次根式有意义和分式有意义的条件,被开方数不能为负,分式的分母不能为0. 4. 一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是( )A. 3尺B. 4尺C. 5尺D. 6尺【答案】B【解析】【分析】 杆子折断后刚好构成一直角三角形,设杆子折断处离地面x 尺,则斜边为(9﹣x )尺.利用勾股定理解题即可.【详解】解:设杆子折断处离地面x 尺,则斜边为(9﹣x )尺,根据勾股定理得:x 2+32=(9﹣x )2解得:x =4.故选:B .【点睛】本题考查勾股定理的应用,根据题意设出未知数,表示出直角三角形三边的长度,列方程求解即可.5. 由线段a 、b 、c 组成的三角形不是直角三角形的是( )A. 7a =,24b =,25c =B. 41a =,4b =,5c =C. 54a =,1b =,34c = D. 13a =,14b =,15c = 【答案】D【解析】【分析】【详解】A 、72+242=252,符合勾股定理的逆定理,是直角三角形;B 、42+52=41)2,符合勾股定理的逆定理,是直角三角形;C 、12+(34)2=(54)2,符合勾股定理的逆定理,是直角三角形; D 、(14)2+(15)2≠(13)2,不符合勾股定理的逆定理,不是直角三角形. 故选D .6. 下列结论错误的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线互相垂直且相等的四边形是正方形D. 对角线互相垂直且相等的平行四边形是正方形【答案】C【解析】【分析】根据正方形的判定方法解答即可.【详解】选项A ,对角线相等的菱形是正方形,选项A 正确;选项B ,对角线互相垂直的矩形是正方形,选项B 正确;选项C ,∵对角线互相垂直平分且相等的四边形是正方形,∴对角线互相垂直且相等的四边形不一定是正方形,选项C 错误;选项D ,对角线互相垂直且相等的平行四边形是正方形,选项D 正确.故选C .【点睛】本题考查了正方形的判定方法,熟记正方形的判定定理是解决本题的关键.7. 顺次连接矩形各边中点得到的四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】C【解析】【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形ABCD 中, ,AC BD ∴=,,,E F G H 分别为四边的中点,1//,,2EF BD EF BD ∴=1//,,2GH BD GH BD = 1,2FG AC = //,,EF GH EF GH ∴=∴ 四边形ABCD 是平行四边形, 11,,,22AC BD EF BD FG AC === ,EF FG ∴=∴ 四边形EFGH 是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.8. 如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是()A. 65°B. 50°C. 60°D. 75°【答案】A【解析】【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=12(180°-50°)=65°,∴∠ECB=130°-65°=65°.【点睛】考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.9. 某广场上一个形状是平行四边形的花坛,分别种有红、黄、蓝、白、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A. 红花,白花种植面积一定相等B. 红花,蓝花种植面积一定相等C. 蓝花,黄花种植面积一定相等D. 紫花,橙花种植面积一定相等【答案】B【解析】【分析】由题意得出四边形ABCD 、四边形DEOH 、四边形BGOF 、四边形AGOE 、四边形CHOF 是平行四边形,得出△ABD 的面积=△CBD 的面积,△DOE 的面积=△DOH 的面积,△BOG 的面积=△BOF 的面积,得出四边形AGOE 的面积=四边形CHOF 的面积,即可得出结论.【详解】解:如图所示:∵AB ∥EF ∥DC ,BC ∥GH ∥AD ,∴四边形ABCD 、四边形DEOH 、四边形BGOF 、四边形AGOE 、四边形CHOF 是平行四边形,∴△ABD 的面积=△CBD 的面积,△DOE 的面积=△DOH 的面积,△BOG 的面积=△BOF 的面积, ∴四边形AGOE 的面积=四边形CHOF 的面积,∴A 、C 、D 正确,B 不正确;故选:B .【点睛】此题考查平行四边形的性质,利用平行四边形性质比较三角形面积大小,结合图形解题较为简便. 10. 如图,在四边形ABCD 中,90ABC ∠=︒ ,//,//AD BC AE CD 交BC 于E ,AE 平分BAC ∠ ,AO CO AD DC ==,,下面结论:①2AC AB = ;②ABO ∆是等边三角形;③3ADC ABE S S ∆∆=;④2DC BE =,其中正确有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=12AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=12AB•CE,S△ABE=12AB•BE,由BE=12AE=12CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=12AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD,∴∠EAC=∠ECA,∵AE平分∠BAC,∴∠EAB=∠EAC,∴∠EAB=∠EAC=∠ECA,∵∠ABC=90°,∴∠EAB=∠EAC=∠ECA=30°,∴BE=12AE,AC=2AB,①正确;∵AO=CO,∴AB=AO,∵∠EAB=∠EAC=30°,∴∠BAO=60°,∴△ABO是等边三角形,②正确;∵四边形AECD是菱形,∴S△ADC=S△AEC=12 AB•CE,S△ABE=12 AB•BE,∵BE=12AE=12CE,∴S△ADC=2S△ABE,③错误;∵DC=AE,BE=12 AE,∴DC=2BE,④正确;故选C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.二.填空题(共11小题)11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形A,B,C,D的边长分别是6,8,3,4,则最大正方形E的面积是_____.【答案】125.【解析】【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.【详解】解:根据勾股定理的几何意义,可知S E=S F+S G=S A+S B+S C+S D=62+82+32+42=125;故答案为125.【点睛】本题考查勾股定理,熟悉勾股定理的几何意义是解题关键.12. 如图,在四边形ABCD 中,AD BC =,在不添加任何辅助线的情况下,请你添加一个条件_____,使四边形ABCD 是平行四边形.【答案】//AD BC (答案不唯一)【解析】【分析】可再添加一个条件AD ∥BC ,根据两组对边分别相等的四边形是平行四边形,四边形ABCD 是平行四边形.【详解】根据平行四边形的判定,可再添加一个条件://AD BC .故答案为//AD BC (答案不唯一).【点睛】此题考查平行四边形的判定,解题关键在于掌握判定法则13. 若x ,y 为实数,且|x+2|+3y -,则(x+y )2016的值为_____.【答案】1.【解析】试题解析:3y -,∴x+2=0,y-3=0,∴x=-2,y=3,∴(x+y )2016=1. 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.14. 已知3131x y ==,,求下列各式的值: (1)222x xy y ++;(2)22x y -.【答案】(1)12 (2)3【解析】【分析】观察可知:(1)式是和的完全平方公式,(2)是平方差公式.先转化,再代入计算即可.【详解】(1)当x+1,y时,原式=(x +y )2=)2=12;(2)当x,y时,原式=(x +y )(x -y )=))15. 已知a+1aa ﹣1a=________. 【答案】±3 【解析】【分析】 首先对a+1aa 2+21a ,然后根据(a-1a )2=a 2+21a-2求解. 【详解】解:∵a+1a∴(a+1a )2=13,即a 2+21a=11, ∴(a-1a )2=a 2+21a-2=11-2=9, ∴a-1a =±3. 故答案是:±3. 【点睛】本题考查了二次根式的化简求值,正确理解完全平方公式,对所求的式子进行变形是关键. 16. 已知一个直角三角形两条直角边分别为6、8,那么这个直角三角形斜边上的高为__;三角形的两边分别为3和5要使这个三角形组成直角三角形,则第三边长是__.【答案】 (1). 4.8 (2).4【解析】【分析】根据勾股定理求出斜边,设斜边上的高为h ,根据同一三角形面积一定,列方程求出这个直角三角形斜边上的高;根据勾股定理的逆定理,可设第三条边长为x ,如果满足32+52=x 2或32+x 2=52,即为直角三角形,解出x 的值即可解答.【详解】解:∵直角三角形的两条直角边分别为6,8,10,设斜边上的高为h ,则直角三角形的面积为12×6×8=12×10h,解得:h=4.8,这个直角三角形斜边上的高为4.8;三角形的两边分别为3和5,设第三条边长为x,∵三角形是直角三角形,∴32+52=x2或32+x2=52,解得,x=34或x=4,即第三边长是34或4.故答案为:4.8;34或4.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了勾股定理的运用,直角三角形的面积的求法.17. 若菱形的对角线长分别是6cm、8cm,则其周长是________,面积是______________.【答案】(1). 20cm (2). 24cm2【解析】根据菱形的对角线互相垂直平分,求出对角线的一半,然后利用勾股定理求出菱形的边长,最后根据周长公式计算即可求解;根据菱形的面积等于对角线乘积的一半列式计算即可求解.解:∵菱形的两条对角线的长分别是6cm和8cm,∴两条对角线的长的一半分别是3cm和4cm,∴菱形的边长为=2234=5cm,∴菱形的周长=5×4=20cm;面积=12×8×6=24cm2.故答案为20,24.18. 如图,在▱ABCD中,BC=10,AC=8,BD=14,△AOD的周长是__;△DBC比△ABC的周长长__.【答案】(1). 21(2). 6 【解析】【分析】根据平行四边形的性质可得AB=CD,BC=AD=10,AO=CO=12AC=4,BO=DO=12BD=7,然后可得△AOD的周长,进而可得△DBC和△ABC的周长差.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD=10,AO=CO=12AC=4,BO=DO=12BD=7,∴△AOD的周长是:AD+AO+DO=10+4+7=21;△DBC周长﹣△ABC的周长=BD+BC+DC﹣AB﹣BC﹣AC=BD=AC=14﹣8=6;故答案为:21;6.【点睛】此题主要考查了平行四边形的性质,关键是掌握平行四边形对边相等,对角线互相平分.19. 在Rt△ABC中,∠C=90°,AB=2AC,则∠A=__°,∠B=___°.【答案】(1). 60(2). 30【解析】【分析】在Rt△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°.【详解】解:如图,在Rt△ABC中,∵∠C=90°,AB=2AC,∴sin∠B=ACAB=12,∴∠B=30°,∴∠A=90°﹣∠B=90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.20. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD 的度数为__________度.【答案】45°【解析】【分析】求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.【详解】∵∠ACD=3∠BCD,∠ACB=90°,∴∠ACD=67.5°,∠BCD=22.5°,∵CD⊥AB,∴∠CDB=90°,∴∠B=180°−90°−22.5°=67.5°,∵∠ACB=90°,E是斜边AB的中点,∴BE=CE,∴∠BCE=∠B=67.5°,∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.【点睛】本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.21. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.【答案】13【解析】【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=13.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠F AB+∠FBA=∠F AB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵90AFB DEAFBA EADAB DA︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为:13.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.三.解答题(共7小题)22. (1)+;(2)(3)()();(4)2.【答案】(1﹣(2)10;(3)6;(4)5﹣52【解析】【分析】(1)首先化简二次根式进而合并得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案;(3)直接利用平方差公式计算得出答案;(4)直接利用完全平方公式计算得出答案.【详解】解:(1)=24--(2)÷=2×4=3=10;(3)()()=(2)2=12﹣6=6;(4)2=955324342⨯+-⨯=155344+-=5﹣52【点睛】掌握并熟练运用实数的运算法则,平方差公式及二次根式的运算法则是解本题的关键.23. 有一个水池,水面是一个边长为12尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水的深度与这根芦苇的长度分别是多少?【答案】水的深度是8尺,这根芦苇长10尺.【解析】【分析】设水深为x尺,则这根芦苇的长为(x+2)尺,根据勾股定理列出方程,求出x的值,即可求解.【详解】设水深为x尺,则这根芦苇的长为(x+2)尺,根据勾股定理得:x2+(122)2=(x+2)2,解得:x=8,芦苇的长度=x+2=8+2=10(尺),答:水的深度是8尺,这根芦苇长10尺.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.24. 如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.【答案】36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,最后利用三角形的面积公式求解即可.【详解】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC=22AB BC=5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S四边形ABCD=12AB•BC+12AC•CD=12×3×4+12×5×12=36.【点睛】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键,难度适中.25. 在平行四边形ABCD中,BD是它的一条对角线,过A,C两点分别作AE⊥BD,CF⊥BD,E、F为垂足,求证:四边形AFCE是平行四边形.【答案】见解析【解析】【分析】连接AC交BD于点O,由平行四边形的性质可证明△AED≌△CFB,则可求得DE=BF,从而可求得OE=OF,可证得结论.【详解】证明:连接AC交BD于点O,∵四边形ABCD为平行四边形,∴OA=OC,OD=OB,AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB ,在△AED 和△CFB 中AED CFB ADE CBF AD BC ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△AED ≌△CFB (AAS ),∴DE=BF ,∴OD-DE=OB-BF ,即OE=OF ,∴四边形AFCE 是平行四边形.【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.26. 如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,BD 平分∠ABF ,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若∠ADB =30°,BD =12,求AD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1)由平行线的性质和角平分线定义得出∠ABD =∠ADB ,证出AB =AD ,同理:AB =BC ,得出AD =BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD =OB =12BD =6,再由三角函数即可得出AD 的长. 【详解】证明:(1)∵AE ∥BF ,∴∠ADB =∠CBD ,又∵BD 平分∠ABF ,∴∠ABD =∠CBD ,∴∠ABD =∠ADB ,∴AB =AD ,同理:AB =BC ,∴AD =BC ,∴四边形ABCD 是平行四边形,又∵AB =AD ,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =12,∴AC ⊥BD ,OD =OB =12BD =6, ∵∠ADB =30°,∴cos ∠ADB =3OD AD =, ∴3643AD =÷=. 【点睛】本题考查了菱形的判定与性质、平行线的性质、等腰三角形的判定、平行四边形的判定、三角函数等知识;熟练掌握菱形的判定与性质是解决问题的关键.27. 已知:如图,在ABCD 中,,AE BC CF AD ⊥⊥,,E F 分别为垂足.(1)求证:ABE CDF ∆∆≌;(2)求证:四边形AECF 是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由平行四边形的性质得出∠B=∠D ,AB=CD ,AD ∥BC ,由已知得出∠AEB=∠AEC=∠CFD=∠AFC=90°,由AAS 证明△ABE ≌△CDF 即可;(2)证出∠EAF=∠AEC=∠AFC=90°,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,B D AB CD ∠=∠=,AD BC ∕∕,∵,AE BC CF AD ⊥⊥,∴90AEB AEC CFD AFC ∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE CDF AAS ∆∆≌;(2)证明:∵AD BC ∕∕,∴90EAF AEB ∠=∠=︒,∴90EAF AEC AFC ∠=∠=∠=︒,∴四边形AECF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.28. 如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点.DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F .(1)求证:AE =BF ;(2)如图2,如果点G 是BC 延长线上一点,其余条件不变,则线段AF 、BF 、EF 有什么数量关系?请证明出你的结论.【答案】(1)见解析;(2)AF +EF =BF ,证明见解析【解析】【分析】(1)根据正方形的四条边都相等可得DA =AB ,再根据同角的余角相等求出∠BAF =∠ADE ,然后利用“角角边”证明△ABF 和△DAE 全等,再根据全等三角形对应边相等可得BF =AE ,AF =DE ,然后根据图形列式整理即可得证;(2)根据题意作出图形,然后根据(1)的结论可得BF =AE ,AF =DE ,然后结合图形写出结论即可.【详解】(1)证明:∵四边形ABCD 是正方形,BF ⊥AG ,DE ⊥AG ,∴DA =AB ,∠BAF+∠DAE =∠DAE+∠ADE =90°,∴∠BAF =∠ADE ,在△ABF 和△DAE 中,90BAF ADE AFB DEA DA AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△DAE (AAS ),∴BF =AE ,AF =DE ,(2)AF+BF =EF ;∵四边形ABCD 是正方形,BF ⊥AG ,DE ⊥AG ,∴DA =AB ,∠BAF+∠DAE =∠DAE+∠ADE =90°,∴∠BAF =∠ADE ,在△ABF 和△DAE 中,90BAF ADE AFB DEA DA AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△DAE (AAS ),∴BF =AE ,AF =DE ,∴AF+EF =BF .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟记正方形的四条边都相等,每一个角都是直角,然后求出三角形全等是解题的关键.。
四中八年级下学期期中测试数学试卷(时间:120分钟 满分120分)一、选择题(每小题3分,共30分) 1、代数式22,,,3a m n yx m n x+-中,分式有( ) A 、4个 B 、3个 C 、2个 D 、1个 2、对于反比例函数xy 2=,下列说法不正确的是( )A. 点(-2,-1)在它的图象上B. 它的图象在第一、三象限内。
C. y 随x 的增大而增大。
D. y 随x 的增大而减小。
3、若分式392--x x 的值为0,则x 的值是( )A 、-3B 、3C 、±3D 、04、在△ABC 中,∠C=90º, AB=4cm, AC=3cm, 则BC 的长度是( )A.5cmB.6cmC.7 cmD. 5、如右图,点A 是函数xy 4=图象上的任意一点,A B ⊥x 轴于点B ,A C ⊥y 轴于点C ,则四边形OBAC 的面积为( )A 、2B 、4C 、8D 、无法确定6、已知反比例函数)0(>=k xk y 经过点A (x 1,y 1),B (x 2,y 2), 如果y 1<y 2<0,那么( )A 、x 2>x 1>0B 、x 1>x 2>0C 、x 2<x 1<0D 、x 1<x 2<07、已知下列四组线段:①5,12,13 ;②15, 8, 17 ;③1.5 ,2 , 2.5 ;④43,.1,45,其中能构成直角三角形的有( )A 、四组B 、三组C 、二组D 、一组 8、下列计算不正确的是( )A.2142-=B.21(2)4--=-C.232461(3)9x y x y-=D.11x y xyxy++=9、下列运算中,错误的是( )A 、1-=+--b a b a B 、ba b a ba b a 321053.02.05.0-+=-+C 、yx y x yxy x yx +-=++-22222 D 、223m m mm m+=+10、在△ABC 中,AB=10,BC=6,AC=8.则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形二、填空题(每小题3分,共30分)11、写出一个图象位于第二、四象限的反比例函数的表式: 。
人教版八年级下学期期中考试数学试题及答案一、选择题:每小题2分,共20分.每小题中只有一项是正确的.1.(2分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(2分)点P(4,3)到原点的距离是()A.3B.4C.5D.73.(2分)如图,在Rt△ABC中,∠ACB=90°,AB=4,CD是AB边上的中线,则CD的长是()A.1B.2C.4D.84.(2分)下列计算正确的是()A.+=B.3﹣=3 C.×=D.÷=45.(2分)边长为4的等边三角形的中位线长为()A.2B.4C.6D.86.(2分)已知四边形ABCD中,AB∥C D.则添加下列条件,不能使四边形ABCD成为平行四边形的是()A.A B=CD B.∠B=∠D C.A D∥BC D.AD=BC7.(2分)由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=12,b=13,c=5C.a=15,b=8,c=17 D.a=13,b=14,c=158.(2分)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是()A.45°B.60°C.90°D.120°9.(2分)如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算10.(2分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.13二、填空题:每小题3分,满分18分.11.(3分)计算:(+1)(﹣1)=.12.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=4cm,则AC的长为cm.13.(3分)如图,矩形OABC中,O是数轴的原点,OC在数轴上,OC=3,OA=1,若以点O为圆心,对角线OB 长为半径作弧交数轴的正半轴于M,则点M表示的数为.14.(3分)如图,在平面直角坐标系中,菱形OABC的顶点O、A的坐标分别是(0,0),(2,1),则顶点C的坐标是.15.(3分)2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.16.(3分)如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.三、解答题:共62分.17.(4分)计算:+6﹣5.18.(4分)计算:(﹣)÷.19.(4分)当x是怎样的实数时,在实数范围内有意义,请再写出一个含x的二次根式,使x为任何实数时均有意义.20.(5分)已知直角三角形的两条直角边长为+1和﹣1.求斜边c的长.21.(5分)如图,在▱BFDE中,分别延长DF到C、BE到A,使得DF=FC、BE=E A.求证:四边形ABCD是平行四边形.22.(6分)如图,▱ABCD中,AC、BD是对角线,且AC=B D.求证:四边形ABCD是矩形.23.(7分)法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如,(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(),();(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2﹣1,z=n2+1,那么,以x,y,z为三边的三角形为直径三角形(即a,y,z为勾股数),请你加以证明.24.(9分)如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.25.(9分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)如图1,求证:AE=BF;(2)如图2,当∠BAG=30°,且AB=2时,求EF﹣FG的值.26.(9分)如图1,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:四边形AFCE为菱形.(2)求AF的长.(3)如图(2),动点P,Q分别从A、E两点同时出发,沿△AFB和△ECD各边匀速运动一周,即点P自A→F→B→A 停止,点Q自E→C→D→E停止,在运动过程中,已知点P的速度为每秒2cm,点Q的速度为每秒1.2cm,运动时间为t秒,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案与试题解析一、选择题:每小题2分,共20分.每小题中只有一项是正确的.1.(2分)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.专题:计算题.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.点评:本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(2分)点P(4,3)到原点的距离是()A.3B.4C.5D.7考点:勾股定理;坐标与图形性质;两点间的距离公式.分析:先画图,根据图可知道OA=4,AP=3,再利用勾股定理可求OP.解答:解:如图所示,∵P点坐标是(4,3),∴OA=4,AP=OB=3,∴OP==5.故选:C.点评:本题主要考查勾股定理,解答本题的关键是熟练掌握勾股定理的知识点,此题比较简单.注意数形思想的应用.3.(2分)如图,在Rt△ABC中,∠ACB=90°,AB=4,CD是AB边上的中线,则CD的长是()A.1B.2C.4D.8考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线性质得出CD=AB,代入求出即可.解答:解:∵在Rt△ABC中,∠ACB=90°,AB=4,CD是AB边上的中线,∴CD=AB=2,故选B.点评:本题考查了直角三角形斜边上的中线性质的应用,能根据性质得出CD=AB是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.4.(2分)下列计算正确的是()A.+=B.3﹣=3 C.×=D.÷=4考点:二次根式的加减法;二次根式的乘除法.分析:分别利用二次根式加减运算法则以及乘除运算法则化简判断得出即可.解答:解:A、+无法计算,故此选项错误;B、3﹣=2,故此选项错误;C、×=,故此选项正确;D、÷==2,故此选项错误;故选:C.点评:此题主要考查了二次根式的加减以及乘除运算,正确掌握运算法则是解题关键.5.(2分)边长为4的等边三角形的中位线长为()A.2B.4C.6D.8考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.解答:解:边长为4的等边三角形的中位线长=×4=2.故选A.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.6.(2分)已知四边形ABCD中,AB∥C D.则添加下列条件,不能使四边形ABCD成为平行四边形的是()A.A B=CD B.∠B=∠D C.A D∥BC D.AD=BC考点:平行四边形的判定.分析:已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组分别平行的四边形是平行四边形来判定.解答:解:∵在四边形ABCD中,AB∥CD,∴可添加的条件是:AB=DC,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故选项A不符合题意;∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠D+∠C=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故选项B不符合题意;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故选项C不符合题意;∵AB∥CD,AD=BC无法得出四边形ABCD是平行四边形,故选项D符合题意.故选:D.点评:此题主要考查学生对平行四边形的判定方法的理解能力,常用的平行四边形的判定方法有:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.7.(2分)由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5 B.a=12,b=13,c=5C.a=15,b=8,c=17 D.a=13,b=14,c=15考点:勾股定理的逆定理.分析:根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.解答:解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选D.点评:本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(2分)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是()A.45°B.60°C.90°D.120°考点:平行四边形的性质.分析:据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=×180°=120°,故选D.点评:本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.9.(2分)如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算考点:勾股定理.分析:小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2.AB长度已知,故可以求出两正方形面积的和.解答:解:正方形ADEC的面积为:AC2,正方形BCFG的面积为:BC2;在Rt△ABC中,AB2=AC2+BC2,AB=15,则AC2+BC2=225cm2.故选C.点评:本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.10.(2分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.13考点:平行四边形的性质.分析:根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,OE=OF=2,∴DE+CF=DE+AE=AD=6,∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=15,故选B.点评:本题考查了平行四边形性质,全等三角形的性质和判定的应用,关键是求出DE+CF的长和求出OF长.二、填空题:每小题3分,满分18分.11.(3分)计算:(+1)(﹣1)=1.考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=4cm,则AC的长为8cm.考点:矩形的性质;等边三角形的判定与性质.专题:计算题.分析:由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,在直角三角形ABC中,根据直角三角形的两个锐角互余可得∠ACB为30°,根据30°角所对的直角边等于斜边的半径,由AB的长可得出AC的长.解答:解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∠ABC=90°,∴OA=OB=OC=OD,又∵∠AOB=60°,∴△AOB为等边三角形,∴∠BAO=60°,在直角三角形ABC中,∠ABC=90°,∠BAO=60°,∴∠ACB=30°,∵AB=4cm,则AC=2AB=8cm.故答案为:8点评:此题考查了矩形的性质,等边三角形的判定与性质,以及含30°角直角三角形的性质,矩形的性质有:矩形的四个角都为直角;矩形的对边平行且相等;矩形的对角线互相平分且相等,熟练掌握矩形的性质是解本题的关键.13.(3分)如图,矩形OABC中,O是数轴的原点,OC在数轴上,OC=3,OA=1,若以点O为圆心,对角线OB 长为半径作弧交数轴的正半轴于M,则点M表示的数为.考点:实数与数轴.分析:首先根据勾股定理计算出OB的长,进而得到OM的长,再根据O点为原点,可得M点表示的数.解答:解:∵四边形OABC为矩形,OA=1,∴BC=1,又OC=3,∠C=90°,由勾股定理得,OB=,∴OM=,则点M表示的数为:.点评:本题考查的是实数与数轴的关系和勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.14.(3分)如图,在平面直角坐标系中,菱形OABC的顶点O、A的坐标分别是(0,0),(2,1),则顶点C的坐标是(4,0).考点:菱形的性质;坐标与图形性质.分析:根据菱形的性质对角线互相垂直和四边相等,解答即可.解答:解:∵菱形OABC,顶点O、A的坐标分别是(0,0),(2,1),∴OC=4,所以点C的坐标是(4,0);故答案为:(4,0).点评:此题考查菱形的性质,关键是利用菱形对角线互相垂直且平分.15.(3分)2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为49.考点:勾股定理的证明.分析:根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.解答:解:∵大正方形的面积是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面积是=6,又∵直角三角形的面积是ab=6,∴ab=12,∴(a+b)2=a2+b2+2ab=c2+2ab=25+2×12=49.故答案是:49.点评:本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.16.(3分)如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.考点:菱形的判定.分析:首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD=OB,CD=CB;最后Rt△BOC中,根据勾股定理得,OB的值,则AD=AB﹣2O B.解答:解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==5(勾股定理).若平行四边形CDEB为菱形时,CE⊥BD,且OD=OB,CD=C B.∵AB•OC=AC•BC,∴OC=.∴在Rt△BOC中,根据勾股定理得,OB===,∴AD=AB﹣2OB=.故答案是:.点评:本题考查了菱形的判定与性质.菱形的对角线互相垂直平分.三、解答题:共62分.17.(4分)计算:+6﹣5.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并.解答:解:原式=3+3﹣=5.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及合并.18.(4分)计算:(﹣)÷.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.解答:解:原式=(4﹣)÷3=4÷3﹣÷3=﹣=.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.19.(4分)当x是怎样的实数时,在实数范围内有意义,请再写出一个含x的二次根式,使x为任何实数时均有意义.考点:二次根式有意义的条件.专题:开放型.分析:根据被开方数大于等于0列式计算即可得解;根据非负数的性质以及被开方数大于等于0解答.解答:解:由2﹣x≥0得,x≤2,所以,当x≤2时,在实数范围内有意义;x为任何实数时均有意义.点评:本题考查的知识点为:二次根式的被开方数是非负数.20.(5分)已知直角三角形的两条直角边长为+1和﹣1.求斜边c的长.考点:二次根式的应用.分析:直接利用勾股定理求得斜边即可.解答:解:c2=(+1)2+(﹣1)2=4+2+4﹣2=8c=2答:斜边c的长是2.点评:此题考查二次根式的实际运用,掌握勾股定理是解决问题的关键.21.(5分)如图,在▱BFDE中,分别延长DF到C、BE到A,使得DF=FC、BE=E A.求证:四边形ABCD是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:由四边形BFDE是平行四边形,得到一组对边平分且相等,从而证得CD∥AB,DC=AB,证出四边形ABCD 是平行四边形.解答:证明:∵四边形BFDE是平行四边形,∴DF=BE,CD∥AB,四边形BFDE是平行四边形,∵DE=FC,BE=EA,∴DF=FC=BE=EA,即DC=AB,∴四边形ABCD是平行四边形.点评:此题主要要掌握平行四边形的判定,本题运用到的是一组对边平行且相等的四边形是平行四边形.22.(6分)如图,▱ABCD中,AC、BD是对角线,且AC=B D.求证:四边形ABCD是矩形.考点:矩形的判定.专题:证明题.分析:根据平行四边形的性质证得△ABC≌△BAD,从而得到∠ABC=∠BAD=90°,利用矩形的定义判定矩形即可.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC+∠BAD=180°,在△ABC和△BAD中,∴△ABC≌△BAD,∴∠ABC=∠BAD=90°,∴四边形ABCD是矩形.点评:本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形,难度不大.23.(7分)法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如,(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(6,8,10),(9,12,15);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2﹣1,z=n2+1,那么,以x,y,z为三边的三角形为直径三角形(即a,y,z为勾股数),请你加以证明.考点:勾股数.分析:(1)根据勾股数扩大相同的正整数倍仍是勾股数,可得答案;(2)根据勾股定理的逆定理,可得答案.解答:解:(1)请你再写出两组勾股数:(6,8,10),(9,12,15),故答案为:6,8,10;9,12,15;(2)证明:x2+y2=(2n)2+(n2﹣1)2=4n2+n4﹣2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.点评:本题考查了勾股数,利用了勾股数扩大相同的正整数倍仍然是勾股数.24.(9分)如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.考点:勾股定理;等边三角形的判定与性质.分析:(1)先根据题意得出△ABD是等边三角形,△BCD是直角三角形,进而可求出BDC的度数;(2)根据四边形周长计算BC,CD,即可求△BCD的面积,正△ABD的面积根据计算公式计算,即可求得四边形ABCD的面积为两个三角形的面积的和.解答:解:(1)∵AB=AD=8cm,∠A=60°,∴△ABD是等边三角形,∵∠ADC=150°∴∠BDC=150°﹣60°=90°;(2)∵△ABD为正三角形,AB=8cm,∴其面积为××AB×AD=16,∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面积=×6×8=24,故四边形ABCD的面积为24+16.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25.(9分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)如图1,求证:AE=BF;(2)如图2,当∠BAG=30°,且AB=2时,求EF﹣FG的值.考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:(1)首先根据角角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BF A,利用AAS证明△ABF≌△DAE,即可得到AE=BF;(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.解答:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°,又∵DE⊥AG,BF∥DE,∴∠AED=∠BF A=90°,∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;(2)解:∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1,∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.点评:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.26.(9分)如图1,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:四边形AFCE为菱形.(2)求AF的长.(3)如图(2),动点P,Q分别从A、E两点同时出发,沿△AFB和△ECD各边匀速运动一周,即点P自A→F→B→A 停止,点Q自E→C→D→E停止,在运动过程中,已知点P的速度为每秒2cm,点Q的速度为每秒1.2cm,运动时间为t秒,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.考点:四边形综合题.分析:(1)先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;(2)根据勾股定理即可求AF的长;(2)分情况讨论可知,P点在BF上,Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可.解答:解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,∴OA=OC,∵在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS),∵EF⊥AC,∴四边形AFCE为菱形;(2)设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5;(2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形,同理P点AB上时,Q点DE或CE上,也不能构成平行四边形,∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒2cm,点Q的速度为每秒1.2cm,运动时间为t秒,∴PC=2t,QA=12﹣1.2t,∴2t=12﹣1.2t,解得:t=,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.点评:本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键。
人教版八年级数学下册期中综合复习模拟测试题4(附答案)1.若=成立,则x的取值范围是()A.x≠B.x<C.0≤x<D.x≥0且x≠2.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠C=∠A﹣∠BC.a2+b2=c2D.a:b:c=6:8:103.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向滑动()A.15m B.9m C.7m D.8m4.如图,在平行四边形ABCD中,AB=2,点E为平行四边形内一点且∠AED=∠BEC=90°,若∠DEC=45°,则AD的长为()A.3B.2C.D.25.如图,在平面直角坐标系中,点A,B,C的坐标分别是A(1,0),B(﹣1,3),C(﹣2,﹣1),再找一点D,使它与点A,B,C构成的四边形是平行四边形,则点D的坐标不可能是()A.(﹣3,2)B.(﹣4,2)C.(0,﹣4)D.(2,4)6.下列各式中,一定是二次根式的个数为(),,,,,(a≥0),(a<)A.3个B.4个C.5个D.6个7.设x=,y=,则x,y的大小关系是()A.x>y B.x≥y C.x<y D.x=y8.如图,平行四边形ABCD的周长为20,对角线AC,BD相交于点O.点E是CD的中点,BD=6,则△DOE的周长为()A.6B.7C.8D.109.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列五个条件:①∠ADB=∠CBD②DE=BF③∠EDF=∠EBF④∠DEB=∠DFB⑤AE=CF.其中不能判定四边形DEBF是平行四边形的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,BC=16,点D是△ABC内的一点,BD平分∠ABC,且DB=DC =10,连接AD,∠ADB=90°,则AD的长是()A.6B.7C.8D.11.如图,点E是▱ABCD的边AD的中点,CD、BE的延长线交于点F,DF=4,DE=3,则▱ABCD的周长为()A.6B.8C.20D.2412.下列计算正确()A.﹣=﹣3B.(﹣)2=9C.=±3D.=3 13.如图,△ABC中,∠BAC=45°,AB=AC=8,P为AB边上的一动点,以P A,PC为边作平行四边形P AQC,则线段AQ长度的最小值为()A.6B.8C.D.14.已知x,y都是实数,且y=+﹣2,则y x=.15.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是.16.现将一支长20cm的金属筷子(粗细忽略不计)放入一个长和宽分别为8cm,6cm的长方体水槽中,要使水完全淹没筷子,则水槽中的水深至少为cm.17.如图,在边长为6的等边三角形ABC中,点D,E分别是AC,BC的中点,连接AE,BD,点G,H分别是AE,BD的中点,连接GH,则GH的长度为.18.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动秒时,以点P、Q、E、F 为顶点的四边形是平行四边形.19.已知=1.536,=4.858.则=.若=0.4858,则x =.20.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为.21.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=.22.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.23.如图,△ABC中,BD平分∠ABC,AD⊥BD于点D,AD的延长线交BC于点E,F是AC中点,连接DF,若AB=10,BC=24,则DF的长为.24.在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在x轴上方找到点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.25.已知|2021﹣x|+=x,求x﹣20222的值.26.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).27.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为(请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积.28.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.29.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,求证:(1)EF=CF;(2)∠DFE=3∠AEF.30.如图,已知四边形ABCD是平行四边形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判断四边形ADEF的形状,并说明理由.参考答案1.解:由题意得,x≥0,3﹣2x>0,解得,0≤x<,故选:C.2.解:当∠A:∠B:∠C=3:4:5时,则∠C=180°×=75°,同理可得∠A=45°,∠B=60°,故选项A符合题意;当∠C=∠A﹣∠B时,可得∠C+∠B=∠A,又∵∠A+∠B+∠C=180°,∴∠C=90°,故选项B不符合题意;当a2+b2=c2时,则△ABC时直角三角形,故选项C不符合题意;当a:b:c=6:8:10时,a2+b2=c2,则△ABC时直角三角形,故选项D不符合题意;故选:A.3.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子低端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.4.解:如图,取AD,BC的中点M,N,连接MN,ME,NE,则MN=AB=2,在平行四边形ABCD中,AD=BC,AD∥BC,∵AD,BC的中点为M,N,∠AED=∠BEC=90°,∴EM=AD=MD,EN==NC,∴EM=EN,∠E=MED=∠MDE,∠CEN=∠NCE,过点E作EP∥AD交CD于于点P,∴EP∥BC,∴∠MDE=∠DEP,∠NCE=∠PEC,∴∠MED=∠DEP,∠CEN=∠PEC,∴∠MED+∠CEN=∠DEP+∠PEC=∠DEC=45°,∴∠MEN=90°,∴△MEN为等腰直角三角形,∴AD=2ME=2×MN=2.故选:B.5.解:如图所示:观察图象可知,满足条件的点D有三个,坐标分别为(2,4)或(﹣4,2)或(0,﹣4),∴点D的坐标不可能是(﹣3,2),故选:A.6.解:一定是二次根式;当m<0时,不是二次根式;对于任意的数x,x2+1>0,则一定是二次根式;是三次方根,不是二次根式;﹣m2﹣1<0,则不是二次根式;是二次根式;当a<时,2a+1可能小于0,不是二次根式.故选:A.7.解:∵x==3﹣>0,y=<0.∴x>y,故选:A.8.解:∵▱ABCD的周长为20,∴2(BC+CD)=20,则BC+CD=10.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=8,即△DOE的周长为8.故选:C.9.解:④可以判断四边形DEBF是平行四边形.理由:在OA上取一点E′,使得OE′=OF,连接DE′,BE′.∵OD=OB,OF=OE′,∴四边形DE′BF是平行四边形,∴∠DFB=∠DE′B,∵∠DEB=∠DFB,∴∠DEB=∠DE′B,∴点E与点E′重合,∴四边形DEBF是平行四边形.⑤可以判断四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,∵AE=CF,∴OE=OF,∴四边形DEBF是平行四边形,故选:C.10.解:如图,延长AD交BC于点E,过点D作DF⊥BC交BC于点F,∵∠BAD=∠BDE=90°,BD=BD,∠ABD=∠EBD,∴△ABD≌△EBD(ASA),∴AB=BE,∵DF⊥BC,BD=CD,∴BF=FC=BC,∴BF=8,又BD=10,∴DE=6,∵∠BDE=∠BFD=90°,∠DBE=∠FBD,∴BE=,∴AB=,∴AD==,故选:D.11.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠ABE=∠F,∵E是CD的中点,∴AE=DE=3,AD=2DE=6,在△BAE和△FDE中,,∴△BAE≌△FDE(AAS),∴AB=DF=4,∴平行四边形ABCD的周长=2(AB+AD)=2×(4+6)=20.故选:C.12.解:A、﹣=﹣3,故本选项正确;B、(﹣)2=3,故本选项错误;C、=3,故本选项错误;D、==,故本选项错误;故选:A.13.解:∵四边形P AQC是平行四边形,∴AQ=PC,∴要求AQ的最小值,只要求PC的最小值即可,∵∠BAC=45°,AB=AC=8,∴当CP⊥AB时,CP取得最小值,此时CP=AC•sin45°=8×=4,故选:D.14.解:y=+﹣2,则x=3,故y=﹣2,则y x=(﹣2)3=﹣8.故答案为:﹣8.15.解:延长AP到C,使AP=PC,连接BC,∵AP=PC==,同理BC=,∵BP==,∴PC=BC,PC2+BC2=PB2,∴△PCB是等腰直角三角形,∴∠CPB=∠CBP=45°,∴∠P AB+∠PBA=∠CPB=45°,故答案为:45°.16.解:由题意可得,底面长方形的对角线长为:=10(cm),故水槽中的水深至少为:=10(cm),故答案为:10.17.解:∵△ABC是边长为6的等边三角形,∴AC=BC=6,∠ABC=∠BAC=60°,∵点D,E分别是AC,BC的中点,∴AD=BE=3,取AB的中点F,连接GF,HF,∵点G,H分别是AE,BD的中点,∴FG∥BE,FG=BE=,FH∥AD,FH=AD=,∴FG=FH=,∠AFG=∠ABC=60°,∠BFH=∠BAC=60°∴∠HFG=180°﹣∠AFG﹣∠BFH=60°,∴△FGH是等边三角形,∴GH=FG=,故答案为:.18.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6﹣t=9﹣2t或6﹣t=2t﹣9,解得:t=3或t=5.故答案为:3或5.19.解:0.00236是由23.6小数点向左移动4位得到,则=0.04858;0.4858是由4.858向左移动一位得到,则x=0.236.故答案是:0.4858,0.236.20.解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,.∴△BNA≌△BNE(ASA),∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故答案是:.21.解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=AE,∵AE=4,∴GF=2.故答案为2.22.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3或a﹣b=﹣3(舍去),故答案是:3.23.解:在△ADB和△EDB中,,∴△ADB≌△EDB(ASA),∴EB=AB=10,AD=DE,∵BC=24,∴CE=BC﹣BE=14,∵AF=FC,AD=DE,∴DF=CE=7,故答案为:7.24.解:观察图象可知,满足条件的点D有两个,坐标分别为(﹣6,5)或(2,5).故答案为:(﹣6,5)或(2,5).25.解:由可知,x﹣2022≥0,解得,x≥2022,原式可化为:x﹣2021+=x,整理得,=2021,∴x﹣2022=20212,∴x=20212+2022,∴x﹣20222=20212+2022﹣20222=(2021+2022)(2021﹣2022)+2022=﹣4043+2022=﹣2021.26.解:(1)+|2﹣|﹣(π+2021)0=3+2﹣1=2+1;(2)(3+)2+(1+)(1﹣)=9+6+2+(1﹣2)=9+6+2+(﹣1)=10+6.27.解:(1)∵22+42=4×()2=20,∴△ABC三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)∵Rt△ABC是常态三角形,∴设两直角边长为:a,b,斜边长为:c,则a2+b2=c2,a2+c2=4b2,则2a2=3b2,故a:b=:,∴设a=x,b=x,则c=x,∴此三角形的三边长之比为:::.故答案为:::;(3)∵Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,△BCD是常态三角形,∴当AD=BD=DC,CD2+BD2=4×62时,解得:BD=DC=6,则AB=12,故AC==6,则△ABC的面积为:×6×6=.当AD=BD=DC,CD2+BC2=4×BD2时,解得:BD=DC=2,则AB=4,故AC=2,则△ABC的面积为:×6×2=6.故△ABC的面积为或6.28.解:(1)在△ABC中,∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE=BC,∵CF=BC,∴DE=CF.(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD==2,∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=2.(3)过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=2,∴S四边形DEFC=CF•DH=2×=2.29.解:(1)证明:连接CF并延长交BA的延长线于G,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD∵F是AD的中点,∴CF=GF,∵CE⊥AB,∴∠CEG=90°,∴EF=CG=CF=GF,即EF=CF;(2)∵EF=GF,∴∠G=∠FEG,∵AD∥BC,CF=GF,∴AG=AB,∴AF=AG,∴∠G=∠AFG=∠DFC,∵∠CFE=∠G+∠AEF,∴∠DFE=∠CFE+∠DFC=3∠AEF.30.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCA=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠DCA,∴DE∥AC.(2)解:结论:四边形ADEF是平行四边形.理由:作DH⊥AC于H.∵AC∥DE,∠DEC=90°,∴∠DEC=∠ECF=∠DHC=90°,∴四边形DECH是矩形,∴DH=EC,在△ADH和△CBF中,,∴△ADH≌△BCF,∴DH=BF=CE,∵BF∥CE,∴四边形EFBC是平行四边形.。
2016年八年级数学下学期期中复习测试题一
一、填空题:(每小题3分,共12题,共计36分)
1.下列各式中一定是二次根式的是( )
A. 2.把ab a
123化简后得( ) A.b 4 B.b 2 C.
b 21 D.b b 2 3.适合下列条件的△ABC 中,直角三角形的个数为( )
①a=,b=,c=;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25;⑤a=2,b=2,c=4
.
A.2个
B.3个
C.4个
D.5个
4.菱形具有而矩形不具有的性质是( )
A.对角线互相平分
B.四条边都相等
C.对角相等
D.邻角互补 5.已知a,b,c 是三角形的三边长,如果满足0420361222=-+-++-c b a a ,则三角形形状是( )
A.底与腰不相等的等腰三角形
B.等边三角形
C.钝角三角形
D.直角三角形
6.如图所示,数轴上点A 所表示的数为a,则a 的值是( ) A.15+ B.15-+ C.1-5 D.5
第6题图 第7题图 第8题图
7.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面8米处折断倒下在屋正前方,量得倒下部分的长是10米,已知房高3米,大树倒下时能砸到张大爷的房子吗?( )
A.一定不会
B.可能会
C.一定会
D.以上答案都不对
8.如图,由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段( )
A.4条
B.6条
C.7条
D.8条
9.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )
A.9
B.10
C.
D.
第9题图 第10题图 第11题图
A.223
B.1055
C.553
D.554
11.如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB,BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( ) A.125 B.65
C.245
D.不确定 12.如图,已知在正方形ABCD 外取一点E,连接AE,BE,D
E.过点A 作AE 的垂线交ED 于点P.
若AE=AP=1,PB=5.下列结论:
①△APD ≌△AEB ;②点B 到直线AE ;
③EB ⊥ED ;④1APD APB S S ∆∆+=4ABCD S =正方形 )
A .①③④
B .①②⑤
C .③④⑤
D .①③⑤
二、填空题:(每小题3分,共6题,共计18分)
13.已知2
11--x ,则x 的取值范围是 . 14.计算:20162015)23()23(+-= .
15.已知菱形ABCD 的对角线AC,BD 相交于点O,AC=12,BD=6,,则菱形ADCD 的周长是 ,面积是 .
16.如图,正方形OABC 的边长为6,点A 、C 分别在x 轴,y 轴的正半轴上,点D (2,0)在OA 上,P 是OB 上一动点,则PA+PD 的最小值为 .
第16题图 第17题图
17.如图是一个三级台阶,它每一级的长,宽,高分别为20dm,3dm,2dm.A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 dm.
18.如图,分别以直角△ABC 的斜边AB,直角边AC 为边向△ABC 外作等边△ABD 和等边△ACE ,F 为AB 的中点,
①EF ⊥AC;②四边形ADFE 为菱形;③AD=4AG;④FH=41
BD.其中正确结论的是
三、填空题:(,共7题,共计66分)
19.(本小题8分)已知3242
,3242
-=+=y x ,求下列各代数式的值。
(1)223y xy x +-;(2)x y
y x
+.
20.(本小题8分)已知在△ABC 中,∠A=300,∠C=1050,BC=6cm,求AC 及AB 的长.
21.(本小题10分)如图,在△ABC中,∠C=900,AC=6,BC=8,DE垂直平分AB于E,交BC于D,求CD的长.
22.(本小题10分)如图,在△ABC中,AD是∠BAC的平分线,DE//AC交AB于E,DF∥AB交AC于F.
求证:四边形AEDF是菱形.
23.(本小题10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=12,求EF的长.
24.(本小题10分)如图,△ABC和△AEF为等边三角形,点E在△ABC内部,EA=3,EB=4,EC=5,求∠AEB度数.
25.(本小题10分)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=450,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理:
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴点F、D、G共线
根据,易证△AFG≌,进而得EF=BE+DF.
(2)联想拓展:
如图2,在△ABC中,∠BAC=900,AB=AC,点D、E均在边BC上,且∠DAE=450.猜想BD、DE、EC应满足的数量关系,并写出推理过程.。