第二十三章创优检测卷
- 格式:doc
- 大小:386.00 KB
- 文档页数:3
沪科版九年级数学上册第23章测试题(含答案)(考试时间:120分钟满分:150分)姓名:______班级:______分数:______一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.计算:2sin 30°=(A) A.1 B. 2 C.2 D.222.在Rt△ABC,∠C=90°,sin B=35,则sin A的值是(B)A.35 B.45 C.53 D.543.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AB 的长为(A)A.mcos αB.m·cosαC.m·sin αD.m·tan α4.某水库大坝的横断面是梯形,坝内斜坡的坡度i=1 ∶3,坝外斜坡的坡度i=1 ∶1,则两个坡角的和为( C) A.90°B.60°C.75°D.105°5.如图,要测量小河两岸相对的A,B两点之间的距离,可以在小河边取AB的垂线BC上的一点D,若测得BD=60米,∠ADB=40°,则AB等于(A) A.60tan 40°米B.60tan 50°米C.60sin 40°米D.60sin 50°米第5题图第6题图第8题图6.如图,已知在平面直角坐标系x Oy内有一点A(2,3),那么OA与x轴正半轴的夹角α的余弦值是(D)A.32 B.23 C.31313 D.213137.在△ABC中,cos B=sin(∠B-30°)=sin(90°-∠A),那么△ABC是(B) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形8.如图,港口A在观测站O的正东方向,OA=4 km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为(C) A.4 3 km B.(3+1)kmC.2(3+1)km D.(3+2)km9.在Rt△ABC中,AC=8,BC=6,则cos A的值等于(C)A.35 B.74 C.45或74 D.45或27710.★如图,在△ABC中,∠ACB=90°,D为AB的中点,E为AC上一点,连接DE,并过点D作FD⊥ED,垂足为D,交BC于点F.若AC=BC=14,AE∶EC=4 ∶3,则tan∠EFC的值为(D)A.23 B.32 C.43 D.34第10题图第13题图第14题图二、填空题(本大题共4小题,每小题5分,满分20分)11.已知:tan α=33,则锐角α=30° .12.比较大小:cos 35°<sin 65°.13.如图,河流两岸a,b互相平行,点A,B是河岸a上的两座建筑物,点C,D是河岸b上的两点,A,B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为100 米.14.★如图,点D在钝角△ABC的边BC上,连接AD,∠B=45°,∠CAD=∠CDA,CA ∶CB=5 ∶7,则∠BAD的余弦值为25 5.三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)cos245°+sin 60°·tan 30°-tan 30°;解:原式=12+12-33=1-3 3.(2)sin 60°+tan 45°cos 30°-2sin 30°.解:原式=32+1 32-1=-7-4 3.16.在Rt△ABC中,∠C=90°.(1)已知∠A=60°,b=103,求a,c;(2)已知c=23,b=3,求a,∠A.解:(1)a=b tan 60°=30;c=bcos 60°=20 3.(2)a=c2-b2= 3.∵sin A=ac=12,∴∠A=30°.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC中,∠B=45°,∠C=60°,AB=32,AD⊥BC于D,求CD.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADB中,∵∠B=45°,∴AD=BD=AB sin B=3.在Rt△ADC中,∵∠C=60°,∴CD=ADtan C= 3.18.某商场为了方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式扶梯AB长为10 m,坡角∠ABD=30°;改造后斜坡式自动扶梯的坡角∠ACB=9°,请计算改造后的斜坡AC的长度.(结果精确到0.01,参考数据:sin 9°≈0.156,cos 9°≈0.988,tan 9°≈0.158)解:在Rt△ABD中,∠ABD=30°,AB=10 m,∴AD=AB sin∠ABD=10×sin 30°=5(m),在Rt△ACD中,∠ACD=9°,sin 9°=AD AC,∴AC=5sin 9°=50.156≈32.05(m),答:改造后的斜坡AC的长度为32.05米.五、(本大题共2小题,每小题10分,满分20分)19.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD 的A,C两点测得该塔顶端F的仰角分别为α和β,矩形建筑物宽度AD=20 m,高度DC=33 m.(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1 m,参考数据:sin 48°=0.7,cos 48°=0.7,tan 48°=1.1,sin 65°=0.9,cos 65°=0.4,tan 65°=2.1)解:(1)过D作DE⊥FG于E,设CG=x m,由图可知EF=(x+20)·tan α,FG=x·tan β,则(x+20)tan α+33=xtan β,解得x=33+20tan αtan β-tan α.∴CG=33+20tan αtan β-tan αm.(2)x=33+20tan αtan β-tan α=33+20×1.12.1-1.1=55,则FG=x·tan β=55×2.1=115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116 m. 20.如图,一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上,之后,轮船继续向东航行多少海里,距离小岛C最近?错误!解:过C作AB的垂线,交直线AB于点D,得到Rt△ACD与Rt△BCD.设CD=x海里,在Rt△BCD中,tan∠CBD=CD BD,∴BD=xtan 63.5°,在Rt△ACD中,tan A=CD AD,∴AD=xtan 21.3°,∴AD-BD=AB,即xtan 21.3°-xtan 63.5°=60,解得x=30.BD=30tan 63.5°=15.答:轮船继续向东航行15海里,距离小岛C最近.六、(本题满分12分)21.某工厂生产某种多功能儿童车,根据需要可变形为图①的滑板车或图②的自行车,已知前后车轮半径相同,AD=BD=DE=30 cm,CE=40 cm,车杆AB与BC所成的∠ABC =53°,图①中B,E,C三点共线,图②中的座板DE与地面保持平行.问变形前后两轴心BC的长度有没有发生变化?若不变,请写出BC的长度;若变化,请求出变化量.(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈45)解:如图①,过点D作DF⊥BE于点F,由题意知BD=DE=30 cm,∴BF=BD cos∠ABC=30×35=18(cm),∴BE=2BF=36 cm,则BC=BE+CE=76 cm,如图②,过点D作DM⊥BC于M,过点E作EN⊥BC于点N,由题意知四边形DENM是矩形,∴MN=DE=30 cm,在Rt△DBM中,BM=BD cos∠ABC=30×35=18(cm),EN=DM=BD sin∠ABC=30×45=24(cm),在Rt△CEN中,∵CE=40 cm,∴由勾股定理可得CN=32 cm,则BC=18+30+32=80 cm,80-76=4 cm.答:BC的长度发生了改变,增加了4 cm.七、(本题满分12分)22.如图,在△ABC中,∠A=90°,sin B=35,点D在边AB上,若AD=AC,求tan∠BCD的值.解:作DH⊥BC于H.∵∠A=90°,sin B=ACBC=35,设AC=3k,BC=5k,则AB=4k.∵AC=AD=3k,∴BD=k.∵∠B=∠B,∠DHB=∠A,∴△BHD∽△BAC,BDBC=DHAC=BHAB,∴DH=35k,BH=45k,∵CH=BC-BH=215k,∴tan∠BCD=DHCH=17.八、(本题满分14分)23.【阅读新知】三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即:如图①,在△ABC中,已知AB=c,BC=a,CA=b,则有:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.利用这个结论可求解下列问题:例:在△ABC中,已知a=23,b=22,c=6+2,求∠A.解:∵a2=b2+c2-2bc cos A,cos A=b2+c2-a22bc=(22)2+(6+2)2-(23)22×22×(6+2)=12.∴∠A=60°.【应用新知】(1)在△ABC中,已知b=c cos A,a=c sin B,试判断△ABC 的形状;(2)如图②,某客轮在A处看港口D在客轮的北偏东50°,A 处看灯塔B在客轮的北偏西30°,距离为2 3 海里,客轮由A处向正北方向航行到C处时,再看港口D在客轮的南偏东80°,距离为6海里.求此时C处到灯塔B的距离.解:(1)∵b=c cos A,a=c sin B,∴cos A=bc,sin B=ac,∴a2=b2+c2-2bccos A=b2+c2-2bc×b c=c2-b2,∴a2+b2=c2,∴△ABC是直角三角形,∠C=90°,∴a=c sin B=b,∴△ABC是等腰直角三角形.(2)∵∠ADC=180°-80°-50°=50°,∴CA=CD=6,BC2=AB2+AC2-2AB·AC·cos∠BAC=(23)2+62-2×23×6×3 2=12,∴BC=2 3.答:C处到灯塔B的距离为2 3 海里.。
冀教版数学九年级上册第23章测试题一、选择题1.在一组数据,,中,各数据与它们的平均数的差的绝对值的平均数,记作叫做这组数据的“平均差”.一组数据的平均差越大,就说明这组数据的离散程度越大.则样本:、、、、的平均差是()A. B. C. D.2.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉只,其中有标记的雀鸟有只.请你帮助工作人员估计这片山林中雀鸟的数量约为()A.只B.只C.只D.只3.某市有近万名考生参加中考,为了解这些考生的数学成绩,从中抽取名考生的数学成绩进行统计分析,以下说法正确的是()A.这名考生是总体的一个样本B.近万名考生是总体C.其中每位考生的数学成绩是个体D.名学生是样本容量4.对于一组统计数据,,,,.下列说法错误的是()A.众数是B.平均数是C.方差是D.中位数是5.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A. B. C. D.6.数据:,,,,的平均数是,则这组数据的方差是()A. B. C. D.7.一组数据:,,,.这组数据的众数、中位数、平均数分别是()A.,,B.,,C.,,D.,,8.一组数据:,,,,,,则这组数据的众数是()A. B. C. D.9.在汶上县纪念抗日战争暨世界反法西斯战争胜利周年歌咏比赛中,我校选手的得分情况如下:,,,,,,.这组数据的众数和中位数分别是()A.,B.,C.,D.,10.某同学使用计算器求个数据的平均数时,错将一个数据输成,那么由此求出的平均数与实际平均数的差是()A. B. C. D.二、填空题11.高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:,,,,,则这五次射击的中位数是________环,方差是________.12.重庆迎来了持续高温天气,某一周的最高气温分别为(单位:):、、、、、、.则这组数据的众数是________.13.一组数据,,,的中位数和平均数相等,则的值是________.14.从总体中抽取部分个体进行调查,称为________.从总体中抽取的一部分个体叫做总体的一个________,样本中的数量叫做样本容量.15.设甲组数据:,,,,的方差为,乙组数据:,,的方差为,则与的大小关系是________.16.田大伯为与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘先捞出条鱼做上标记再放入鱼塘,经过一段时间后又捞出条,发现有标记的鱼有条,则田大伯的鱼塘里鱼的条数是________.17.一批灯泡共有万个,为了考察这批灯泡的使用寿命,从中抽查了个灯泡的使用寿命,在这个问题中,样本是________.18.已知一个样本,,,,.它们的平均数是,则这个样本的方差________.19.某同学五次单元测试成绩分别为,,,,,设这五次成绩的平均数为,中位数为,众数为,则,,的大小关系为________ (用“”来表示).20.某中学要了解八年级学生的视力情况,在全校八年级中抽取了名学生进行检测,在这个问题中,总体是________,样本是________.三、解答题21.从甲、乙、丙三个厂家生产的同一种产品中,各抽出件产品,对其使用寿命进行跟踪调查,结果如下(单位:年)甲:,,,,,,,乙:,,,,,,,丙:,,,,,,,三家广告中都称该种产品的使用寿命是年,请根据调查结果判断三个厂家在广告中分别运用了平均数,众数和中位数的哪一种数据作代表.22.某学校为了解学生体能情况,规定参加测试的每名学生从“立定跳远”,“耐久跑”,“掷实心球”,“引体向上”四个项目中随机抽取两项作为测试项目.小明同学恰好抽到“立定跳远”,“耐久跑”两项的概率是________;据统计,初三班共名男生参加了“立定跳远”的测试,他们的分数如下:、、、、、、、、、、、.①这组数据的众数是________,中位数是________;②若将不低于分的成绩评为优秀,请你估计初三年级参加“立定跳远”的名男生中成绩为优秀的学生约为多少人?23.为了迎接全市体育中考,某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的名男生中随机抽取了部分男生的测试成绩(单位:米,精确到米)作为样本进行分析,绘制了如图所示的频率分布直方图(每组含最低值,不含最高值).已知图中从左到右每个小长方形的高的比依次为,其中的频数为,请根据有关信息解答下列问题:填空:这次调查的样本容量为________,这一小组的频率为________;请指出样本成绩的中位数落在哪一小组内,并说明理由;样本中男生立定跳远的人均成绩不低于多少米;请估计该校初三男生立定跳远成绩在米以上(包括米)的约有多少人?24.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为种型号)根据以上信息,解答下列问题:该班共有________名学生,其中穿型校服的学生有________名.在条形统计图中,请把空缺部分补充完整.在扇形统计图中,型校服所对应的扇形圆心角的大小为________.该班学生所穿校服型号的众数为________,中位数为________.如果该校预计招收新生名,根据样本数据,估计新生中穿型校服的学生大约有________名.25.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)样本容量;(2)接写出样本容量的平均数,众数和中位数;(3)该校一共有名学生,估计该校年龄在岁及以上的学生人数.26.某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类)并将调查结果绘成如下不完整的统计图.根据两图提供的信息,回答下列问题:(1)喜欢娱乐类节目的有________人,图中________;(2)补全条形统计图;(3)据抽样调查结果,若该校有名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁名同学中选取人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.参考答案1.A2.B3.C4.D5.C6.D7.D8.C9.D 10.B11.12.13.或或14.抽样调查样本15.与16.17.抽取的只灯泡的使用寿命18.19.20.该中学八年级学生视力情况的全体从中抽取的名八年级学生的视力情况21.解:对甲分析:出现的次数最多,故运用了众数;对乙分析:既不是众数,也不是中位数,求数据的平均数可得,平均数,故运用了平均数;对丙分析:共个数据,最中间的是与,故其中位数是,即运用了中位数.22.①根据数据得:众数为;中位数为,故答案为:;;②名男生中达到优秀的共有人,根据题意得:(人),则估计初三年级名男生中“立定跳远”成绩为优秀的学生约为人.23.∵各小组的频数分别为:,,,,,而中位数是个成绩从小到大排列后第个数据和第个数据的平均数,∴中位数落在这一小组内;设样本人均成绩最低值为,则,∴样本中男生立定跳远的人均成绩不低于米;估计该校初三男生立定跳远成绩在米以上(包括米)的约有(人))所以该校初三男生立定跳远成绩在米以上的约有人.24.,;型的学生人数为:(名),补全统计图如图所示;型校服所对应的扇形圆心角为:;故答案为:;型和型出现的次数最多,都是次,则众数是和;共有个数据,第、个数据都是,则中位数是.故答案为:和,;根据题意得:(名),答:新生中穿型校服的学生大约有名.故答案为:.25.样本容量为;岁的人数为、岁的人数为,则这组数据的平均数为(岁),中位数为(岁),众数为岁;估计该校年龄在岁及以上的学生人数为人.26.补全条形图如下:估计该校最喜欢娱乐类节目的学生有人;画树状图得:∵共有种等可能的结果,恰好同时选中甲、乙两位同学的有种情况,∴恰好同时选中甲、乙两位同学的概率为.冀教版数学九年级上册第24章测试题一、选择题1.若关于的方程没有实数根,则的取值范围是()A. B. C. D.2.使用墙的一边,再用的铁丝网围成三边,围成一个面积为的长方形,求这个长方形的两边长.设墙的对边长为,可得方程()A. B.C. D.3.关于的一元二次方程中,二次项系数、一次项系数、常数项分别是()A.、、B.、、C.、、D.、、4.一个小组有若干人,每个同学都将自己的贺卡向全组其他同学各送一张,若全组共送贺卡张,则这个小组共()A.人B.人C.人D.人5.若、是方程的两个根,则:的值为()A. B. C. D.6.下面对关于的一元二次方程的表述错误的是()A.判别式的值为B.方程有一根是C.不等于D.不等于7.关于的方程,,均为常数,的解是,,则方程的解是()A.,B.,C.,D.,8.将方程化为的形式,正确的是()A. B.C. D.9.已知两圆的半径满足方程,圆心距为,则两圆位置关系是()A.相交B.外切C.内切D.外离10.某商店今年月份的销售额是万元,月份的销售额是万元,从月份到月份,该店销售额平均每月的增长率是()A. B. C. D.二、填空题11.方程的根是________.12.关于的方程有实数根,则整数的最大值是________.13.若代数式的值与的值相等,则________.14.已知是关于的方程的一个根,则另一个根为________.15.对于任意实数,关于的方程的根的情况为________.16.某印刷厂一月份印刷了科技书籍万册,第一季度共印万册,设平均每月的增长率是,则列方程为________.17.已知、是关于的一元二次方程的两个不相等的实数根,且满足,则的值是________.18.在一幅长,宽的矩形风景画四周壤上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积为.设金色纸片的宽为,那么写出的方程是________.19.中,,两直角边,分别是方程的两个根,则边上的中线长为________.20.某西瓜经营户以元/千克的价格购进一批小型西瓜,以元/千克的价格出售,每天可售出千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价元/千克,每天可多售出千克.另外,每天的房租等固定成本共元.该经营户要想每天盈利元,应将每千克小型西瓜的售价降低________元.三、解答题21.解方程(1)(2).22.已知关于的方程.求证:不论为任何实数,此方程总有实数根;若方程有两个不同的整数根,且为正整数,求的值.23.如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用长的建筑材料围成,且仓库的面积为.求这矩形仓库的长;有规格为和(单位:)的地板砖单价分别为元/块和元/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?24.某楼盘准备以每平方米元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案以供选择:①打折销售;②不打折,一次性送装修费每平方米元,试问哪种方案更优惠?25.某商场销售一批名牌衬衫,平均每天可售出件,每件盈利元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价元,那么商场平均每天可多售出件,若商场想平均每天盈利达元,那么买件衬衫应降价多少元?26.已知:如图,在中,,,.点从点开始沿边向点以的速度移动,同时点从点开始沿边向点以的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为秒,求几秒后,的面积等于?求几秒后,的长度等于?运动过程中,的面积能否等于?说明理由.参考答案1.B2.B3.D4.C5.D6.C7.B8.C9.A 10.C11.,12.13.或14.15.有两个不相等的实数根16.17.18.19.20.或21.解:(1),,,,所以,;,,所以,.22.证明:当时,方程变形为,解得;当时,,∵,,即,∴此时方程有两个实数根,所以不论为任何实数,此方程总有实数根;解:根据题意得且,,所以,,∵方程有两个不同的整数根,且为正整数,∴.23.这矩形仓库的长是.规格为所需的费用:(元);规格为所需的费用:元.∵,∴采用规格的地板砖费用较少.24.平均每次下调的百分率为;方案①可优惠:元;方案②可优惠:元,∵,∴方案①更划算.25.解:设买件衬衫应降价元,由题意得:,即,∴,∴,解得:或为了减少库存,所以.故买件衬衫应应降价元.26.或秒后的面积等于当时,在中,∵,∴,,,,,∴当或时,的长度等于.设经过秒以后面积为,整理得:∴的面积不能等于.。
第二十三章图形的相似(测能力)——2023-2024学年华东师大版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.如图,四边形ABCD和四边形EFGH相似,则下列角的度数正确的是( )A. B. C. D.2.若,则的值是( )A.-5B.C.D.53.如图1,将的三个顶点坐标的横坐标都乘-1,并保持纵坐标不变,则所得图形与原图形的关系是( )A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位4.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E、F分别是AO、AD的中点,连接EF,若cm,cm,则EF的长是( )A.2.2cmB.2.3cmC.2.4cmD.2.5cm5.如图,在平行四边形中,交于点,则的长为( )A.4B.7C.3D.126.如图,和是以点E为位似中心的位似图形,已知点,点,点,则点D的对应点B的坐标是( )A.(4,2)B.(4,1)C.(5,2)D.(5,1)7.如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点B在同一直线上.已知纸板的两条边,测得边离地面的高度,则树高为( )A.12mB.13.5mC.15mD.16.5m8.如图,正方形中,分别在边上,相交于点G,若,则的值是( )A. B. C. D.9.如图,在一块斜边长为30 cm的直角三角形木板()上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A.100B.150C.170D.20010.将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中,,,,,则剪掉的两个直角三角形的斜边长不可能是( )A. B. C.10 D.二、填空题(每小题4分,共20分)11.如图,已知的边BC在x轴上,,且,.若将平移,使点B落在点A处,则点C的对应点的坐标为_____________.12.如图,以点O为位似中心,将边长为256的正方形依次作位似变换,经第一次变化后得正方形,其边长缩小为的,经第二次变化后得正方形,其边长缩小为的,经第三次变化后得正方形,其边长缩小为的,依此规律,经第n次变化后,所得正方形的边长为正方形边长的倒数,则_______________.13.如图,在中,,点F在边上,且,点E为边上的动点,将沿直线翻折,点C落在点P处,则点P到边距离的最小值是_________.14.如图,在平行四边形中,点E在边上,连接,交对角线于点F,如果,那么_______.15.如图,在中,是的中位线,点M是边上一点,,点N是线段上的一个动点,连接与相交于点O.若是直角三角形,则的长是___________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及.(1)若点的坐标分别为,请画出平面直角坐标系并指出点B的坐标;(2)画出关于y轴对称再向上平移1个单位后的图形;(3)以图中的点D为位似中心,将作位似变换且把边长放大到原来的2倍,得到.17.(8分)(1)已知,求的值.(2)已知,求的值.18.(10分)如图,在中,AE平分,于点E,点F是BC的中点,连接EF.(1)如图1,BE的延长线与AC边相交于点D,求证;(2)图2,请写出线段AB,AC,EF的数量关系,并说明理由.19.(10分)如图,在中,点分别在边上,.(1)求证:.(2)设.①若,求线段的长;②若的面积是20,求的面积.20.(12分)如图,在相对的两栋楼中间有一堵墙,甲、乙两人分别在这两栋楼内观察这堵墙,视线如图1所示.根据实际情况画出平面图形如图2(),甲从点C可以看到点G处,乙从点E可以看到点D处,点B是的中点,墙高5.5米,米,米,求甲、乙两人的观测点到地面的距离之差(结果精确到0.1米).21.(12分)在中,点分别在上,且,.(1)如图1,当时,图1中是否存在与相等的线段?若存在,请找出,并加以证明;若不存在,请说明理由;(2)如图2,当(其中)时,若,求的长.(用含的式子表示)答案以及解析1.答案:A解析:四边形ABCD和四边形EFGH相似,,,,.故选A.2.答案:A解析:设,则,.3.答案:B解析:将的三个顶点坐标的横坐标都乘-1,纵坐标不变,则横坐标互为相反数,纵坐标相等,所得图形与原图形关于y轴对称,故选B.4.答案:D解析:四边形ABCD是矩形,,,,cm,cm,由勾股定理得,cm,cm,点E、F分别是AO、AD的中点,EF是的中位线,,故选D.5.答案:B解析:..,解得.∵四边形是平行四边形,.6.答案:C解析:设点B的坐标为.和是以点E为位似中心的位似图形,,解得点B的坐标为(5,2).故选C.7.答案:D解析:,,.在中,,由勾股定理得.又,,解得,.故选D.8.答案:C解析:设正方形的边长为,因为,所以.如图,延长交于点M,因为,所以,所以,所以.同理可得,所以.9.答案:A解析:设cm,则cm,四边形CDEF为正方形, cm,,,,cm,在中,,即,解得(舍负),cm, cm, cm,剩余部分的面积(),故选A.10.答案:A解析:如图1所示,由已知可得,,则,设,,则,解得,,故选项B不符合题意;,故选项D不符合题意;如图2所示,由已知可得,,则,设,,则,解得,,故选项C不符合题意;,故选A.11.答案:解析:,,.易知,,将先向右平移3个单位长度,再向上平移2个单位长度后,点B与点A重合,点C的对应点的坐标为,即.12.答案:16解析:由图形的变化规律可得,即,解得.13.答案:1.2解析:如图,延长交于点M,当时,点P到的距离最小,,,.,,,,,.∴点P到边距离的最小值是1.2.14.答案:4解析:,.∵四边形是平行四边形,,,.,.15.答案:或解析:如图,作于点于点,交于点,此时.是的中位线,.,∴四边形是平行四边形.,∴四边形是矩形,.,,,.,.当时,,.,.16.答案:(1)如图所示,.(2)如图所示,即为所求(3)如图所示,即为所求.17.答案:(1),,即.(2),,原式.18.答案:(1),,,.AE平分,,,.,,点F是BC的中点,,.(2).理由如下:如图,延长AC交BE的延长线于点P.,,,.AE平分,,,.,,点F是BC的中点,,.解析:(1)先证明,再根据等腰三角形“三线合一”的性质,推出,最后根据三角形中位线定理即可解决问题;(2)结论:.延长AC交BE的延长线于点P,先证明,再根据等腰三角形“三线合一”的性质,推出,最后根据三角形中位线定理即可解决问题.19.答案:(1)见解析(2)①4;②45解析:(1)证明:,.(2)解:①.,解得.②.,,即,解得.的面积为45.20.答案:20.7解析:由题意可知.又为公共角,.米,点B是的中点,米.米,米,,米.又为公共角,,米,米.答:甲、乙两人的观测点到地面的距离之差约为20.7米.21.答案:(1)(2)解析:(1).证明如下:如图1,延长相交于点N..,,.,..,,.(2)如图2,连接.由(1)知.又,.,,..,.,.。
2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。
人教版八年级下册数学:第二十章数据的分析创优检测卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(山东菏泽中考)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这15名运动员的平均成绩(精确到0.01)是()A.1.67B.1.68C.1.69D.1.702.(2016·广西柳州)小黄同学在参加今年体育中考前进行了针对性训练,最近7次的训练成绩依次为:41,43,43,44,45,45,45,那么这组数据的中位数是()A.41B.43C.44D.453.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名同学参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差4.(贵州安顺中考)已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是()A.9B.9.5C.3D.125.如图是某教师统计的全班50名学生每人一周内的零花钱数额情况,则这50名学生每人一周内的零花钱数额的众数和中位数分别是()A.20,12.5B.12,12.5C.15,10D.15,12.56.已知x1、x2、x3的平均数是x,那么3x1+5,3x2+5,3x3+5的平均数是()A.xB.3xC.3x+5 D.不能确定7.某中学人数相等的甲,乙两班学生参加了同一次数学测验,各班平均分和方差分别为:甲=82分,乙=82分,2s甲=245,2s乙=190,那么成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定8.在某城市,80%的家庭年收入不少于2.5万元,下面一定不少于2.5万元的是()A.年收入的平均数B.年收入的中位数C.年收入的众数D.年收入的平均数和众数9.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分,如果按照1∶2∶4∶1的权进行计算,那么张老师的综合评分为()A.83.5分B.84.5分C.85.5分D.86.5分10.下列说法正确的是()A.为了调查某小区居民的用水情况,可以只调查10户家庭的月平均用水量来确定总体用水情况B.若甲组数据的方差是2s甲=0.03,乙组数据的方差是2s乙=0.2,则乙组数据比甲组数据稳定C.一组数据的众数只有一个D.一组数据4、5、6、5、2、8的众数是511.某数学兴趣小组的五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.2,则10年后该数学小组五位同学年龄的方差为()A.0.2B.1C.2D.10.212.自然数4,5,5,x,y按照由小到大的顺序排列后,中位数为4,如果这组数据唯一的众数是5,那么所有满足条件的x,y中,x+y的最大值是()A.3B.4C.5D.6二、填空题(本大题共6小题,每小题3分,共18分.)13.在一次爱心捐款中,某班有40名学生拿出自己的钱,有捐5元、10元、20元、50元的,如图反映了不同捐钱的人数比例,那么这个班的学生平均每人捐款________元.14.(2016·广西贺州)有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是________.15.(2016·广西百色)一组数据2,4,a,7,7的平均数x=5,则方差s2=________.16.(山东东营中考)市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是________.17.(贵州安顺中考)已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为________.18.在一次“收集废旧电池”的活动中,某班三个小组一天收集到废旧电池的个数分别是10,x,11,已知这组数据有唯一的众数且众数等于中位数,那么这组数据的平均数是__________.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤.)19.(6分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4∶6∶5∶5的比确定平均成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取.(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占10%,口才占30%,笔试成绩中专业水平占40%,创新能力占20%,那么你认为该公司应该录取谁?20.(6分)为了全面地了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在的班级学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取了15名学生家庭的年收入情况,数据如下表:(1)写出这15名学生家庭年收入的平均数、中位数和众数.(2)你认为用(1)中的哪个数据来代表这15名学生家庭的年收入的一般水平比较合适?请说明理由.21.(6分)(江苏徐州中考)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9 乙:5,9,7,10,9(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差_______.(填“变大”“变小”或“不变”)22.(8分)(2016·广西河池)某校八年级学生在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?23.(9分)某区八、九年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了八年级200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:(1)补全频数频率分布表和频数分布直方图;(2)小红的竞赛成绩是被抽查同学的成绩的中位数.小红成绩所在的范围是_______________;(3)已知九年级的平均成绩是78分,问:被抽查的八年级学生的平均成绩是否超过九年级的平均成绩?24.(9分)(2016·广西梧州)在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分成A、B、C、D四类.根据统计结果绘制了如图所示的两幅不完整的统计图.请根据图中信息回答下列问题:(1)本次抽样调查了_______名学生,并请补全条形统计图;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在________类.25.(10分)(2016·广西来宾)甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如下表:且x乙=8,2s=1.8,根据上述信息完成下列问题:乙(1)将甲运动员的折线统计图补充完整;(2)乙运动员射击训练成绩的众数是________,中位数是________;(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.26.(12分)老王家的鱼塘里放养了某种鱼1500条,若干年后准备打捞出售.为了估计鱼塘中这种鱼的总质量,现从中捕捞了3次,得到数据如下表:(1)鱼塘中这种鱼平均每条的质量是多少千克?(精确到0.1)(2)若这种鱼的成活率是82%,鱼塘中有这种鱼约多少千克?(3)如果把这种鱼全部卖掉,价格是6.2元/千克,那么这种鱼的总收入是多少元?若投资成本是14000元,这种鱼的纯收入是多少元?人教版八年级下册:第二十章数据的分析单元测试题人教版八年级下册:第二十章数据的分析单元测试题(时限:100分钟满分;100分)一、选择题(本大题共分12小题,每小题2分共24分)1.某班七个小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是()A. 2B. 4C. 4.5D. 52.数据2、4、4、5、5、3、3、4的众数是()A. 2B. 3C. 4D. 53.已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数是()A. 2B. 2.75C. 3D. 54、从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A 300千克B 360千克C 36千克D 30千克.5.如果a、b、c的中位数与众数都是5,平均数是4,那么a可能是()A.2B. 3C. 4D. 56.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较7.样本数据3,6,a,4,2的平均数是4,则这个样本的方差是()A. 2B.C. 3D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则的值为()A. 1B. 2C. 3D. 49.若样本x1+1,x2+1,x3+1,…,x n+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,x n+2,下列结论正确的是()A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分D.该组数据的极差是8分11.为了解某校计算机考试情况,抽取了50名学生的计算机考试进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为()第18题图分数/分A.20,B.16,1620 C.20,12 D.16,1212.如果将一组数据中的每一个数都乘以一个非零常数,那么该组数据的( ) A.平均数改变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数不变,方差不变 二、填空题(本大题共8小题,每小题3分,共24分)13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 .14.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+2,x 3+4的平均数为 . 15.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是 .16. 五个数1,2,4,5,a 的平均数是3,则a = ,这五个数的方差为 . 17.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 .18.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是 .19. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是 .20.已知样本99,101,102,x ,y (x ≤y )的平均数为100,方差为2,则x = ,y = . 三、 解答题(本大题共52分)21.计算题(每小题6分,共12分)(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.求:0,1,2,3,4,a ,b 的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42. 求它们的中位数.小时()736次甲乙22.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?23.(本小题10分)如图是某中学乒乓球队队员年龄分布的条形图. ⑴计算这些队员的平均年龄; ⑵大多数队员的年龄是多少? ⑶中间的队员的年龄是多少?24.(本小题10分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:⑴你⑵ 从平均数和方差相结合看,分析谁的成绩好些.25.(本小题10分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满⑴ 请你填写下表:⑵请从以下两个不同的角度对三个年级的决赛成绩进行分析: ① 从平均数和众数相结合看(分析哪个年级成绩好些);② 从平均数和中位数相结合看(分析哪个年级成绩好些)③ 如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案:一、1.B ;2.C ;3.D ;4.B ;5.A ;6.B ;7.A ;8.D ;9.C ;10.B ;11.A ;12.B ;二、13.14;14.10;15.5;16.3,2;17.30,40;18.75分;19.12;20.98,100; 三、21. ⑴由=3 得 a =6;由=5 得 b =50,1,2,3,4,6,5的平均数为3,∴=4.⑶ 设七个数为 a ,b ,c ,d ,e ,f ,g , a <b <c <d <e <f <g依题意得=38 ①,=33 ②,=42 ③,由①、②得 e +f +g =7×38-33×4 ④,将④代入③得d =34.22.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.23. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁24. ⑴甲:6,6,0.4 乙:6,6,2.8⑵甲、乙成绩的平均数都是6,且<,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些.25.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.人教版八年级数学下册第二十章数据的分析单元测试题含答案一、选择题(本大题共6小题,每小题5分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.一组数据2,6,5,5,2,3的中位数是( )A.5 B.4 C.2 D.2或52.下列说法正确的是( )A.方差反映了一组数据的离散或波动的程度B.数据1,5,3,7,10的中位数是3C.任何一组数据的平均数和众数都不相等D.中位数一定是原数据中的某个数3.10支不同型号的签字笔的相关信息如下表所示,则这10支签字笔的平均单价是( )A.1.4元/支 B.1.5元/支C.1.6元/支 D.1.7元/支4.某单位若干名职工参加普法知识竞赛,将成绩制成如图1所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )图1A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分5.李华根据演讲比赛中九位评委所给的分数制作了如下表格:若要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A.平均数 B.众数C.方差 D.中位数6.下表是某校合唱团成员的年龄分布情况:对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差二、填空题(本大题共6小题,每小题5分,共30分)7.商店想调查哪种品牌的空调销售量大,用________来描述较好;想知道总体盈利的情况用________来描述较好.某同学的身高在全班45人中排名第23,则他的身高值可看作是全班同学身高值的________.(填“中位数”“众数”或“平均数”)8.甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分,若90分及90分以上为优秀,则优秀人数多的班级是________.9.某中学九年级舞蹈兴趣小组8名学生的身高(单位:cm)分别为:168,165,168,166,170,170,176,170.有如下说法:①这8名学生身高的众数是170 cm;②这8名学生身高的中位数是169 cm;③这8名学生身高的平均数是169 cm.其中正确的是________.(填序号)10.某商城新进一批规定直径为100 mm的机器零件,为检验零件的直径是否合格,抽取了12个进行检验,测得直径(单位:mm)如下:99,100,98,100,100,103,99,100,102,99,100,100.按规定,若方差大于1,则这批零件就不合格,商城可以退货.根据抽测结果,商城是否可以退货?________.(填“可以”或“不可以”)11.某学校把学生的笔试测试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则笔试测试的成绩至少是________分.12.自然数4,5,5,x ,y 按从小到大的顺序排列后,其中位数...为4,如果这组数据唯.一.的众数是5,那么,所有满足条件的x ,y 中,x +y 的最大值是________. 三、解答题(本大题共3小题,共40分)13.(12分)新华机械厂有15名工人,某月这15名工人加工的零件数统计如下:(1)求这15名工人该月加工的零件数的平均数、中位数和众数;(2)假如部门负责人把平均数定为每名工人每月加工零件的任务,你认为是否合理?为什么?如果不合理,你认为定为多少比较合适?14.(14分)为选拔两名运动员参加即将举行的十米跳台比赛,教练对甲、乙、丙、丁四名运动员十米跳台技能进行了跟踪测试,连续记录了最近五次的测试成绩(按10分制记分)如下表所示:(1)填写下表:(2)如果你是教练,你将挑选哪两名运动员参加比赛?并叙述理由(至少两条).15.(14分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制成如下所示的统计图表:身高情况分组表(单位:cm)图2根据图表提供的信息,回答下列问题:(1)样本中,男生身高的众数在________组,中位数在________组;(2)样本中,女生身高在E组的人数为________;(3)已知该校共有男生400人、女生380人,请估计身高在160 cm≤x<170 cm之间的学生有多少人.详解详析1.[解析] B 求中位数时要先将数据排序.求得的中位数不一定是原数据中的数.原数据从小到大排序是2,2,3,5,5,6.位于中间位置的两个数3,5的平均数是4,即这组数据的中位数是4.故选B.2.[答案] A 3.[答案] C4.[解析] D 先求出共调查了60人,得分为94分的有12人,得分为98分的有18人,通过计算可知,中位数是96分,平均数为96.4分,故应选D.5.[解析] D 去掉最高分和最低分后,不发生变化的是中位数,应选D. 6.[解析] B 这个合唱团共有30人,年龄的众数和中位数都是14岁,故选B. 7.[答案] 众数 平均数 中位数 8.[答案] 乙班 9.[答案] ①②[解析] 通过计算可知,这8名学生身高的众数是170 cm ,中位数是169 cm ,平均数不是169 cm ,故应填①②.10.[答案] 可以[解析] 这组数据的方差为53,大于1,可以退货.11.[答案] 96[解析] 设笔试测试的成绩为x 分,则60%x +40%×81≥90,解得x ≥96. 12.[答案] 5[解析] ∵中位数是4,∴x ≤4,y ≤4.∵唯一众数是5,∴x <4,y <4,且x ≠y . ∵x ,y 是自然数,∴当x =3,y =2(或x =2,y =3)时,x +y 的值最大,最大值是5.13.[解析] (1)由平均数、中位数和众数的定义进行计算;(2)结合一半及一半以上的人加工零件的情况进行分析.解:(1)平均数:260件,中位数:240件,众数:240件.(2)不合理.理由:因为若把平均数260件定为每名工人每月加工零件的任务,则在这15名工人中只有4人能够完成任务.260件虽是所给数据的平均数,却不能反映工人每月加工零件任务的一般水平,这是因为平均数受到极端值的影响.而这组数据的中位数和众数都是240件.若把每名工人每月加工零件的任务定为240件,在这15名工人中有10人能够完成任务,是大部分人能达到的目标,所以每名工人每月加工零件的任务应定为240件.14.[解析] (1)根据给出的数据求出甲的平均数x甲=15×(7+7+8+8+8)=7.6(分),乙的众数为7分,丙的中位数为6分,丁的方差s丁2=15×[(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=0.4.(2)综合比较各种统计量,结合实际做出判断.解:(1)依次填入7.6,7,6,0.4.(2)选甲、丁两名运动员参加比赛.理由如下(不唯一):选甲:①五次的平均成绩最高,估计他的水平较高;②方差最小,说明他的成绩最稳定.选丁:①平均成绩较高,排第二,估计他的水平较高;②方差较小,说明他的成绩较稳定.15.解:(1)样本中,男生身高的众数在B组;中位数在C组.故答案为B,C.(2)样本中女生人数=样本中男生人数=40,E组女生所占百分比=5%,∴E组女生人数=40×5%=2.故答案为2.(3)男生:400×1840=180(人),女生:380×40%=152(人),∴估计该校身高在160 cm≤x<170 cm之间的学生有180+152=332(人).。
2024年冀教版九年级数学下册阶段测试试卷23考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共5题,共10分)1、有40个数据,共分成6组,第1-4组的频数分别是10、5、7、6.第5组的占10%,则第6组占()A. 25%B. 30%C. 15%D. 20%2、已知圆的半径为6.5cm,如果这个圆的圆心到直线l的距离为9cm,那么直线l和这个圆的位置关系是()A. 相交B. 相切C. 相离D. 不能确定3、如图,直线a//b则直线ab之间距离是()A. 线段AB的长度B. 线段CD的长度C. 线段EF的长度D. 线段GH的长度4、(2014秋•驻马店校级期中)某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图所示,被墨水污染的所有整数有()A. 10个B. 11个C. 12个D. 13个5、(2016•台湾)如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A. 在A的左边B. 介于B之间C. 介于C之间D. 在C的右边评卷人得分二、解答题(共1题,共5分)6、先化简,再求值:(-)÷,其中x=2sin30°+tan30°.评卷人得分三、其他(共2题,共14分)7、某人过新年用手机向他的一些好朋友发短信,获得信息的人也按该人发送的人数再加1人向外发短信,经过两轮短信的发送共有35人手机上获得新年问候的同一条信息,问第一轮和第二轮各有多少人收到新年问候的短信?8、李师傅把人民币1 000元存入银行,一年后取出472元;第二年到期后又取回642元,这笔存款年利率是多少(不计利息税)评卷人得分四、综合题(共4题,共12分)9、B题(油田考生做)如图,直线经过A(1,0),B(0,1)两点,点P是双曲线(x>0)上任意一点;PM⊥x轴,PN⊥y轴,垂足分别为M;N,PM、PN的延长线与直线AB分别交于点E、F.(1)求证:AF•BE=1;(2)若平行于AB的直线与双曲线只有一个公共点,求公共点坐标.10、在平面直角坐标系中;矩形AOBC的边长为AO=6,AC=8;(1)如图①;E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当PQC三点恰好构成黄金圆时点P的坐标.11、如图所示,已知直线与抛物线交于A;B两点;点C是抛物线的顶点.(1)求出点A;B的坐标;(2)求出△ABC的面积;(3)在AB段的抛物线上是否存在一点P,使得△ABP的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.12、如图,直角梯形OABC中,∠COA=90°,BC∥OA,OA=6,BC=3,AB=,已知抛物线经过O、A、B三点.(1)求抛物线的解析式;(2)平行与y轴的直线l从点O向终点A匀速运动;速度是每秒1个单位长,运动时间为t秒.直线l交折线段OBA于点D,交抛物线于点E.问:当t为何值时,线段DE有最大值?最大值是多少?(3)探索:坐标平面内是否存在一点F,使得以C、B、D、F为顶点的四边形是菱形?如果存在,请直接写出点F的坐标;如果不存在,请说明理由.参考答案一、选择题(共5题,共10分)1、D【分析】【分析】有40个数据,第5组占10%;故可以求得第5组的频数,根据各组的频数的和是40,即可求得第6组的频数,利用频数除以频率即可求解.【解析】【解答】解:∵第5组占10%;∴第5组的频数为40×10%=4;∴第6组的频数为40-(10+5+7+6+4)=8;故第6组所占百分比为=20%.故选D.2、C【分析】【分析】根据直线与圆的位置关系定理:相切时,r=d;相交时r>d;相离时,r<d;进行判断即可.【解析】【解答】解:∵圆的半径为6.5cm;如果这个圆的圆心到直线l的距离为9cm;∴6.5cm<9cm;∴直线与圆的位置关系是相离;故选C.3、B【分析】解:由直线a//bCD隆脥b得。
2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在△ABC中,∠C=90°,cos A=,那么sin A的值等于()A.B.C.D.2.在△ABC中,∠C=90°,AB=10,tan A=,则BC的长为()A.2B.6C.8D.103.在Rt△ABC中,∠C=90°,若tan B=,则锐角A满足()A.0°<A<30°B.30°<A<45°C.45°<A<60°D.60°<A<90°4.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°5.在Rt△ABC中,∠C=90°,则下列式子定成立的是()A.sin A=sin B B.cos A=cos B C.tan A=tan B D.sin A=cos B 6.如图为张小亮的答卷,每个小题判断正确得20分,他的得分应是()A.100分B.80分C.60分D.40分7.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是()A.(8,)B.(8,12)C.(6,)D.(6,10)8.如图是我们数学课本上采用的科学计算器面板,利用该型号计算器计算sin52°,按键顺序正确的是()A.B.C.D.9.秀秀和山山在水平的地面上放风筝,某一时刻两人的风筝正好都停在对方的正上方,即此时AC⊥AB,DB⊥AB,两人之间的距离AB为120米,若两人的风筝线与水平线的夹角分别为a和β,则两人放出的风筝线AD与BC的长度和为(忽略两人的身高与手臂长度)()米.A.120tanα+120tanβB.+C.120cosα+120cosβD.+10.如图大坝的横断面,斜坡AB的坡比i=1:2,背水坡CD的坡比i=1:1,若坡面CD 的长度为米,则斜坡AB的长度为()A.B.C.D.24二.填空题11.cos30°的值等于.12.如图,边长为1的小正方形网格中,点A,B,C,D,E均在格点上,半径为2的⊙A 与BC交于点F,则tan∠DEF=.13.小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为.(结果精确到1m.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)14.在△ABC中,∠C=90°,若tan A=,则cos B=.15.已知sinα+cosα=,则sinαcosα=.16.比较大小:sin40°cos50°(填“>”、“<”或“=”)17.再如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为多少km.18.如图,△ABC的三个顶点均在格点上,则tan A的值为.19.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.若正多边形的一个内角等于140°,则这个正多边形的边数是.B.用科学计算器计算:13××sin14°≈(结果精确到0.1)20.门环,在中国绵延了数千多年的,集实用、装饰和门第等级为一体的一种古建筑构件,也成为中国古建“门文化”中的一部分,现有一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC的中点O为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=12cm,则(1)sin∠CAB=;(2)该圆的半径为cm.三.解答题21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.计算:(1)cos245°+tan245°﹣tan260°.(2).23.目前,各大城市都在积极推进公共自行车建设,努力为人们绿色出行带来方便.图(1)所示的是一辆自行车的实物图.图(2)是自行车的车架示意图.CE=30cm,DE=20cm,AD=25cm,DE⊥AC于点E,座杆CF的长为15cm,点A,E,C,F在同一直线上,且∠CAB=75°,公共自行车车轮的半径约为30cm,且AB与地面平行.(1)求车架中AE的长;(2)求车座点F到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)24.如图,在△ABC中,AD是BC边上的高,BC=14,AD=12,sin B=.(1)求线段CD的长度;(2)求cos∠C的值.25.在Rt△ABC中,∠C=90°,若,求cos A,sin B,cos B.26.淮安华联商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为45°,改造后的斜坡式自动扶梯的坡角∠ACB为15°,改造后的斜坡式自动扶梯水平距离增加了BC,请你计算BC的长度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.41)27.如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD =x,△BDE的面积为S.(1)当α=30°时,求x的值.(2)求S与x的函数关系式,并写出x的取值范围;(3)以点E为圆心,BE为半径作⊙E,当S=S时,判断⊙E与A′C的位置关系,△ABC并求相应的tanα值.参考答案与试题解析一.选择题1.解:∵cos2A+sin2A=1,cos A=,∴sin2A=1﹣=,∴sin A=或sin A=﹣(舍去).故选:B.2.解:设BC=3x,∵tan A=,∴=,∴AC=4x,由勾股定理得,BC2+AC2=AB2,即(3x)2+(4x)2=102,解得,x=2,∴BC=3x=6,故选:B.3.解:∵tan30°=≈0.58,tan45°=1,tan B=,∴30°<B<45°,∴45°<A<60°.故选:C.4.解:∵cos A=,∴∠A=30°.故选:A.5.解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.故选:D.6.解:∵cos60°=,∴1的判断正确;∵=2,∴﹣1和5的平均数是2,则2的判断正确;第3题应先把数据从小到大进行排列:﹣1、1、3,则中位数为:1,故3的判断错误;4的判断正确;5.在半径为1的圆中,60°的圆心角所对的弧长为:=,∴5的判断正确.综上,正确的判断有1,2,4,5,则张小亮可以得80分.故选:B.7.解:过点F作AB⊥y轴交y轴于点A,过点G作GB⊥AB于B,则∠FGO+∠FGB=90°,∠BFG+∠FGB=90°,∠AEF+∠AFE=90°,∴∠BFG=∠FGO,∵AB⊥y轴,GB⊥AB,∠AOG=90°,∴四边形AOGB为矩形,∴AO=GB,AB=OG=17,∵∠EFG=90°,∴∠AFE+∠BFG=90°,∴AEF=∠BFG=∠FGO,在Rt△AEF中,cos∠AEF=,即=,解得,AE=6,由勾股定理得,AF==8,∴BF=AB﹣AF=17﹣8=9,在Rt△BFG中,cos∠BFG=,即=,解得,FG=15,由勾股定理得,BG==12,则点F的坐标是(8,12),故选:B.8.解:利用该型号计算器计算sin52°,按键顺序正确的是:故选:B.9.解:在Rt△ABD中,AD==(米);在Rt△ABC中,BC==(米);故两人放出的风筝线AD与BC的长度和为(+)米.故选:D.10.解:过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BEFC是矩形,∴BE=CF,∵背水坡CD的坡比i=1:1,CD=米,∴CF=DF=CD=6(米),∴BE=CF=6米,又∵斜坡AB的坡比i=1:2=,∴AE=2BE=12(米),∴AB===6(米),故选:C.二.填空题11.解:cos30°=,故答案为:.12.解:由题意可得:∠DBC=∠DEF,则tan∠DEF=tan∠DBC==.故答案为:.13.解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8,∠ADE=52°,BE=CD=1在Rt△ADE中,AE=DE•tan∠ADE=8×tan52°≈10.24,∴AB=AE+BE=10.24+1≈11(米)故答案为:11.14.解:如图所示:∵∠C=90°,tan A==,∴设BC=x,则AC=2x,故AB=x,∴cos B===.故答案为:.15.解:把sinα+cosα=,两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=,则sinαcosα=,故答案是:.16.解:∵cos50°=sin(90°﹣50°)=sin40°,∴sin40°=cos50°.故答案为:=.17.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=30(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10(km),∴AC=AE+CE=30+10(km),∴A,C两港之间的距离为(30+10)km,故答案为:(30+10).18.解:如图所示:连接BD,BD==,AD==2,AB==,∵BD2+AD2=2+8=10=AB2,∴△ADB为直角三角形,∴∠ADB=90°,则tan A===.故答案为:.19.解:A.∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,则这个正多边形的边数为:360°÷40°=9.故答案为:9.B.13××sin14°≈13×3.61×0.24≈11.3,故答案为:11.3.20.解:(1)连接OB,OP,∵AB=BC,O为AC的中点,∴OB⊥AC,∵∠ABC=120°,∴∠ACB=∠CAB=30°,∴sin∠CAB=sin30°=.故答案为;(2)∵AQ是⊙O的切线,∴OP⊥AQ,设该圆的半径为r,∴OB=OP=r,∵∠ACB=∠CAB=30°,∴AB=BC=CD=2r,AO=r,∴AC=r,∴sin∠PAO=,过Q作QG⊥AC于G,过D作DH⊥QG于H,则四边形DHGC是矩形,∴HG=CD,DH=CG,∠HDC=90°,∴sin∠PAO=,∠QDH=120°﹣90°=30°,∴QG=12,∴AG=,∴QH=12﹣2r,DH=,∴tan∠QDH=tan30°=,解得r=,∴该圆的半径为()cm.故答案为().三.解答题21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.解:(1)原式=()2﹣+1﹣()2=﹣1+1﹣3=﹣;(2)原式=3×﹣2+2×+﹣1=﹣2+2+﹣1=2﹣1.23.解:(1)∵DE⊥AC,DE=20,AD=25,∴AE===15(cm);(2)在图(2)中,作FG⊥AB于G,延长FG交地平线于点Q.∵AE=15,CE=30,CF=15,∴FA=FC+CE+EA=15+30+15=60.∵sin∠CAB=,∴FG=FA•sin∠CAB≈60×0.97=58.2(cm),∴FQ=FG+GQ=58.2+30=88.2≈88(cm).答:车座点F到地面的距离约为88cm.24.解:(1)∵AD是BC上的高,∴∠ADB=∠ADC=90°.∵sin B=,AD=12,∴AB=15,∴BD===9,∵BC=14,∴DC=BC﹣BD=14﹣9=5;(2)由(1)知,CD=5,AD=12,∴AC===13,cos C==.25.解:∵∠C=90°,sin A=,∴cos A==,∵∠A+∠B=90°,∴sin B=cos A=,cos B=sin A=.26.解:在Rt△ABD中,∠ABD=45°,AB=10,∴AD=BD=AB•sin∠ABD=10×=5≈7,∵∠ACD=15°,tan∠ACD=,∴CD≈≈≈26,∴BC=CD﹣BD=26﹣7=19.故BC的长度约为19米.27.解:(1)∵∠A=a=30°,又∵∠ACB=90°,∴∠ABC=∠BCD=60°.∴AD=BD=BC=1.∴x=1;(2)∵∠DBE=90°,∠ABC=60°,∴∠A=∠CBE=30°.∴AC=BC=,AB=2BC=2.由旋转性质可知:AC=A′C,BC=B′C,∠ACD=∠BCE,∴△ADC∽△BEC,∴=,∴BE=x.∵BD=2﹣x,∴s=×x(2﹣x)=﹣x2+x.(0<x<2)(3)∵s=s△ABC∴﹣+=,∴4x2﹣8x+3=0,∴,.①当x=时,BD=2﹣=,BE=×=.∴DE==.∵DE∥A′B′,∴∠EDC=∠A′=∠A=30°.∴EC=DE=>BE,∴此时⊙E与A′C相离.过D作DF⊥AC于F,则,.∴.∴.(12分)②当时,,.∴,∴,∴此时⊙E与A'C相交.同理可求出.。
九上数学测试卷第二十三章1.钟表的分针匀速旋转一周需要60分钟,经过20分钟,分针旋转了度.2.点P(-3,4)关于原点对称的点P’的坐标为.3.如果一个四边形绕对角线的交点旋转90°,所得的四边形与原来的四边形重合,那么这个四边形是.4.如图1所示,将左边的心形绕点O顺时针旋转95°得到右边的心形,如果∠BOC=60°,则A,B,C的对应点分别是,∠DOC=.图15.如图2,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A’BD’,此时A’D’与CD交于点E,则DE的长度为.图26.任意一个自然数,旋转180°后,可以发现一些有趣的现象:有的自然数旋转后还是原来的自然数,例如808旋转180°后仍是808;有的自然数旋转180°后就不是数了,例如37旋转180°后就不是数了.试写出一个五位数,使得旋转180°后还是原来的五位数是.(各个数位上的数字不得完全相同)7.下列各图中,为中心对称图形的是()A.B.C.D.8.点P(3,2)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限9.下列关于旋转的说法不正确的是()A.旋转中心在旋转过程中保持不动B.旋转中心可以是图形上的一点,也可以是图形外的一点C.旋转由旋转中心、旋转方向和旋转角度所决定D.旋转由旋转中心所决定10.如图3所示的图案绕它的旋转中心旋转后能与自身重合,那么它的旋转角可能是()图3A.120°B.90°C.72°D.60°11.如图4所示,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是( )图4A.M(1,-3),N(-1,-3)B.M(-1,-3),N(1,-3)C.M(-1,-3),N(-1,-3)D.M(-1,3),N(1,-3)12.如图5所示,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A’B’C,使得点A’恰好落在AB上,则旋转角度为( )图5A.30°B.60°C.90°D.150°13.四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形( )A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形14.如图6,在直角坐标系xOy中,△ABC的三个顶点都在方格纸的格点上,点A的坐标是(-2,0),将△ABC绕点A顺时针旋转90°得到△AB’C’,则点B的对应点B’的坐标是( )图6A.(1,-1)B.(1,1)C.(-1,1)D.(-1,-1)15.如图7所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)画出△ABC关于x轴对称的图形△A1BC1;(2)画出将△ABC绕点B按逆时针方向旋转90°后所得到的图形△A2BC2.图716.如图8所示,△ABC经过旋转得到△DEF,试用直尺和圆规作出旋转中心.(保留作图痕迹,不写作法)图817.如图9,四边形ABCD在平面直角坐标系中.(1)分别写出点A,B,C,D各点的坐标;(2)作出四边形ABCD关于原点O对称的四边形A’B’C’D’,并写出各顶点坐标.图918.如图10所示,点P是正方形ABCD内一点,△ABP经旋转能与△CBP’重合.(1)旋转中心是哪个点?(2)旋转了多少度?(3)若BP=3,求△PBP’的面积.图1019.如图11,已知∠BAC=30°,把△ABC绕着点A顺时针旋转,使得点B与CA延长线上的点D 重合.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.图1120.如图12①,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)将图12①中的△OAB绕点O顺时针旋转90°角,在图12②中作出旋转后的△OAB;(保留作图痕迹,不写作法,不证明)(2)在图12①中,你发现线段AC,BD的数量关系是,直线AC,BD相交成角;(3)将图12①中的△OAB绕点O顺时针旋转一个锐角,得到图12③,这时(2)中的两个结论是否成立?作出判断并说明理由.图12参考答案1.1202.(3,-4)3.正方形4.E,D,F35°5.2-6.68189(答案不唯一)7.B8.C9.D10.C11.B12.B13.C14.A15.解:如图所示.16.(1)解:旋转中心为如图所示点O.17.(1)解:(1)A(-2,0),B(2,-2),C(1,0),D(1,3).(2)作图略.A’(2,0),B’(-2,2),C’(-1,0),D’(-1,-3).18.解:(1)旋转中心是点B.(2)旋转了90°.(3)由题意知,△ABP绕点B顺时针旋转90°与△CBP’重合,∴∠PBP’=90°,BP=3=BP’,∴S△PBP’=×3×3=.19.解:(1)因为∠BAD=180°-∠BAC=180°-30°=150°,所以△ABC旋转了150°.(2)根据旋转的性质,可知AC=AE,所以△AEC是等腰三角形.(3)在△AEC中,∠CAE=∠BAD=150°,所以∠AEC=(180°-∠CAE)÷2=(180°-150°)÷2=15°.20.解:(1)作图略.(2)在题图12①中,AC=BD,直线AC,BD相交成90°角.(3)将题图12①中的△OAB绕点O顺时针旋转一个锐角时,(2)中的两个结论依然成立.理由如下:延长CA与BD交于点M,∵AO=BO,CO=DO,∠AOC=∠BOD,∴△AOC≌△BOD,∴AC=BD,∠ACO=∠BDO,∴∠ACD+∠CDO+∠BDO=∠ACD+∠CDO+∠ACO=90°,∴在△CMD中,∠CMD=180°-90°=90°,∴AC⊥BD.。
江西创优检测卷八下答案英语Ⅰ.听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Why can’t the woman go to the cinema with the man?A.She will have a discussion about her cousin’s education.B.She would ask her cousin to go there.C.She will have a talk with her cousin.2.How much will the man pay for those tickets?A.4 dollars.B.8 dollars.C.12 dollars.3.What happened to the woman’s brother?A.He had a car accident.B.He cared for his sister.C.He attended the class.4.What did Mr.Black ask the woman to do?A.To type something important.B.To see an interesting movie.C.To send a notice to him.5. What’s the possible relationship between the two speakers?A.Passenger and driver.B.Husband and wife.C.Guide and visitor.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
人教版九年级上册数学第二十三章测试卷一、单选题1.将下面图按顺时针方向旋转90°后得到的是()A.B.C.D.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形3.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为()A.(2,4)B.(-2,4)C.(4,2)D.(2,-4)5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(-5,-3)B.(1,-3)C.(-1,-3)D.(5,-3)6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为()B.5 C.7 D.A.8.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为()A.30°B.35°C.40°D.50°9.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____次旋转而得到的,每一次旋转____度.12.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若COD △是由AOB 绕点O 按顺时针方向旋转而得到的,则旋转的角度为__.13.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AC =2cm .现在将△ABC 绕点C 逆时针旋转至△A ′B ′C ′,使得点A ′恰好落在AB 上,连接BB ′,则BB ′的长度为_____.14.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是_____.15.已知点P (a ,-3)和Q (4,b )关于原点对称,则2010()a b =_____.16.如图,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,求点B′的坐标.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.三、解答题19.如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A 重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.22.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.23.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB =3,BC=2,求BD和∠ABD.24.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.25.如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.(1)求DE的长度;(2)指出BE与DF的关系如何?并说明由.参考答案1.A【分析】根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.【详解】根据旋转的意义,图片按顺时针方向旋转90度,即正立状态转为顺时针的横向状态,从而可确定为A图.故选A.【点睛】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.2.D【详解】等腰三角形是轴对称图形,正三角形是轴对称图形,等腰梯形是轴对称图形,菱形既是中心对称图形又是轴对称图形,故选D.3.B【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.4.C【分析】根据矩形的特点和旋转的性质来解决.【详解】如图,矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C .【点睛】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.C【详解】解:∵点P (-2,3)向右平移3个单位得到点1P ,∴1(1,3)P ,∵点2P 与点1P 关于原点对称,∴2(1,3).P --故选C .6.B【分析】根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C ,然后判断出△A′AC 是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点睛】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.A【分析】由于△ADC按逆时针方向绕点A旋转到△AEF,显然△ADC≌△AEF,则有∠EAF=∠DAC,AF=AC,那么∠EAF+∠EAC=∠DAC+∠EAC,即∠FAC=∠BAD=90°.在Rt△ACD中,利用勾股定理可求AC,同理在Rt△FAC中,利用勾股定理可求CF.【详解】∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,,∴在Rt△FAC中,故选A.【点睛】本题利用了勾股定理、全等三角形的性质等知识.8.C【详解】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=40°.故选C.9.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形. 【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.10.D【分析】根据轴对称的性质画出图形即可.【详解】如图,共有10种符合条件的添法,故选D.【点睛】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.四;72【详解】解:根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过四次旋转而得到,每次旋转的度数为360°除以5,为72度.12.90°【分析】由COD∆是由AOB∆绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠的大小,然后由图形即可求得答案.BOD【详解】∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为90°.【点睛】本题考查了旋转的性质.解此题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.13.【分析】由题意可得△AA'C是等边三角形,可得旋转角为60°,可得△BCB'是等边三角形,可得∠A'BB'=90°,根据勾股定理可得BB'的长.【详解】∵∠ACB=90°,∠ABC=30°,AC=2cm∴∠A=60°,AB=4,∵△ABC绕点C逆时针旋转至△A′B′C′∴A'C=60°,A'B'=4,BC=B'C,∠ACA'=∠BCB'∵AC=A'C,∠A=60°∴△ACA'是等边三角形,∴∠ACA'=60°,AA'=2∴A'B=2,∠BCB'=60°,且BC=CB'∴△BCB'是等边三角形∴∠CBB'=60°∴∠A'BB'=90°∴【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理,关键是证△A'B'B是直角三角形.14.50°【分析】已知旋转角为80°,即∠DOB=80°,欲求∠α的度数,必须先求出∠AOB的度数,利用三角形内角和定理求解即可.【详解】解:由旋转的性质知:∠A=∠C=110°,∠D=∠B=40°;根据三角形内角和定理知:∠AOB=180°﹣110°﹣40°=30°;已知旋转角∠DOB=80°,则∠α=∠DOB﹣∠AOB=50°.故答案为50°.【点睛】此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,难度不大.15.1【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】∵点P(a,-3)和Q(4,b)关于原点对称,∴a=-4,b=3,∴(a+b)2010=(-1)2010=1.故答案为1.【点睛】本题主要考查了关于原点对称的点的坐标的特点,比较简单.16.(7,3)【详解】令x=0得y=3,则OA=3,令y=0得,x=4,则OB=4,由旋转的性质可知:O′A=3,O′B′=4.则点B′(7,3).故答案为(7,13).点睛:本题考查坐标与图形变化-旋转、30度的直角三角形的性质等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.19.【详解】试题分析:∵将△BCD绕点B逆时针旋转60°得到△BAE∴△BDC≌△BAE∴BE=BD,∠DBE=60°,AE=CD∴△DBE是等边三角形∴DE=BD=9∴△AED的周长=DE+AD+AE=DE+AC=19考点:1、旋转的性质;2、等边三角形的性质18.4.【分析】图中阴影部分的面积不在任意的三角形中,所以需构造三角形,设BC与OE相交于M,CD 与OG相交于N,连接OC、OB,则易证△OCN≌△OBM,则阴影部分的面积为△OBC的面积.【详解】设BC与OE相交于M,CD与OG相交于N,连接OC、OB,∵正方形ABCD与正方形OEFG的边长均为4cm∴cm在△OCN和△OBM中,OB=OC,∠OCN=∠OBM=45°,∠CON=∠BOM ∴△OCN≌△OBM,∵O是正方形ABCD的对称中心,△OCB的高等于正方形边长的一半,∴S阴影=S△OBC =12S正方形=4cm2.故答案为4.【点睛】把阴影部分的面积转化成三角形的面积是解题的关键.19.详见解析【分析】(1)根据SAS定理,即可证明两三角形全等.(2)将△ADE顺时针旋转后与△ABF重合,A不变,因而旋转中心是A,∠DAB是旋转角,是90度.【详解】(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°.∴∠D=∠ABF=90°.又∵DE=BF,AD=AB,∴△ADE≌△ABF(SAS).(2)将△ADE顺时针旋转90后与△ABF重合,旋转中心是点A.20.(1)△A′BD即为所求(2)A′B=AC(3)AB+AC>2AD(4)1<AD<4.【详解】【试题分析】(1)根据成中心对称的定义,延长AD到A’,使A’D=AD,点C与点B关于点D对称,连接A’B即可,△A′BD即为所求;(2)根据成中心对称的两个图形对应边相等,得A′B=AC;(3)由(2)得:AB+AC=AB+A′B,根据三角形两边之和大于第三边,得AB+A′B >AA’=2AD,即AB+AC>2AD;(4)由(3)得,根据三角形两边之和大于第三边,两边之差小于第三边,得5-3<AA’=2AD<5+3,即2<2AD<8,所以1<AD<4.【试题解析】(1)如图所示,△A′BD即为所求;(2)A′B=AC;(3)AB+AC>2AD,理由:由于△A′BD与△ACD关于点D成中心对称,所以AD=A′D,AC=A′B,在△ABA′中,有AB+A′B>AA′,即AB+AC>AD+A′D,因此AB+AC>2AD;(4)由(3)可得,在△ABA′中,有AB-A′B<AA′<AB+A′B,即AB-AC<2AD<AB+AC,因此有2<2AD<8,所以1<AD<4.【方法点睛】本题目是一道以成中心对称的两个图形为背景,展开研究,涉及到怎样作一个图形关于某个点的中心对称图形,成中心对称图形的性质,三角形的三边关系,涉及的知识面广,知识点多,难度较大.21.解:△ABE是等边三角形.理由如下:……………………………………… 1分由旋转得△PAE≌△PDC∴CD=AE,PD=PA,∠1=∠2……………………3分∵∠DPA=60°∴△PDA是等边三角形…………4分∴∠3=∠PAD=60°.由矩形ABCD知,CD=AB,∠CDA=∠DAB=90°.∴∠1=∠4=∠2=30°………………………6分∴AE=CD=AB,∠EAB=∠2+∠4=60°,∴△ABE为等边三角形…………………………7分【详解】特殊三角形有等腰三角形、等边三角形、直角三角形(等腰直角三角形),此题根据旋转的性质和矩形的性质可知是等边三角形.22.(1)证明见解析;(2)证明见解析.【分析】(1)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS 证明△AOC′≌△BOD′,得出对应边相等即可;(2)由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论【详解】(1)∵将△OCD 绕点O 顺时针旋转到△''OC D ,∴OC='OC ,OD='OD ,∠'AOC =∠'BOD .∵OA=OB ,C 、D 为OA ,OB 的中点,∴OC=OD ,∴''OC OD =.在△'AOC 和△'BOD 中,''''OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△'AOC ≌△'BOD ,∴'AC ='BD .(2)延长'AC 交'BD 于E ,交BO 于F .∵△'AOC ≌△'BOD ,∴∠''OAC OBD =∠.又∠AFO=∠BFE ,∠0'90OAC AFO +∠=,∴∠0'90OBD BFE +∠=.∴∠BEA=090,∴'AC⊥'BD.【点睛】题考查了旋转的性质、全等三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.23.BD=5.∠BAD=60°【解析】【分析】先根据等边三角形的性质得∠ADC=∠ACD=60°,由于∠ABC=120°,根据四边形内角和得到∠BAD+∠BCD=180°,则∠BAD+∠BCA=120°,再根据旋转的性质得∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,于是有∠BCA+∠ECD+∠ACD=180°,得到B、C、E在同一条直线上,接着证明△BDE为等边三角形得到∠DBE=60°,所以∠BAD=∠ABC﹣∠DBE=60°,BD=BE=BC+CE=BC+AB=5.【详解】∵△ACD是等边三角形,∴∠ADC=∠ACD=60°,∵∠ABC=120°,∴∠BAD+∠BCD=180°,∴∠BAD+∠BCA=120°,∵△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,∴∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,∴∠BCA+∠ECD=120°,∴∠BCA+∠ECD+∠ACD=180°,∴B、C、E在同一条直线上.∵DB=DE,∠BDE=60°,∴△BDE为等边三角形,∴∠DBE=60°,∴∠BAD=∠ABC﹣∠DBE=60°,∴BD=BE=BC+CE=BC+AB=3+2=5.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.24.(1)画图见解析;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P1(﹣b,a);P2(﹣b+6,a+2)【分析】(1)利用网格特点、旋转的性质和平移的性质画图;(2)利用所画图形写出点A1、A2的坐标;(3)利用(2)的结论和旋转的性质写出P1的坐标,利用平移的坐标规律写出P2的坐标.【详解】(1)如图,△A1B1C1和△A2B2C2为所作;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P1(﹣b,a);P2(﹣b+6,a+2).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.25.(1)3;(2)BE=DF,BE⊥DF.【分析】(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;(2)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.【详解】解:(1)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(2)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【点睛】考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.。
第二十三章创优检测卷
一、选择题.(每小题3分,共30分)
1.下列各图中,不是中心对称图形的是( )
2.下列说法错误的是( )
A.旋转中心在旋转过程中是不动的
B.旋转形成的图形是由旋转中心和旋转角共同决定的
C.旋转不改变图形的形状和大小
D.旋转改变图形的形状但不改变大小
3.若点P(-3,n)、Q(m,-4)关于原点对称,则P 、Q 两点间的距离是( )
A.5
B.10
C.20
D.102
4.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )
A.格点M
B.格点N
C.格点P
D.格点Q
5.下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )
A B C D
6.如图,△ACD 和△AEB 都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD 是平行四边形,下面结论中错误的是( )
A.△ACE 以点A 为旋转中心,逆时针旋转90°后与△ADB 重合
B.△ACB 以点A 为旋转中心,顺时针方向旋转270°后与△DAC 重合
C.沿AE 所在的直线折叠后,△ACE 和△ADE 重合
D.沿AD 所在的直线折叠后,△ADB 和△ADE 重合
7.如图,如果甲、乙关于点O 成中心对称,则乙图中不符合题意的一块是( )
8.如图,将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A ′OB ′,已知∠AOB=30°,∠B=90°,AB=1,则B ′点的坐标为( )
,32 ) B. (32, C.(12 D.( ,12)
第8题图第9题图第10题图
9.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针旋转90°至DE,连接AE,则△ADE的面积是( )
A.1
B.2
C.3
D.4
10.如图,P是等腰Rt△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,P′A∶PB=( )
A.1
B.1∶2 2 D.1
二、填空题.(每小题3分,共24分)
11.平面直角坐标系中,点P(x,y)关于原点的对称点为(-2,22),则点P关于x轴的对称点P1的坐标为.
12.如图,将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,BB′=1 cm,则A′B的长是cm.
第12题图第13题图第14题图第15题图
13.如图,这个图形是由“基本图案”ABCDE绕着点顺时针依次旋转次得到的,则每次旋转的角度为.
14.如图,在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在点C′处,则CC′的长为.
15.(黑龙江哈尔滨中考)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C= 度.
16.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列
变换:
①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;
②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;
③先以直线MN为对称轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺
时针方向旋转90°.
其中能将△ABC变换成△PQR的是(填序号).
17.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD,把△ABC绕点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m= 度.
18 如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,
则S四边形ABCD= .
三、解答题.(共66分)
19.(10分)如图,△ABE为等腰三角形,经旋转后得到△FDG,其中四边形ABCD为
正方形.试问:
(1)旋转中心为哪点?旋转角为多少度?
(2)指出∠E的对应角及BE的对应边.
20.(10分)如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3,0),B(-1,-2),C(-2,2).
(1)请在图中画出△ABC绕O点顺时针旋转180°后的图形;
(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
21.(10分)若x1,x2是方程x2-4x-a=0的两个根,且点A(x1,x2)在第二象限,点B(m,n)和点
A关于原点O对称,求m+n的值.
22.(12分)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对
角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:
(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
23.(12分)如图,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画
出△ABC.请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:
(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;
(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;
(3)图③中所画的三角形与△ABC的面积相等,但不全等.
24.(12分)(天津中考)在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E、点F分别为OA、OB 的中点,若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.
(1)如图①,当α=90°时,求AE′、BF′的长;
(2)如图②,当α=135°时,求证:AE′=BF′,且AE′⊥BF′.。