Lignin Biosynthesis and Structure
- 格式:pdf
- 大小:606.01 KB
- 文档页数:11
毕业设计/论文开题报告课题名称生物预处理秸秆转化能源的初步研究院系专业班生物工程0901班姓名评分指导教师XXXXXXXXXXX毕业设计开题报告撰写要求1. 开题报告主要内容1)课题设计的目的和意义;2)课题设计的主要内容;3)设计方案;4)实施计划。
5)主要参考文献:不少于5篇,其中外文文献不少于1篇。
2.撰写开题报告时,所选课题的课题名称也不得多于25个汉字,课题设计份量要适当,设计中必须是自己的设计内容。
3. 开题报告的字数不少于2000字(艺术类专业不少于1000字),格式按《华中科技大学武昌分校本科毕业设计/论文撰写规范》的要求撰写。
4. 指导教师和责任单位必须审查签字。
5.开题报告单独装订,本附件为封面,后续表格请从网上下载并用A4纸打印后填写。
6. 此开题报告适用于全校各专业,部分特殊专业需要变更的,由所在系在基础上提出调整方案,报学校审批后执行。
XXXXXXXXXXXXXXXXXXXXX学生毕业设计开题报告学生姓名学专业班系别指导教职称课题名称生物预处理秸秆转化能源的初步研究1 课题研究的目的和意义1.1 目的预处理技术是纤维质乙醇生产的主要技术瓶颈之一,生物预处理技术因具有低能耗和环境友好的优势而受到广泛关注。
白腐菌是目前已知的降解木质素最强的微生物.但白腐菌直接对秸秆进行预处理所得到的糖化率和乙醇的产量并不高,为了显着提高白腐菌预处理秸秆所得的糖化率,对白腐菌预处理秸秆的条件进行了优化,通过改变它的培养温度、培养时间、是否通氧以及培养基中K、Mn、Ca、Cu等离子的添加,采用分光光度计计算测定其糖化率,得到优化的因子为28℃温度条件下培养4周,通氧,添加低浓度Mn离子,提供更高的培养基湿度。
1.2 意义纤维乙醇作为一种可再生的替代能源,越来越受到重视,纤维素预处理技术对纤维2 课题研究的主要内容2.1 设计主要内容前期研究通过对自然界微生物天然腐朽过程的模拟和改造,建立了一个可用于秸秆转化乙醇、油脂等生物能源的仿生预处理系统,该系统的处理效率是目前同类报道中最高的。
doidoi:10.3969/j.issn.1002-2481.2022.03.02山西农业科学2022,50(3):289-295Journal of Shanxi Agricultural Sciences谷子CAD基因家族的鉴定及分析任晓庆1,王波2,欧阳春平1,丁鑫炎1,樊洁晶1,高建华1(1.山西农业大学生命科学学院,山西太谷030801;2.山西农业大学农学院/杂粮种质创新与分子育种山西省重点实验室,山西太谷030801)摘要:木质素类型、含量等与谷子茎秆的强度具有密切关系,肉桂醇脱氢酶(Cinnamyl Alcohol Dehydrogenase,CAD)是木质素生物合成过程中的一个关键酶。
为探究谷子木质素合成过程中CAD基因家族的结构和功能,为CAD基因家族的进一步研究提供一定的参考,通过同源序列比对,在已知全基因组序列的xiaomi中共鉴定到13个SiCAD,分布于谷子1、2、4、6、7、9号染色体上。
利用生物信息学方法对SiCAD基因家族成员进行亲缘关系、理化性质分析以及结构预测和表达谱分析。
结果显示,SiCAD与狗尾草CAD的亲缘关系最近,且与豫谷1号CAD 基因家族的同源性极高。
13个SiCAD分属3个亚类,依次含有2、8、3个基因;结构预测结果显示,13个基因均为断裂基因,包含外显子数目为3~8个。
表达谱分析结果表明,第1亚类基因SiCAD1具有时空表达差异性,在晋谷21号和xiaomi的茎中高表达,推测该基因编码谷子木质素生物合成的主要酶;第2亚类的SiCAD5和Si⁃CAD8在晋谷21号和xiaomi的茎中也高表达,该基因可能也是谷子重要的CAD基因;其余SiCAD的表达量相对较低或不表达。
关键词:谷子;xiaomi;木质素;肉桂醇脱氢酶;基因家族;生物信息学中图分类号:S515文献标识码:A文章编号:1002-2481(2022)03-0289-07Identification and Analysis of CAD Gene Family in Foxtail Millet REN Xiaoqing1,WANG Bo2,OUYANG Chunping1,DING Xinyan1,FAN Jiejing1,GAO Jianhua1(1.College of Life Sciences,Shanxi Agricultural University,Taigu030801,Shanxi;2.College of Agricultural,Shanxi Agricultural University,Key Laboratory of Coarse Grain Germplasm Innovation andMolecular Breeding in Shanxi,Taigu030801,Shanxi)Abstract:The type,content of lignin and other characteristics were closely related to the stems strength of foxtail millet. Cinnamyl Alcohol Dehydrogenase(CAD)is a key enzyme in lignin biosynthesis.To explore the structure and function of CAD genes family in foxtail millet and provide a certain reference for the further study on CAD genes family,in this study,by homologous sequence alignment,a total of13SiCAD genes were identified in xiaomi whose genome has been known,which were distributed on chromosome1,2,4,6,7and9.The genetic relationship,physicochemical properties,structure prediction and expression profile of SiCAD gene family were analyzed using bioinformatics methods.The results showed that SiCAD gene family had the closest genetic relationship with the counterparts in Setaria viridis and had high homology with Yugu1CAD genes family.Thirteen SiCADs were divided into3subclasses in which included2,8and3genes in turn.Structural prediction showed that all13genes were broken genes,including3~8exons.The analysis of expression pattern showed that SiCAD1in subclass1had spatiotemporal expression differences,especially highly expressed in the stems of JG21and xiaomi,inferring that SiCAD1was one of the important gene to encode the key enzyme of lignin biosynthesis in foxtail millet.SiCAD5and SiCAD8in subclass2were also highly expressed in the stems of JG21and xiaomi,predicting that these genes might also be important CAD genes in foxtail millet.The other SiCADs had relatively low-expression or not detected.Key words:foxtail millet;xiaomi;lignin;CAD;gene family;bioinformatics木质素是一种复杂且具有芳香特性的三维高分子酚类聚合物,在自然界中分布广泛,约占生物圈有机碳的30%[1-2]。
植物4香豆酸:辅酶A连接酶研究进展田晓明;颜立红;向光锋;蒋利媛【摘要】4香豆酸:辅酶A连接酶(4-coumarate:coenzyme A ligaseEC6.2.1.12,4CL)是木质素生物合成途径中的一个关键酶,催化肉桂酸及其衍生物生成相应的硫酯.同时也是苯丙烷类代谢途径中的第三个步骤,连接木质素前体和各个分支途径的纽带,在木质素合成过程中发挥了重要的调控作用.近年来利用基因工程手段调控木质素生物合成,降低木质素含量,减少制浆造纸过程中的污染已成为研究热点.结合国内外关于4CL的研究成果,对植物4CL基因家族、酶学性质、晶体结构以及4CL在调控木质素生物合成中的作用等方面进行综述,并对4CL的研究方向提出展望,旨为对该基因的研究提供参考.%4CL(4-coumarate :coenzyme A ligase,EC6.2.1.12)is a key enzyme in the lignin biosynthesis pathway,and it catalyzes a hydroxycinnamic acids and its derivatives to generate the corresponding thioester. Concurrently,4 CL is also the third step in the metabolic pathway of phenylpropane,ligating the precursor of lignin and varied branch pathways,playing the critical regulating role in the lignin synthesis. It has become a research hotspot that uses the genetic engineering way to alter lignin biosynthesis,to reduce lignin content,and to decrease the pollution in pulp and papermaking process. Combining the new reports about 4CL in recent years,we summarized the research progresses on phylogenetics,enzymatic activities,crystal structure and catalytic mechanism and regulation of 4CL in lignin biosynthesis. The future directions of researches on 4CL were also suggested, This paper provides reference information for 4CL in the future study.【期刊名称】《生物技术通报》【年(卷),期】2017(033)004【总页数】8页(P19-26)【关键词】4CL;木质素;酶学;晶体学;基因调控【作者】田晓明;颜立红;向光锋;蒋利媛【作者单位】湖南省森林植物园,长沙 410116;湖南省森林植物园,长沙 410116;湖南省森林植物园,长沙 410116;湖南省森林植物园,长沙 410116【正文语种】中文木质素是植物体中仅次于纤维素的一种重要大分子有机物质,其总量占生物圈中有机碳含量的30%,占木本植物细胞壁干重的16%-35%[1]。
能源植物柳枝稷功能基因改良研究进展戴志聪;祁珊珊;黄萍;杨冉;杨淞惠;庄义庆;杜道林【摘要】An energy crop with a tremendous potential ,Switchgrass (Panicum virgatum) ,has been gradually used as a model plant for the related research .Recently ,genetic methods were applied to select the genotypes with high biomass ,low lignin ,high ethanol conversion rate and resistance in order to improve its applications in the are a of biological energy .The present paper attempted to provide relevant references for the future development on the breeding of switchgrass . The functional genes that might be applicable for the enhancement of the biomass production ,the saccharification efficiency ,and/or the resistance to stresses ,as well as related genetic methods are included .%柳枝稷 Panicum virgatum被认为是一种具有巨大发展潜力的生物质能源作物,逐渐成为能源植物研究较为理想的模式植物,应用基因工程对柳枝稷进行基因改良,选育出适宜作为能源植物开发的品种是提高柳枝稷功能的重要技术手段。
Lesson 1 History of Papermaking1、papermaking 纸的生产;抄纸2、loading 装料;填料;加压;装入,输入3、sizing 施胶;胶料4、coating 涂布5、mulberry bark 桑皮6、flax 亚麻(属),鸦麻,胡麻,野芝麻,大芝麻7、beat 打浆;beating 打浆;8、hollander 荷兰式打浆机9、fourdrinier 长网,长网造纸机10、stationer 文具商11、cylinder 烘缸;圆网,圆筒12、cylinder machine 圆网纸机13、machinery 机器,机械,机械设备14、groundwood pulping 磨木浆15、soda 烧碱,碱16、sulfite 亚硫酸盐;sulfite pulp硫酸盐浆17、kraft 牛皮纸;硫酸盐浆;牛皮浆18、sulfate 硫酸盐19、incineration 焚烧20、alkali 碱21、digestion 蒸煮22、formation 成形;匀度;组织23、fibrous suspension 纤维悬浮液24、pressing 压榨25、drying 干燥26、refiner mechanical pulping 盘磨机械浆27、cooking 蒸煮28、multistage bleaching 多段漂白29、on-machine paper coating 纸张机内涂布30、twin-wire forming 双网成形31、computer process control 计算机过程控制32、technique 技术33、technology 工艺Lesson 2 Fibrous Raw Materials1、bast 韧皮、内皮2、cottonseed hair 棉种毛3、conversely 相反,反之4、technologist 工艺技术人员5、furnish 供给6、unique 唯一的;独特的;无与伦比的7、rayon 人造丝8、nylon 尼龙9、orlon 奥伦10、dacron 涤纶11、synthetics 合成产品12、asbestos 石棉13、linen 亚麻布14、straw 禾草15、availability 可用的,有效性,可得到的东西16、diverse 种类不同的17、spruce 云杉18、pine 松木19、pulpwood 制浆用木材20、hardwood 硬木21、softwood 软木22、deciduous 阔叶的23、coniferous 针叶的24、classification 分类25、vegetable Fibers 植物纤维26、fruit fibers 果类纤维27、seedhair 种毛28、pok 豆荚29、kapok 木棉30、husk 壳类外皮31、coir 椰子壳32、stem fiber 茎秆纤维33、gymnosperm 裸子植物34、angiosperm 被子植物35、tissue 组织;薄页纸36、dicotyledon 双子叶37、monocotyledon 单子叶38、herbaceous 草本的39、jute 黄麻40、hemp 大麻41、ramie 苎麻42、sunn 印度麻43、vascular 导管的44、vascular bundle 维管束45、cereal straws 谷草46、bagasse 蔗渣47、esparto 西班牙草48、abaca 焦麻49、sisal 西莎草50、phormium 新西兰麻51、pineapple 波萝52、animal fibers 动物纤维53、mineral fibers 矿物纤维54、regenerated cellulose 再生纤维素55、polyamide 聚酰胺56、polyacrylic 聚丙烯的57、polyester 聚酯58、synthetic fibers 合成纤维Lesson 3 The Major Chemical Components of Fibrous Raw Materials1、component 组分2、cell 细胞3、opening 开口;缝隙4、pit 纹孔;坑;池5、cellulose 纤维素6、hemicellulose 半纤维素7、lignin 木素8、skeleton 骨架9、matrix 填质、模型10、encrus 结壳11、constituent 组分、成分12、cell wall 细胞壁13、secondary cell wall 次生壁14、supermolecular state 超分子状态15、crystalline 结晶的;晶状的16、fibrillar 细纤维的,纤丝的17、fibril 细纤维,纤丝18、homopolysaccharide 均一聚糖19、homo- 均匀,同20、polysaccharide 多糖21、saccharide 糖类22、glucopyranose 吡喃式葡萄糖23、glucosidic bond 葡萄糖苷键24、glucose 葡萄糖25、residue剩基,残基;残余物26、molecule 分子27、molecular 分子的28、intra-内29、intermolecular 分子间30、hydrogen bond 氢键31、insoluble 不溶的,不溶32、solvent 溶剂33、biosynthesis 生物合成34、heterogeneous 不均一的35、hydrolyze 水解36、acid 酸37、monomeric 单元的38、mannose 甘露糖39、xylose 木糖40、arabinose 阿拉伯糖41、rhambose 鼠李糖42、glucuronic acid 葡萄糖尾酸43、uronic acid 糖尾酸44、methyl 甲基45、galacturonic acid 半乳糖尾酸,半乳糖醛酸46、polymerization 聚合,聚合作用47、phenylpropane 苯基丙烷48、phenyl 苯基49、ether bond 醚键50、carbon 碳51、gravimetrically 重量分析Lesson 4 The Structure of Plant Cell Wall1、layer 层2、middle lamella (pl. lamellae)胞间层3、primary wall 初生壁4、wart(a. warty)树瘤5、microfibril 微细纤维6、helix 螺旋7、deviation 偏差8、angular 角的,有角的;斜角切裁9、polarized light 偏振光10、polarize 使极化11、pectic 果胶的12、pectin 果胶13、cell corner 细胞角隅14、protein 蛋白质15、interior 内部16、perpendicularly 垂直地17、axis 轴18、content 含量;内容;目录19、parallel 平行的20、angle 角21、tracheid 管胞22、earlywood 早材23、latewood 晚材24、stiffness 挺度,刚性25、amorphous 无定形的26、membrane 薄膜Lesson 5 Wood Preparation1、roundwood 原木2、log 原木段3、wood room 备木间4、conveyer运输机5、debark 剥皮6、hydraulic 水力;液压7、impinge 冲击8、stream barker 蒸气剥皮机9、pump 泵10、mechanical barker 机械剥皮机11、alternative 可选择方法12、shortcoming 缺点13、sound wood 良好木材14、scraper 刮刀;刮板15、drum 鼓,筒,辊筒16、drum barker 圆筒剥皮机17、drag 拖,拉18、drag conveyer 链式运输机19、squeeze 挤,压20、boiler house 锅炉房21、diameter 直径22、vertical splitter 立式劈木机23、chute 斜槽24、chipper 削片机25、deck (平)台,板26、saw 锯27、deck saw 台锯28、groundwood room 磨木车间29、screen 筛;屏障;网状干毯;水冷屏30、digester 蒸煮器31、vibrate 振动32、oscillate 摆动33、gyrate 旋转34、chip bin 木片仓35、bin 存储仓36、pan 盘,容器Lesson 6 Preparation of Fibrous Raw MaterialsOther than Wood1、bale 大包2、bundle 捆3、rectangular 长方形的4、railroad duster 羊角除尘器5、environmental 环境的6、cyclone 旋风分离器7、dust chamber 集尘室,除尘室8、pulper 碎浆机9、disc cutter 圆盘切草机10、crush 压榨11、screen 筛,筛选12、bagasse 蔗渣13、sugar cane 甘蔗14、depithing 除髓15、Peadco 蔗渣制浆16、contaminant 杂质17、moist depithing 半干法除髓18、flotation washing machine 浮选洗涤机19、rock 石块20、trash 废弃物,残屑Lesson 7 Pulping Process and Pulp End Uses1、lignocellulosic 木质纤维素(的),木化纤维素(的)2、reduced to fibrous mass离解成纤维性物质3、mass 质量;物质;大量;集中,聚集4、rupture 破裂5、mechanically 机械地6、thermally 热地7、commercial process 工业化的工艺8、yield 得率,收获率,(纸板)紧度9、degrade 降解10、solublized 溶解11、stone groundwood(SGW)磨石磨木浆12、refiner mechanical pulp(RMP):盘磨机械浆,木片磨木浆13、thermomechanical pulp(TMP):热磨机械浆,热磨木片磨木浆14、chemigroundwood 化学磨木浆15、cold soda 冷碱法16、chemithermechanical pulp(CTMP) 化学热磨机械浆17、neutral sulfite semichemical cooking (NSSC)pulp 中性亚硫酸盐半化学浆18、soda-AQ 烧碱蒽醌19、sulfite (acid and bisulfite) 酸性亚硫酸盐和亚硫酸氢盐20、wrapping paper 包装纸21、sack paper 纸袋纸22、box-liner paper 纸盒衬里纸23、newsprint 新闻纸24、toweling 毛巾纸25、opacity 不透明度26、sanitary paper 卫生纸类27、tissue paper 薄页纸28、bulk 松厚(度)29、absorbency 吸收性30、versatility 多功能31、fluff 绒毛浆32、coating raw stock 涂布原纸33、sulfur 硫磺34、engineering 工程学35、emission 放射,发射,辐射36、sulfide 硫化物37、prototype 原型38、soda oxygen process 氧碱制浆工艺39、delignification 脱木素作用40、catalyst 催化剂41、anthraquinone 蒽醌Lesson 8 Alkaline Pulping1、alkaline碱性的,含碱的2、sulfide 硫化物3、sodium sulfide 硫化钠4、carbonate 碳酸盐5、cooking liquor 蒸煮液6、sulfite 亚硫酸盐7、sodium oxide 氧化钠8、sodium hydroxide 氢氧化钠9、active alkali 活性碱10、effective alkali 有效碱11、total alkali 总碱12、activity 活化度13、sulfidity 硫化度14、white liquor 白液15、charge 填装,充电,装量,电荷16、chemical recovery plant 化学品回收车间17、bone dry 绝干18、concentration 浓度19、preset 预先设定20、alkali-to -wood ratio 碱比21、liquor-to-wood ratio 液比22、filling up period 装锅阶段,装料阶段23、blow tank 喷放锅24、to temperature’ period升温阶段25、at temperature’ period保温阶段26、full pressure 全压27、reduced pressure 减压28、gas relieving小放气29、heating-up period 升温阶段30、circulation 循环31、end point 终点32、delignification 脱木素(作用)33、computerization 计算机化34、batch process 间歇方法35、expressed in terms of 以……表示36、take part in 参与37、in accordance with 以……为根据,符合38、account for 考虑到Lesson 9 Sulfite Pulping1、sulfite pulping 亚硫酸盐法制浆2、sulfurous acid 亚硫酸3、alkali salts 碱性盐4、sulfonate 磺酸盐5、functionalities6、cleavage 裂开,分裂;离解7、kraft pulping 硫酸盐法制浆8、calcium 钙9、calcium acid sulfite酸性亚硫酸钙10、insolubility 难溶性11、scaling 结垢12、scaling compound 结垢化合物13、precipitate 沉淀,沉淀物14、liming up 石灰化15、free SO2 游离SO216、base 碱;底座,基准,基17、magnesium 镁18、sodium 钠19、ammonium 铵20、combined SO2 化合SO221、acid bisulfite pulping酸性亚硫酸氢盐法制浆22、neutral sulfite 中性亚硫酸盐23、alkaline sulfite 碱性亚硫酸盐24、batchwise25、vessel 容器,器皿;导管26、pressure vessel 压力容器27、acid-resistant lining 防酸衬里28、cap 把盖子盖上29、accumulator 储存槽,回收槽30、high-pressure accumulator 高压回收炉31、polycondensation reaction 缩聚,缩聚作用,多聚合32、optimum point 最佳点33、pulp strength 纸浆强度34、viscosity 粘度35、adversely 不利地36、porous 多孔的;疏松的;素烧(瓷)的Lesson 10 Chemical recovery1、chemical recovery 化学品回收2、inorganic 无机的3、regenerate 再生4、reuse 回用5、weak black liquor 稀黑液6、strong black liquor 浓黑液7、brown stock washer 本色浆洗浆机8、multiple-effect evaporator 多效蒸发器9、oxidation 氧化10、heavy black liquor重黑液,浓黑液11、saltcake 芒硝12、residual liquor 废液13、soda loss 碱损失14、incineration 焚烧15、furnance 熔炉,炉子16、smelt 熔融物17、green liquor 绿液18、caustic 碱性的,苛性的19、caustic alkali 苛性碱20、causticize 苛化21、causticizing 苛化22、lime 石灰23、lime mud 白泥,石灰渣24、ligneous material 木质物料25、saccharinic acid糖质酸,糖精酸26、extractive 抽出物,抽提物,萃取物27、thiosulfate [,θaiəu'sʌlfeit]硫代硫酸盐28、chloride ['klɔ:raid] 氯化物29、originate [ə'ridʒineit] 开始,发明,发起30、bulk 松厚;n. 大小,体积,大批,大多数;vt. 显得大,显得重要31、reboiler 再沸器32、vapor 蒸汽,水蒸汽33、climbing-film 升膜34、long-tube-vertical (LTV) evaporator长管立式蒸发器35、service 服务;保养;检修36、falling-film evaporator 降膜蒸发器37、preheat-falling-rising types 预热升降蒸发器38、forced circulation units 强制循环装置39、crystallizing evaporator 结晶蒸发器40、variation [vɛəri'eiʃən]变动,变化,变异,变种41、vapor-compression evaporator 二次汽压缩蒸发汽42、waste heat evaporator 废热蒸发器43、sophisticated [sə'fistikeit]condensate44、treatment system完善的冷凝水处理系统45、combustion [kəm'bʌstʃən]燃烧,氧化46、impurity杂质47、clarify澄清,阐明;使明晰48、entrained white liquorvt. 使乘火车,拖,产生,导致vi. 乘火车49、dissolving tank 溶解槽50、calcine['kælsain] 烧成石灰,煅烧51、lime kiln [kiln] 石灰窑52、fluid bed calciner 流化床焙烧炉53、thermal ['θə:ml] a. 热的,热量的,烫的n. 上升温暖气流54、soap skimming 皂化物的撇除55、tall oil 妥尔油,塔罗油56、molten,melt的过去分词,熔化的,炽热的57、calcium 钙58、endothermic [endəu'θə:mik]吸热(性)的59、sulfur 硫磺60、natural gas 天然气Lesson 11 Mechanical Pulping1、mechanical pulping机械制浆2、stone groundwood ( SGW )磨石磨木浆3、refiner 磨浆机,精磨机4、specific energy 单位能耗5、parameter 参数6、nomenclature ['nəumənkleitʃə] n. 命名法,专门语,术语7、specify v. 详细说明,具体说明,指明8、sequence 顺序9、PGW, pressurized groundwood 压力磨木浆10、PRMP,pressure refined mechanical pulp压力盘磨机械浆11、CRMP, chemi-refiner mechanical pulp 化学盘磨机械浆12、CTMP, chemi-thermomechanical pulp 预热法木片化学机械浆13、APMP, alkaline peroxide mechanical pulp碱性过氧化物机械浆14、demarcation [di:mɑ:'keiʃən]n. 划界,划定界限,限界15、attrition [ə'triʃən] n. 摩擦,磨损16、resin ['rezin] 树脂,涂树脂于17、non-resinous 无脂的18、rosin 松香,树脂,用松香涂19、yield 得率,收获率;(纸板)紧度20、catalog paper ['kætəlɔ:g]目录纸21、bolt [bəult]22、abrasive [ə'breisiv] 粗糙的23、grinder ['graində] 磨木机,研磨机24、grinding 磨木,粉碎25、tear strength撕裂强度26、freeness 游离度27、disintegrate [dis'intigreit] 分解,碎解28、disk 圆盘;刀盘;磨盘29、steaming 汽蒸30、shive 浆块,碎浆,碎片,纤维束31、drastic 激烈的32、category 种类,类项33、corrugating medium 瓦楞芯纸Lesson 12 Washing of Pulps1、foam problem 泡沫问题2、counter-current 逆流3、drum filter 转鼓过滤机4、vacuum filter [ˋ'vækjuəm]真空过滤机5、pressurized washer压力洗涤(浆)机6、diffuser washer扩散洗涤器7、brown stock 本色浆8、screw presses 螺旋压榨9、wash presses 洗涤压榨10、rotary-vacuum-filter旋转式真空洗浆机11、wash zone 洗涤区12、installation n. 就任,就职;安装,安置;装置,设备;设施13、uniformity 同样,一致14、defoamer 消泡剂15、erect a. 直立的,竖立的,笔直的vt. 使竖立,使直立,树立,建立vi. 勃起16、outdoor 户外17、facility n. 容易,便利,设施,设备;熟练,灵巧18、discharge 排除,释放Lesson 13 Screening1、screening 筛选2、vibratory 振动器3、gravity centrifugal 重力离心的4、centripetal 向心的5、perforated barrier ['pə:fəreit] 筛板6、slot 细长的孔,缝,狭槽,筛孔7、slot screen 缝筛8、debris [də'bri:] 碎片,残骸9、intermittently [intə(:)'mitəntli]间歇地10、barrier 防护、屏障11、screen plate 筛板12、plug up堵塞13、shake 摇动、振动14、vibration振动15、hydraulic 水力,液压16、hydraulic sweeping action 液压扫刮动作17、back-flushing 反冲18、pulsing the flow 使液流脉动19、moving foils 移动叶片20、paddle 桨叶21、flat screen 平筛22、reject 筛渣,废料;23、obsolete 荒废的,陈旧的,淘汰的24、align 使成一行25、circular 圆形的26、vibratory flat screen 振动平筛27、rotary vibratory screen 回转式振筛28、gravity centrifugal screen重力离心筛29、piping 配管30、pumping 泵送31、slime腐浆;粘液;32、cascade arrangement 串联布置Lesson 14 Centrifugal cleaning1、specific gravity 比重2、centrifugal cleaner 离心净化器3、liquid cyclone 液体旋沉器4、hydrocylclone 水力旋沉器5、vortex cleaner 涡旋净化器6、centricleaner离心净化器7、conical 圆锥形的8、cylindrical- conical 圆筒圆锥9、vessel 器皿10、tangential inlet 正切入口11、cone圆锥12、cylinder 圆筒,烘缸,圆网13、vortex finder 涡旋导向器,14、accepts nozzle良浆口15、underflow 下溢,斜溜槽16、nozzle 喷嘴17、fluid shear 流体剪切力18、scroll 纸卷,螺旋线19、tangentially 切线的20、velocity 速率21、orifice 孔,口22、reject orifice 排渣口23、floc 絮凝物24、reverse-flow 逆流Lesson 15 Pulp Bleaching1、chromophoric groups 发色基团2、lignin-preserving 保留木素式3、linkage 连接,键合4、eliminate 除去,排除,剔除,消除5、oxidant 氧化剂6、chlorine 氯7、oxygen 氧8、hypochlorite 次氯酸盐9、chlorine dioxide二氧化氯10、hydrogen peroxide 过氧化氢11、ozone 臭氧12、reductant 还原剂13、hydrosulfite 连二亚硫酸盐14、sodium hydroxide 氢氧化钠15、caustic extraction 碱抽提16、delignification 脱木素(作用)17、invariably 不变化地,一成不变地,常常地18、identify vt. 识别,认明,鉴定,使等同于vi. 一致,变成一致19、sulfonate 磺化,磺酸盐20、decolore 脱色21、appreciable 可测量的,可感到的22、sodium hydrosulfite 连二亚硫酸钠23、eye appeal 观感Lesson 16 Introduction of Papermaking1、filtered mat 过滤层2、drain 泄水,排水drainage 排水,滤水draining滤水3、suspension 悬浮液4、fine screen 细筛5、definition 定义6、entangle 使纠缠,卷入,使混乱7、coherent structure 相互粘连着,相互交织的结构8、vegetable kingdom 植物界9、cellulosic nature 纤维素性质10、bond 结合键,证券;粘合11、attribute vt. 把…归因于,把…归咎于;认为…是某人所有,认为…是某人创造12、frame 框架13、sheet mould纸模14、vat 槽,浆槽15、intact 完整的16、felt 毛毯,毛布17、blotter 吸水纸18、in some ways 在某种程度上19、sophistication 完善,复杂化Lesson 17 Stock Preparation System1、stock preparation system 浆料制备系统2、lap pulp浆板3、pulper 碎浆机4、consistency regulator 浓度调节器5、metering and blending计量和混合6、filler填料7、dye染料8、machine chest 纸机(贮)浆池9、stuff box 调浆箱10、headbox 流浆箱11、whitewater 白水12、blade 刀口,刮刀13、storage tank 贮浆槽14、clump 浆块15、clump together 在一起成浆团(浆块)16、lumpy 成块的,块状Lesson 18 Mechanism of Beating and Refining1、mechanism n. 机械,机构,结构,机理,技巧,机制2、interchangeably [intə(:)'tʃeindʒəbli]可交换地3、perpendicular [pə:pən'dikjulə]垂直的4、exemplify [ig'zemplifai]例证,例示5、conical 圆锥形的6、crossing n. 横断,渡航,交叉点,渡口7、in all cases 就一切情况而论8、modify 修正,变更,修饰;9、furnish 配料10、shear stress 切变应力11、normal stress 正应力12、permeable 有浸透性的,能透过的13、swell 润胀14、hydration 水化(作用)15、flexibility 柔韧性,灵活性Lesson 19 Effect of Beating on Sheet properties1、porous 多孔的;疏松的;素烧(瓷)的2、wild 云彩花3、dense 紧密的,浓厚的,密集的,稠密的4、positively 确实地;必然地5、visualize vt. 使看得见,使具体化,想象,设想vi. 想象,显现6、adverse a. 不利的,敌对的,相反的,逆的7、basic weight 定量8、fold strength 耐折度folding strength 9、tensile strength 抗张强度10、mullen strength 耐破度11、tearing resistance 撕裂度tearing strength12、opacity 不透明度13、density 密度14、clump 丛,块,笨重的脚步声15、curdle 使凝结,使凝固,使变质;凝结,凝固,变质Lesson 20 Sizing and Loading1、size 规格,尺寸;胶料2、sizing 施胶,胶料3、sizing agent 施胶剂4、sizing degree 施胶度5、sizing roll /size roll 施胶辊6、sizing tester 施胶度测定仪7、size boiler 熬胶锅8、size cooking 熬胶,制胶9、sized 施胶的sized paper 施胶纸10、web sizing 表面施胶11、wet end 湿部,铜网部12、wet end additive 湿部添加剂,湿部助剂13、wet end chemistry 湿部化学14、wet end finish 湿部整饰15、wet end furnish 湿部配比,浆料配比16、rosin 松香17、amber 琥珀色;琥珀色的,琥珀的18、resin 树脂19、pine 松树20、tap 轻打,轻敲,敲打出,使流出21、stump 树干22、tall oil 塔罗油,塔尔油23、solution 溶液24、emulsion 乳液25、precipitate 沉淀26、alum ['æləm] 铝27、polyelectrolytic 聚电解质28、retention aid 助留剂29、load 负荷;装聊;装入,输入30、loading agent 填料31、filler 填料;填充物、装锅器32、optical 光学的33、opaque 不透明34、clay 白土,高岭土35、calcium carbonate碳酸钙36、talc 滑石talc powder滑石粉37、titanium dioxide 二氧化钛38、opacifier 遮光Lesson 21 Sheet formation1、dewater 脱水2、paperboard 纸板3、lightweight paper 低定量纸4、fabric n. 织物,布,建筑物,结构,构造5、table roll案辊6、foil 薄片,案板7、suction equipment 真空设备8、drilled couch 带孔伏辊9、decay 衰减、衰退;腐朽10、turbulence 湍流、湍动11、mat字型、纸板12、filtration 过滤13、discrete 离散的;不连续的14、immobilize 使不动,使固定,不能移动15、endless finely woven belt无端细编织网(带)16、mesh网目17、plastic mesh fabrics塑料编织网,塑料网状织物18、breast roll 胸辊19、headbox 流浆箱20、couch roll 伏辊21、perforated shell 带孔的壳,有孔的外壳21、suction 抽吸,抽吸作用;吸出,吸出作用22、high-vacuum suction box 高真空吸水箱23、forming board 成形板24、foil 薄片,案板25、augment 增加,增大26、cross-oscillation motion 横向振动27、dandy roll 饰面辊,罗纹辊,水印辊28、mount 安装,装上,安放29、trim 切边,冲边30、erratic [i'rætik]不稳定的31、high-pressure water jet 高压喷水32、squirt 水针33、re-slur 重新碎浆Lesson 22 Pressing1、press 压榨,压,印刷机2、press felt压榨毛毯3、press button按钮4、press drying压榨干燥5、pressing压,压榨6、press section 压榨部7、dryer section干燥部8、dryer 干燥器,烘缸9、economical 节俭的,经济的,合算的10、runnability 运行性能,运行情况11、evaporation 蒸发12、profile 侧面,轮廓,人物素描13、phase 相;期,阶段14、saturate 饱和15、dryness 干度16、reabsorption 回吸17、rewetting 回湿18、postulate 假定,要求;基本条件19、capillary 毛细管;毛状的,毛细作用的20、configuration 结构21、plain roll 普通平压辊22、suction press 真空压榨23、approach24、transverse-flow pressing横流压榨25、receptor 接收器26、laterally ['lætərəli]侧面地,旁边地27、grooved-roll 沟纹辊28、blind-drilled receptor roll 盲孔脱水(压榨)辊29、void 空隙,孔隙;孔率;无效的30、fabric press衬毯压榨31、dwell 停留Lesson 23 Paper Drying1、paper drying 纸的干燥2、dryer section 干燥部3、thermal 热的,温的4、wrap 包,裹,包装,覆盖5、wrap angle 包角6、wrapper 包装纸7、wrapper roll 捐筒包装纸8、wrapping 包装9、wrapping paper 包装纸10、indice['indisi:z] index 的复数指数,指标11、evaporation rate 蒸发率12、steam economy 蒸汽利用率13、BTU British themal unit14、peak 最高的15、constant rate zone 恒速区16、ventilation 通风;排气17、permeable 有浸透性的,能透过的18、dryer felt 干毯,干燥毛毯19、shrinkage 收缩,收缩率20、tension张力tensioning roll张紧辊21、position位置;positioning roll定位辊Lesson 24 Calendering and Supercalendering1、calendering 压光2、paper grades 纸种3、cross-direction 横向4、reel-building 复卷5、converting加工6、compensate补偿7、caliper 厚度;测径器,卡钳,弯角器;用卡钳测量8、induce 引诱,招致,感应9、infinitesimally [infini'tesiməli] 极小地10、deform 变形11、replicate ['replikeit] vt. 折叠,折转,复制n. 八音阶间隔的反复高低音a. 折转的,弯回的12、pliable 弯曲13、pliable wood 弯曲木材14、pliablility 弯曲性15、efficacy ['efikəsi] 功效,效力16、glazen. 釉,上光,光滑面vt. 装以玻璃,上釉于vi. 变成为光滑,变呆滞17、compaction 压紧18、soft-nip calendar软压光19、supercalendering 超级压光20、unwind stand 退纸架21、stack 堆;烟囱;存储栈;存储栈数据22、rewind 复卷23、lead roll 导辊,导纸辊24、entrapment [in'træpmənt] 夹杂,捕集,圈闭25、creasing起皱26、elastic弹性的27、plastic 可塑的,塑性的28、depression 压迫,压制29、creep 蠕变30、spread area 舒展区31、filled roll 纸粕辊32、rolling friction 滚动摩檫33、polishing/polish 抛光,磨光34、delicate 脆弱的35、dent缺陷,凹陷;dented 有缺陷的36、torn paper破损纸张,断纸37、lump浆块,浆团38、mark 标志;标记;限度;界限;痕;印Lesson 25 Paper and Paperboard Properties --------------Basic Sheet Properties1、basis weight (纸张)定量2、communication 通讯,3、packaging 包装,打包4、Grammage 定量,克重5、caliper 厚度6、processor 信息处理机7、centimeter 厘米8、millimeter 毫米9、micrometer 微米10、compressibility 可压缩性11、density 密度12、bulk 松厚(度)13、predictor 预测者,预告者14、moisture content 水分含量moisture水分15、shift 变化16、curl 卷曲17、wrinkle 起皱18、felt side 毛毯面,正面19、wire side 网面,反面20、imprint vt. 印,印记号,铭刻n. 印,印记,痕迹,版本说明imprinted paper 压印纸21、noticeable 引人注目的,显明的,值得注意的Lesson 26 Paper and Paperboard Properties--------------Strength Properties1、strength properties 强度性能2、tensile strength 抗张强度3、extensibility 伸长性4、stretch 伸长,伸长率5、Mullen 耐破度6、simultaneous 同时发生的,同时的7、puncture resistance 耐戳穿强度8、burst 耐破度,破裂度9、diaphragm ['daiəfræm] 隔膜,薄膜10、clamp 夹;夹板,压板;钳11、pop test 耐破测验12、tearing resistance 撕裂度,撕裂性能13、evaluate 评价,评估,赋值14、internal tearing resistence内撕裂度15、notch V形切痕16、simulate 模拟17、fold 折叠18、fold test 耐折度测定19、relative humidity 相对湿度20、equilibrate [i:kwə'laibreit] 平衡,相称Lesson 27 Paper and Paperboard Properties -------------Optical properties1、optical properties 光学性能2、whiteness 白度3、brightness 亮度,白度4、reflectance 反射率5、opaque 不透明性6、wavelength 波长7、incident light 入射光8、roughly 粗糙的,粗略的9、magnesium oxide 氧化镁10、region 区域,范围11、opacity 不透明度12、opacity paper不透明纸13、printer 印刷工作者,印刷机14、printing 印刷15、indication 指示,象征,象征物16、gloss 光泽度17、specular reflectance镜面反射18、microscopic [maikrəs'kɔpik] 显微镜的。
木质素合成关键酶——肉桂醇脱氢酶的研究进展龚琰;许梦秋【摘要】肉桂醇脱氢酶 (CAD)是木质素合成途径的关键酶之一,它作用于木质素单体生物合成的最后一步.重点综述了肉桂醇脱氢酶(CAD)的在基因家族方面,基因调控方面以及蛋白结晶方面的研究进展,讨论了存在的问题并提出了相关策略.【期刊名称】《生物技术通报》【年(卷),期】2010(000)004【总页数】3页(P47-49)【关键词】木质素;肉桂醇脱氢酶(CAD);调控【作者】龚琰;许梦秋【作者单位】北京林业大学生物科学与技术学院,北京,100083;北京林业大学生物科学与技术学院,北京,100083【正文语种】中文肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase,CAD,EC 1.1.1.195)是木质素合成途径中第一个被研究的酶[1,2]。
它是木质素合成过程中关键酶之一,催化多种不同的肉桂醛(香豆醛,芥子醛,松柏醛等)生成木质素单体的前体物质。
目前,已经有许多CAD cDNA从不同的植物中被克隆出来,到目前为止已在NCB I上注册的CAD 的完整mRNA序列共187条,对CAD cDNA序列分析的结果说明,它们具有高度的同源性。
越来越多的试验证明CAD在植物体内存在着基因家族。
研究者发现拟南芥中有9个CAD基因[3,4]。
它们的相似性高达70%,其中的6个能催化5种肉桂醛生成肉桂醇,另外3个催化能力很低且只有在底物浓度很高的时候才表现活性。
有力地说明了在拟南芥中木质素单体的合成不是靠单一CAD催化生成的。
AtCAD5和AtCAD4被证明催化活性和同源性最高,因而在木质素生物合成中起着重要的作用[5]。
AtCAD5能有效催化所有5种底物,而AtCAD4却几乎不能催化芥子醛。
Fan和Shi[6]研究表明,棉花纤维中含有8个CAD基因。
其中GhCAD1和GhCAD6的同源性最高。
在棉花纤维次生木质部形成时,只有GhCAD6的表达量升高。
Update on Lignin Biosynthesis and StructureLignin Biosynthesis and Structure1Ruben Vanholme,Brecht Demedts,Kris Morreel,John Ralph,and Wout Boerjan*Department of Plant Systems Biology,VIB,9052Ghent,Belgium(R.V.,B.D.,K.M.,W.B.);Department of Plant Biotechnology and Genetics,Ghent University,9052Ghent,Belgium(R.V.,B.D.,K.M.,W.B.);and Department of Biochemistry and Great Lakes Bioenergy Research Center,University of Wisconsin,Madison,Wisconsin 53706(J.R.)Lignin is the generic term for a large group of aromatic polymers resulting from the oxidative com-binatorial coupling of4-hydroxyphenylpropanoids (Boerjan et al.,2003;Ralph et al.,2004).These polymers are deposited predominantly in the walls of second-arily thickened cells,making them rigid and impervi-ous.In addition to developmentally programmed deposition of lignin,its biosynthesis can also be in-duced upon various biotic and abiotic stress con-ditions,such as wounding,pathogen infection, metabolic stress,and perturbations in cell wall struc-ture(Can˜o-Delgado et al.,2003;Tronchet et al.,2010). Because lignin protects cell wall polysaccharides from microbial degradation,thus imparting decay resis-tance,it is also one of the most important limiting factors in the conversion of plant biomass to pulp or biofuels.The removal of lignin from plant biomass is a costly process;hence,research efforts are now aimed at designing plants that either deposit less lignin or produce lignins that are more amenable to chemical degradation(Sticklen,2008;Weng et al., 2008a;Mansfield,2009).The main building blocks of lignin are the hydroxy-cinnamyl alcohols(or monolignols)coniferyl alcohol and sinapyl alcohol,with typically minor amounts of p-coumaryl alcohol(Fig.1).The monolignols are syn-thesized from Phe through the general phenylpro-panoid and monolignol-specific pathways.Phe is derived from the shikimate biosynthetic pathway in the plastid(Rippert et al.,2009).Certain enzymes of the lignin biosynthetic pathway,namely the cyto-chrome P450enzymes CINNAMATE4-HYDROXY-LASE(C4H),p-COUMARATE3-HYDROXYLASE (C3H),and FERULATE5-HYDROXYLASE(F5H),are membrane proteins thought to be active at the cyto-solic side of the endoplasmic reticulum(Chapple, 1998;Ro et al.,2001).Although metabolic channel-ing has been shown between PHENYLALANINE AMMONIA-LYASE(PAL)and C4H(Rasmussen and Dixon,1999;Achnine et al.,2004),it remains unknown whether the other pathway enzymes are also part of metabolic complexes at the endoplasmic reticulum. The units resulting from the monolignols,when incorporated into the lignin polymer,are called guaiacyl(G),syringyl(S),and p-hydroxyphenyl(H) units(Figs.1and2).With some notable exceptions (Novo Uzal et al.,2009),lignins from gymnosperms are composed of G-units only(with minor amounts of H-units),whereas angiosperm dicot lignins are com-posed of G-and S-units.H-units are elevated in softwood compression wood and may be slightly higher in grasses(Boerjan et al.,2003).A variety of less abundant units have been identified from diverse species,and these may be incorporated into the poly-mer at varying levels(Ralph et al.,2004).Some units, such as those derived from the monomer sinapyl acetate,can make up to85%of all S-units in the polymer(Lu and Ralph,2008;Martı´nez et al.,2008).In addition to differences in lignin composition among taxa and species,lignin composition can also differ among cell types,as readily visualized by the histo-chemical Ma¨ule staining,which is indicative of S-units,or when chemically analyzed by laser capture microdissection followed by microanalysis of lignin (Nakashima et al.,2008;Ruel et al.,2009).Lignins can even be dissimilar at the level of individual cell wall layers,as revealed by Raman,IR,and UV micro-spectroscopy,or by immunolabeling of the secondary wall with antibodies cross-reacting with specific lignin substructures(Shi et al.,2006;Gierlinger and Schwanninger,2007;Gou et al.,2008;Ruel et al.,2009).EVOLUTIONARY ASPECTSIt is commonly accepted that lignin evolved together with the adaptation of plants to a terrestrial life to1This work was supported by the Research Foundation-Flanders (grant no.G.0352.05N),by the Stanford University Global Climate and Energy Project(grants“Towards New Degradable Lignin Types”to W.B.and“Efficient Biomass Conversion:Delineating the Best Lignin Monomer-Substitutes”to J.R.),by the European Com-mission Framework VII projects RENEWALL(grant no.KBBE–2007–3–1–01),ENERGYPOPLAR(grant no.KBBE–2007–3–1–02), and NOVELTREE(grant no.KBBE–2007–1–2–05),by the Agency for Innovation by Science and Technology(predoctoral fellowships to R.V.and B.D.),by grants from the Bijzonder Onderzoeksfonds-Zware Apparatuur of the Ghent University for the FT-ICR-MS(grant no.174PZA05)and from the Hercules program of Ghent University for the Synapt Q-Tof(grant no.AUGE/014),and by the Department of Energy Great Lakes Bioenergy Research Center(Department of Energy Office of Science grant no.BER DE–FC02–07ER64494).*Corresponding author;e-mail wout.boerjan@psb.vib-ugent.be.The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors()is: Wout Boerjan(wout.boerjan@psb.vib-ugent.be)./cgi/doi/10.1104/pp.110.155119provide them with the structural support needed for an erect growth habit (Fig.3).Comparative genomics studies based on available plant genomes indicate that the complete biosynthetic pathway,except for F5H,first appeared in moss (based on the Physcomitrella genome sequence;Xu et al.,2009)but was absent from green algae.However,recent studies have also detected secondary walls and apparent lignin in the marine red alga Calliarthron ,which diverged from vascular plants more than 1billion years ago (Martone et al.,2009),indicating either a very strongly conserved evolution-ary history of the relevant pathways or convergent evolution.In support of the latter hypothesis,parallels between Calliarthron and angiosperms are obvious;lignin in the secondary cell walls of Calliarthron may have evolved to resist the bending stresses imposed by breaking waves,similar to lignin in the walls ofvascular plants that provides biomechanical support (Martone et al.,2009).In the lycophyte species Selag-inella ,convergent evolution has been demonstrated with the identification of a new F5H that is capable of functioning in S-lignin biosynthesis but that is struc-turally unrelated to F5H characterized in angiosperms (Weng et al.,2008b,2010).It is also noteworthy that cell cultures,but not woody cell walls of Ginkgo biloba ,are able to synthesize S lignin;the S-lignin pathway in gymnosperms is generally thought to be absent (Novo Uzal et al.,2009).Clearly,the complex evolutionary puzzle regarding S lignin has yet to be resolved.PATHWAY PERTURBATIONSGenes have been cloned for each of the steps of the lignin biosynthetic pathway and the impact on lignin amount and composition has been studied through mutants or reverse genetics in various species,mostly Arabidopsis (Arabidopsis thaliana ),maize (Zea mays ),alfalfa (Medicago sativa ),poplar (Populus spp.),and tobacco (Nicotiana tabacum )but more recently also in flax (Linum usitatissimum ;CCoAOMT ;Day et al.,2009),the gymnosperms Pinus radiata (HCT and 4CL ;Wagneret al.,2007,2009)and Picea abies (CCR ;Wadenba¨ck et al.,2008),and in rice (Oryza sativa ;CAD ;Zhang et al.,2006;Li et al.,2009).(For full gene/protein names not pro-vided in the text,see legend of Fig.1.)From these studies,it can be concluded that reducing the expres-sion of each gene,except F5H ,lowers lignin amount in the cell wall to varying extents,depending on the gene,the species,and the level of gene redundancy (Li et al.,2008;Nakashima et al.,2008;Vanholme et al.,2008).Secondary walls with decreased lignin amounts are often characterized by collapsed vessels.This “irregular xylem”phenotype,indicative of reduced mechanical cell wall strength,is not unique to reductions in lignin,as it is also noted in mutants with defects in the biosynthesis of other cell wall polymers (Brown et al.,2005).Strongly reduced lignin amounts result in altered plant development,but more importantly ,modest re-ductions can lead to normal development,as nicely demonstrated by the allelic series of c4h (ref3)mutants in Arabidopsis;the strongest allele causes small and sterile plants,and the weaker alleles result in relatively normal plants with still less lignin (Ruegger and Chapple,2001;Schilmiller et al.,2009).This implies that,for applications in crops,fine-tuning of the lignin level or targeting the transgene expression to only specific cell types will be an important endeavor.In addition to lignin content,lignin H/G/S com-position also appears to be rather flexible.Silencing of HCT or C3H leads to lignin with H-unit levels as high as 100%of the total thioacidolysis lignin mono-mers (Franke et al.,2002;Abdulrazzak et al.,2006;Ralph et al.,2006;Besseau et al.,2007;Coleman et al.,2008).Down-regulation of F5H or COMT strongly reduces S-unit content;in contrast,up-regulation of F5H increases the S-unit content (Franke et al.,2000;Figure 1.The main biosynthetic route toward the monolignols p -coumaryl,coniferyl,and sinapyl alcohol (Boerjan et al.,2003).PAL,PHENYLALANINE AMMONIA-L YASE;C4H,CINNAMATE 4-HYDROXY -LASE;4CL,4-COUMARATE:CoA LIGASE;C3H,p -COUMARATE 3-HYDROXYLASE;HCT,p -HYDROXYCINNAMOYL-CoA:QUINATE/SHIKIMATE p -HYDROXYCINNAMOYLTRANSFERASE;CCoAOMT,CAFFEOYL-CoA O -METHYLTRANSFERASE;CCR,CINNAMOYL-CoA REDUCTASE;F5H,FERULATE 5-HYDROXYLASE;COMT,CAFFEIC ACID O -METHYLTRANSFERASE;CAD,CINNAMYL ALCOHOL DEHYDROGENASE.Vanholme et al.Stewart et al.,2009).Furthermore,down-regulation of CAD increases the incorporation of cinnamalde-hydes into the polymer (Baucher et al.,1998;Lapierre et al.,1999,2004;Kim et al.,2003).The most remark-able shifts in lignin composition are seen when COMT is down-regulated;in these lignins,5-hydroxyconiferyl alcohol,derived from the COMT substrate,is incorpo-rated,although it is below the detection limit in wild-type lignin (Van Doorsselaere et al.,1995;Lapierre et al.,1999;Fig.5).It is interesting that shifts in G and S levels,as well as shifts toward more aldehydes,gen-erally have only minor effects on plant development.Obviously,because the relative ratio of the different monomers determines the frequency of the different bonds in the polymer,all these compositional shifts have repercussions on the structure of the polymer and may thus alter the cell wall properties.The effects of lignin pathway perturbations often go beyond alterations in lignin amount,composition,and cell wall structure.Indeed,several studies have now demonstrated that perturbing individual steps of the lignin biosynthetic pathway affects the expres-sion level of other lignin pathway genes and also the expression of genes involved in a multitude of other,seemingly unrelated biological processes.These wider effects are also reflected at the metabolite level (Rohde et al.,2004;Sibout et al.,2005;Shi et al.,2006;Dauwe et al.,2007;Leple´et al.,2007).Uncovering their molecular basis might help mitigate the adverse effects on plant growth and development that often accompany lignin modifications.THE REGULATORY CASCADEIn the past few years,significant progress has been made in understanding the regulation of lignification.New data indicate a regulatory cascade of upstream transcription factors that control the formation of secondary walls by activating a range of other tran-scription factors.Some of these downstream transcrip-tion factors are then able to induce the expression of genes of the lignin biosynthetic pathway (Zhong and Ye,2007).The regulatory cascade explains why several of the currently described transcription factors lead to enhanced or reduced lignification when misexpressed in plants while they do not directly regulate the lignin biosynthetic genes by binding to their promoters (Zhong et al.,2006,2008).Therefore,yeast one-hybrid assays,protoplast transient expression assays,and electrophoretic mobility shift assays have been essen-tial to prove the direct binding of a given transcription factor to the promoters of lignin genes (Table I).Microarray experiments on Arabidopsis cell suspen-sion cultures that are induced to form tracheary ele-ments have identified a set of transcription factors involved in this cell differentiation process (Kubo et al.,2005).Whereas VASCULAR-RELATED NAC-DOMAIN6(VND6)and VND7were shown to be key upstream regulators of the protoxylem and metaxylem formation,respectively (Kubo et al.,2005;Yamaguchi et al.,2008),SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1(SND1)was described as an upstream regulator of interfascicular fiber develop-ment,and overexpression of SND1led to ectopic for-mation of secondary cell walls (Zhong et al.,2006).Moreover,SND1was able to regulate at least 10other transcription factors (Zhong et al.,2007,2008;Zhou et al.,2009),some of which activated the phenylpropa-noid pathway (e.g.Myb46,Myb63,and Myb58;Table I).Engineering the expression of transcription factors has the potential to alter lignification with fewer adverse effects on plant development for two reasons.First,these transcription factors bind the promotersofFigure 2.Representation of a lignin polymer from poplar,as predicted from NMR-based lignin analysis (adapted from Stewart et al.,2009).Lignin Biosynthesis and Structuremultiple genes,thereby affecting the flux through the pathway in an orchestrated manner.Second,some might be specifically involved in the developmental lignification process and not in other processes,such as stress lignin formation,leaving the plant able to respond to environmental factors.TRANSPORT AND POLYMERIZATIONAfter their biosynthesis,the monolignols are trans-located to the cell wall by a mechanism that remains a mystery.In one model,the monolignols are trans-located over the plasma membrane through their 4-O -glucosylated forms,coniferin and syringin,that are deglucosylated upon their arrival by glucosidases located in the cell wall.However,Arabidopsis mutants defective in the corresponding glucosyltransferases have normal lignin levels (Lanot et al.,2006; A.Chapelle,pierre,and L.Jouanin,unpublished data;not,R.Dixon,and D.Bowles,personal communication).In another model,monolignols are transported to the plasma membrane by Golgi-derived vesicles.However,Kaneda et al.(2008),using [3H]Phe feeding experiments,did not find evidence for Golgi-derived vesicles in monolignol transport,nor did they find any significant label in the monolignol glucosides.Thus,at present,there is no convincing support for a role for monolignol glucosides or Golgi-derived ves-icles in the transport of monolignols to the cell wall.Current working models assume that monolignols are translocated across the plasma membrane by trans-porters,but tests on several prime candidate trans-porters by reverse genetics have not yet revealed any effect on monolignol transport (Ehlting et al.,2005;L.Samuels,personal communication).Nevertheless,ad-ditional studies are needed.Alternatively,coniferyl and sinapyl alcohols might have the capability of unaided diffusion through the plasma membrane (Boija and Johansson,2006).Lignin polymerization occurs via oxidative radical-ization of phenols,followed by combinatorial radical coupling.In the first step,the monolignol phenol is oxidized (i.e.dehydrogenated).The resulting phenolic radical is relatively stable due to delocalization of the unpaired electron in the conjugated system (Fig.4).Subsequently,two monomer radicals may couple to form a (dehydro)dimer,thereby establishing a cova-lent bond between both subunits.Monolignol radicals favor coupling at their b positions,resulting essen-tially in only the b -b ,b -O -4,and b -5dimers (Fig.4).This radical-radical coupling occurs in a chemical-combinatorial fashion;thus,the ratio of each of the possible coupling products depends largely on the chemical nature of each of the monomers and the con-ditions in the cell wall (Ralph et al.,2004).Then,the dimer needs to be dehydrogenated,again to a phenolic radical,before it can couple with another monomer radical.This mode of action,in which a monomer (radical)adds to the growing polymer,is termed endwise coupling:the polymer grows one unit at a time.Coupling of two lignin oligomers is rare in S/G-lignins but relatively common in G-lignins,where 5-5coupling accounts for approximately 4%of the link-ages (Argyropoulos et al.,2002;Wagner et al.,2009).During each coupling reaction,two radicals are “con-sumed”(in a so-called “termination reaction”)as each single electron contributes to the newly formed bond,making this type of radical polymerization intrinsi-cally different from the radical chain reactions that occur in the polymerization of several industrial poly-mers,such as polyethylene,polypropylene,and poly-styrene.The average length of a linear lignin chain in poplar is estimated to be between 13and 20units (Reale et al.,2004;Stewart et al.,2009).Monolignol dehydrogenation involves peroxidases and/or laccases.Whereas peroxidases use hydrogen peroxide as a substrate,laccases use oxygen to oxidize their metal centers to enable catalytical phenol oxida-tion.Both types of enzymes belong to large gene families of which the individual members have over-lapping activities,making the process difficult to study in planta;a knockout may have little to no effect on lignification due to gene redundancy (McCaig et al.,2005;Sato and Whetten,2006).Peroxidases may differ in their substrate specificities;whereas some almost exclusively accept coniferyl alcohol,others are highly specific toward sinapyl alcohol (Marjamaa et al.,2006;Go´mez Ros et al.,2007).Because the structure of lignin depends on the availability of monolignol radicals,peroxidase specificity may determine in part the struc-ture of the final lignin polymers,openingpossibilitiesFigure 3.Phylogenetic tree showing the distribution of lignin monomer composition across major lineages.*,S-units are only found in cell cultures of Ginkgo ,not in wood (Novo Uzal et al.,2009).**,Lignin-like structures are reported in some mosses and green algae,but the presence of real lignin in these nonvascular species remains question-able;red algae have been barely studied (Weng et al.,2008b;Martone et al.,2009).Vanholme et al.for altering lignin structure by modified expression of specific peroxidase isoforms.Although monolignols might be dehydrogenated via direct interaction with an electron-removing(oxidizing)enzyme,the radicals might alternatively be generated by radical transfer. Indeed,direct interaction of the growing lignin poly-mer with enzymes may be unlikely given the limited freedom of movement of both in the cell wall.The p-coumarate moiety in sinapyl p-coumarate has been proposed as a radical shuttle for lignification in grasses;p-coumarate,unlike sinapyl alcohol,is an excellent substrate for peroxidases found in grasses, but the p-coumarate radical efficiently transfers its unpaired electron to sinapyl alcohol and,presumably, also to lignin polymers(Hatfield et al.,2008).In conclusion,the current model of lignification involves peroxidases and/or laccases to provide the oxidative capacity in the cell wall.All phenolic com-pounds that enter this region will eventually have the potential to radicalize and incorporate into the lignin polymer,subject to simple chemical oxidation and (cross-)coupling propensities.This lignification model also nicely explains why many other phenolic mole-cules can be integrated into the growing lignin poly-mer and opens up the possibility of tailoring lignins for industrial applications by regulating the influx and types of monolignols into the cell wall(Ralph,2006; Grabber et al.,2008).STRUCTUREVarious methods exist to reveal the molecular details of lignin structure.As lignin is a complex and hetero-geneous mixture of polymers,the methods generally aim at estimating the average frequency of the main units and the main bond types in the polymer,from a conglomerate simply of the whole plant or in crudely fractionated major tissues.Nitrobenzene oxidation, pyrolysis-gas chromatography-mass spectrometry (GC-MS),and thioacidolysis and derivatization fol-lowed by reductive cleavage are degradative methods that reveal the H/G/S composition of the lignin poly-mer.All these methods liberate only a fraction of the polymer for analysis.Thioacidolysis and derivatization followed by reductive cleavage liberate monomers only from the so-called noncondensed fraction of the poly-Table I.Overview of transcription factors with a role in the regulation of the phenylpropanoid pathway[,Y,or=,Target gene up-regulated,down-regulated,or not affected,respectively.TranscriptionFactorPAL C4H4CL HCT C3H CCoAOMT CCR F5H COMT CAD Method a Reference ArabidopsisAtMYB4=Y b Y[==qPCR,TEA Jin et al.(2000)AtMYB46[b[[[[b[qPCR,TEA Zhong et al.(2007);Ko et al.(2009) AtMYB58[[[b[[[[[[[qPCR,TEA,EMSA Zhou et al.(2009)AtMYB63[[[b[[[[[[[qPCR,TEA,EMSA Zhou et al.(2009)BREVIPEDICELLUS Y Y Y Y b Y b Y qPCR,EMSA Mele et al.(2003) TobaccoNtLIM1[[[qPCR,EMSA c Kawaoka et al.(2000) MaizeZmMYB31=Y=Y[qPCR Fornale´et al.(2006) ZmMYB42Y Y=Y Y qPCR Fornale´et al.(2006) PoplarPttMYB21===Y==qPCR Karpinska et al.(2004) PtrMYB3[[qPCR,TEA McCarthy et al.(2010) PtrMYB20[[qPCR,TEA McCarthy et al.(2010) EucalyptusEgMYB1Y b Y b TEA,EMSA Legay et al.(2007)EgMYB2==[[[[[[[[b qPCR,EMSA Goicoechea et al.(2005) Antirrhinum majusAmMYB330Y RNA blot Tamagnone et al.(1998) AmMYB308=Y Y b Y Y1H,RNA blot Tamagnone et al.(1998) Pinus taedaPtMYB4Y==[[[[[RNA blot,EMSA d Patzlaff et al.(2003) PtMYB1[[[[[[[Y[qPCR Bomal et al.(2008)PtMYB8[[[[=[Y[qPCR Bomal et al.(2008) Vitis viniferaVvWRKY2[[b[[[[[[qPCR,TEA Guillaumie et al.(2010)a qPCR refers to quantitative reverse transcription-PCR results from overexpressing lines,what does not necessarily imply direct binding on the respective promoters,except for Myb58,for which the qPCR was done in an estradiol-inducible system in the presence of the protein synthesis inhibitor cycloheximide(Zhou et al.,2009).EMSA,Electrophoretic mobility shift assay;TEA,protoplast transient expression assay;Y1H,yeast one-hybrid assay.b Direct promoter binding proven by TEA,EMSA,or Y1H.c EMSA shows binding to the Pal box.d EMSA shows binding to the AC-promoter element.Lignin Biosynthesis and Structuremer (i.e.only those H-,G-,and S-units that are b -O -4-[ether]linked with other units are released from the polymer and quantified by GC-MS;Lapierre et al.,1985;Lu and Ralph,1997).A streamlined thioacidolysis method now allows running some 50samples per day (Robinson and Mansfield,2009).NMR,particularly two-dimensional (2D)13C-1H-correlated (HSQC,HMQC)spectroscopy,which combines the sensitivity of 1H NMR with the higher resolution of 13C NMR,continues to be the best method to reveal the frequencies of the different lignin units and the interunit bonding patterns (Fig.5;Ralph et al.,1999;Ralph and Landucci,2010).Although the best quality spectra are obtained from purified isolated lignins,the entire lignin fraction can be analyzed when using cruder isolates,such as so-called “cellulo-lytic enzyme lignin,”in which most of the polysaccha-rides are removed by treatment with crude cellulases,or when using unfractionated whole cell wall material,either fully dissolved or simply swollen in the gel state (Yelle et al.,2008;Kim and Ralph,2010).Analysis of the lignins in these preparations allows most of the details of the overall lignin structure to be determined.The 2D NMR “profile”of unfractionated walls now becomes a fingerprint of all of the components (the various poly-saccharides and lignins)in the cell wall.A new devel-opment in 2D 13C-1H-correlated spectral data analysis is the use of multivariate analysis that provides even better peak assignment and,hence,a better character-ization of the cell wall,as demonstrated by comparing the differences between tension wood and normalwood in poplar (Hedenstro¨m et al.,2009).Although a fair number of the spectral data (con-tours)have been resolved (essentially those colored in Fig.5),the molecular origins of many remain un-known.The comparative analysis of lignin from wild-type and transgenic or mutant plants by wet chemistry methods along with NMR analyses has helped signif-icantly in revealing their origin.A striking example is that of COMT -down-regulated plants.Thioacidolysis and phenolic profiling of xylem extracts revealed the increased abundance of units derived from 5-hydroxy-coniferyl alcohol;the resulting benzodioxane units,formed when this new monomer incorporates into the polymer,were revealed as new contours in the NMR spectra (Ralph et al.,2001;Marita et al.,2003;Morreel et al.,2004b).More recently,NMR of CCR-deficient plants (poplar,tobacco,and Arabidopsis)showed a low-level incorporation of ferulic acid into lignin.In addition to the previously anticipated b -O -4-ferulate structures,NMR and thioacidolysis evidence was presented for a novel bis-(b -O -4)-ether product arisingfrom coupling of ferulic acid into lignin (Leple´et al.,2007;Ralph et al.,2008).These novel acetal units are now indicative of (free)hydroxycinnamic acid incor-poration into lignins.These new units should not be confused with radical coupling products from lignifi-cation reactions of ferulate-polysaccharide esters,which are abundant in grasses.NMR data also provide insight into other aspects of the lignin polymer,such as polymer length,as nicely demonstrated by the analysis of lignin from F5H -overexpressing poplar (Stewart et al.,2009).Lignins from these trees have the “world-record”S content,with an S/G ratio of greater than 35versus approxi-mately 2for wild-type poplar lignin.As readily seen by NMR,the lignin is quite homogeneous,composed essentially only of syringaresinol and b -ether units (with small amounts of spirodienones;for bond types,see Fig.5).Importantly,if the quantification is correct and the syringaresinol level is of the order of 10%,the average lignin chain can only be about 10units,as it is a simple fact that a linear (S)lignin chain can only have a single resinol unit in that chain.Both factors (the high b -ether level and the short chain length)and the consequently high content of units with a free phenolic end probably contribute to this transgenic plant’s remarkable pulping and biomass conversion performance (Huntley et al.,2003;Stewart et al.,2009).TOWARD “LIGNIN OLIGOMER SEQUENCING”AND “LIGNOMICS’’As lignins have moderately high molecular weights and are highly heterogeneous polymers,deducing their primary structures (i.e.the sequence of H-,G-,and S-units in individual polymers and thebondsFigure 4.Dimerization of two dehydrogenated coniferyl alcohol mon-omers.Resonance forms of dehydrogenated coniferyl alcohol with the unpaired electron “localized”at the C1or C3position are not shown because radical coupling (dimerization)reactions do not occur at these positions.Vanholme et al.between them)is not possible using NMR methods that are typically based on lignin extracted from multiple cell types.In fact,because lignin is combina-torial,sequencing of lignin is meaningless,except for individual molecules.Nevertheless,understanding how monolignols couple (i.e.the propensity to couple a given way)provides insight into the factors that determine lignin structure.In an attempt to start determining the primary structures of low-M r oligo-lignols,mixtures have been extracted from poplar xylem and analyzed by liquid chromatography-mass spectrometry (LC-MS;Morreel et al.,2004a).Forty of these structures were identified,and all were in agreement with combinatorial oxidative polymeriza-tion.When the relative abundances of these oligo-lignols were analyzed from transgenic plants with modified lignin,they nicely corresponded with the lignin structural data as obtained by NMR of the total lignin,advocating the value of oligolignol profiling as a high-throughput,easy-to-use,and more sensitive method than traditional NMR-or GC-based methods to reveal changes in incipient lignin structure.In addition,LC-MS-based oligolignol profiling has the potential to discover new lignin monomers.For ex-ample,sinapyl p -hydroxybenzoate was authenticated as a new monomer (or monomer conjugate)by iden-tifying its cross-coupling product with sinapyl alcohol (Lu et al.,2004;Morreel et al.,2004a).Nonetheless,the identification of such oligolignols by LC-MS necessi-tates a profound knowledge of their fragmentation behavior in the gas phase.This laboriously gained knowledge has now allowed the development of an MS-based algorithm that allows sequencing of indi-vidual lignin oligomers (Morreel et al.,2010).Finally,the MS analysis of xylem extracts reveals that many phenylpropanoid-derived molecules still have an unknown identity.Therefore,the structural elucidation and quantification of the full suite of these molecules by LC-MS,which we refer to in our labo-ratory as “lignomics,”may identify additional candi-date lignin monomers and their possible biosynthetic routes.TRENDS AND RESEARCH AVENUESOne new trend in lignin research is to steer biosyn-thetic pathways toward the biosynthesis of molecules that,upon incorporation into the lignin polymer,will improve lignin degradation.This idea stems from the growing list of newly discovered lignin monomers,from the observation that lignin is able to readily copolymerize alternative units that derive from in-complete monolignol biosynthesis in plants with path-way perturbations,and from examples in which plants with altered lignin structures are shown to be viable and more easily processed (Pilate et al.,2002;Huntley et al.,2003;Ralph et al.,2006;Leple´et al.,2007).This concept of copolymerizing alternative lignin monomers into the polymer has already been demonstrated in a biomimetic system by poly-merizing coniferyl ferulate together with normal mono-lignols into maize primary cell walls (Grabber et al.,2008).The resulting lignin,now strongly enriched in easily breakable ester bonds in the lignin backbone,degrades at lower temperature and alkaline charges.If such dramatic improvement can also be achieved by genetic engineering,it may result in lessenergy-Figure 5.2D 13C-1H correlation (HMQC,HSQC)NMR spectrum of an acetylated Arabidopsis cellulolytic enzyme lignin that contains the whole lignin fraction from the cell wall but is depleted in polysaccharides after their removal via treatment with crude cellulases.The spectrum provides a convenient profile of aspects of the lignin structure.A,The aromatic region allows the S/G ratio to be readily determined via integration of the well-separated S 2/6and G 2correlation peaks.B,The aliphatic region of the same spectrum allows the individual structures (at right,colored the same as their associated contours),and therefore the bonding patterns,to be visualized and (in principle)quantified.Dibenzodioxocin units (D)are only seen at lower contour levels (data not shown),like the other correlations from the spirodienones (S).Benzodioxane units (H)from the incorporation of 5-hydroxyconiferyl alcohol are below the detection limit in wild-type Arabidopsis lignin but are seen in lignins from COMT -down-regulated plants.Lignin Biosynthesis and Structure。