人教版八年级数学下册-第十八章创优检测卷及答案
- 格式:doc
- 大小:1.19 MB
- 文档页数:8
人教版八年级数学下册第十八章-平行四边形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,以O为圆心,OA长为半径画弧别交OM ON、于A、B两点,再分别以A、B为圆心,以OA长为半径画弧,两弧交于点C,分别连接AC、BC,则四边形OACB一定是()A.梯形B.菱形C.矩形D.正方形2、如图,在正方形有ABCD中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH,那么BH的值为()AEA.1 B C D.23、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则纸条的宽为()A.5cm B.4.8cm C.4.6cm D.4cm4、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③B.②③④C.①②④D.①④5、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF,BD=2,则菱形ABCD的面积为()A.B C.D.6、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.47、如图,在ABC中,90ACB∠=︒,30B∠=︒,AD平分BAC∠,E是AD中点,若BD a=,则CE的长为()A.13a B.12a C.23a D.34a8、如图,在ABC中,90C∠=︒,点E,F分别是AC,BC上的点,16AE=,12BF=,点P,Q,D 分别是AF,BE,AB的中点,则PQ的长为().A.4 B.10 C.6 D.89、如图,四边形ABCD和四边形AEFG都是矩形.若20∠=︒,则DGFBAG∠等于()A.70︒B.60︒C.80︒D.45︒10、如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE的和最小,则最小值为()A.2 B.3 C.4 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.2、如图,已知在矩形ABCD中,4AD=,将ABC沿对角线AC翻折,点B落在点E处,连接AB=,8DE,则DE的长为_________.3、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为_____.4、如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于 _____.5、如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l 折叠,使点D落到AB边上的点D处,折痕交CD边于点E.若点P是直线l上的一个动点,则PD +PB 的最小值_______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M 出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.2、如图所示,正方形ABCD中,点E,F分别为BC,CD上一点,点M为EF上一点,D,M关于直线AF 对称.连结DM并延长交AE的延长线于N,求证:45∠=︒.AND3、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.∠MBN=12(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=1∠ABC,试探究线段MN、AM、CN的数量关系为.24、如图,ABCD中,对角线AC、BD相交于点O,点E,F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH是平行四边形(2)若ABCD的周长为2(AB+BC)=32,则四边形EFGH的周长为__________5、如图,在▱ABCD中,对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.(小海的证明过程)证明:∵EF是AC的垂直平分线,∴OA=OC,OE=OF,EF⊥AC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴四边形AECF是菱形.(老师评析)小海利用对角线互相平分证明了四边形AECF是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)请你帮小海找出错误的原因;(2)请你根据小海的思路写出此题正确的证明过程.---------参考答案-----------一、单选题1、B【解析】【分析】根据题意得到OA OB AC BC===,然后根据菱形的判定方法求解即可.【详解】解:由题意可得:OA OB AC BC===,∴四边形OACB是菱形.故选:B.【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.2、B【解析】【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF DC DG DG=⎧⎨=⎩,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM =,∴BH ,即BHAE故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.3、B【解析】【分析】由题意作AR ⊥BC 于R ,AS ⊥CD 于S ,根据题意先证出四边形ABCD 是平行四边形,再由AR =AS 得平行四边形ABCD 是菱形,再根据勾股定理求出AB ,最后利用菱形ABCD 的面积建立关系得出纸条的宽AR 的长.解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB cm,∵平行四边形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面积12AC BD BC AR=⋅=⋅,即16852AR⨯⨯=,解得:244.85AR==cm.故选:B.本题主要考查菱形的判定以及勾股定理等知识,解题的关键是掌握一组邻边相等的平行四边形是菱形以及菱形的面积等于对角线相乘的一半.4、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN==故③错误当∠ABC =60゜时,△ABC 是等边三角形∵CM ⊥AB ,BN ⊥AC∴M 、N 分别是AB 、AC 的中点∴MN 是△ABC 的中位线∴MN ∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.5、A【解析】【分析】根据中位线定理可得对角线AC 的长,再由菱形面积等于对角线乘积的一半可得答案.【详解】解:∵E ,F 分别是AD ,CD 边上的中点,EF∴AC =2EF又∵BD =2,∴菱形ABCD 的面积S =12×AC ×BD =12故选:A .【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.6、C【解析】【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=12CD=14BC=2.故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.7、B【解析】【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.【详解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=12∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中点,∴CE=12AD=12a,故选:B.【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.8、B【解析】【分析】根据三角形中位线定理得到PD=12BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=12BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=12AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9、A【解析】【分析】由题意可得∠AGF=∠DAB=90°,由平行线的性质可得DGA BAG∠=∠,即可得∠DGF=70°.【详解】解:∵四边形ABCD和四边形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴20∠=∠=︒DGA BAG∴902070∠=∠-∠=︒-︒=︒DGF AGF DGA故选:A.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键.10、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【详解】解:连接BP.∵四边形ABCD为正方形,面积为16,∴正方形的边长为4.∵△ABE为等边三角形,∴BE=AB=4.∵四边形ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4.故选:C.【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称—最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题1、∥【解析】【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.【详解】解:根据两组对边分别平行的四边形是平行四边形可知:∵AB//CD,BC//AD,∴四边形ABCD为平行四边形.故答案为://.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.2【解析】【分析】过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.【详解】解:如图所示:过点E作EF⊥AD于点F,有折叠的性质可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,设CG=x,则DG=8-x,∵在Rt CDG中,()22284x x-+=,∴x=5,∴AG=5,在Rt AEG中,3==,EF⊥AD,∠AEG=90°,∴125AE EGEFAG⨯==,∵在Rt AEF中,2216 5AF AE EF,、∴DF=8-165=245,∴在Rt DEF△中,22125 5DE EF DF,【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.3【解析】【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:AB=BC==AC3222AB BC AC∴+=,∴∠ABC=90°,∵点D为AC的中点,∴BD为AC边上的中线,AC=∴BD=12【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.4、6【解析】【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP =OH,由等腰直角三角形的性质和直角三角形的性质可求解.【详解】解:如图,连接PO,并延长交l2于点H,∵l 1⊥l 3,l 2⊥l 3,∴l 1∥l 3,∠APC =∠BQC =∠ACB =90°,∴∠PAC +∠ACP =90°=∠ACP +∠BCQ ,∴∠PAC =∠BCQ ,在△ACP 和△CBQ 中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC , ∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO , ∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PH=12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:6【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键.5【解析】【分析】不管P 点在l 上哪个位置,PD 始终等于PD ',故求PD '+PB 可以转化成求PD +PB ,显然当D 、P 、D '共线时PD + PB 最短.【详解】过点D 作DM ⊥AB 交BA 的延长线于点M ,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB【点睛】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.三、解答题1、(1)3秒后PQ平行于y轴;(2)9(,4)5或()3,4.【分析】(1)设t 秒后PQ 平行于y 轴,先求出,AP OQ 的长,再根据矩形的判定与性质可得AP OQ =,由此建立方程,解方程即可得;(2)分①点P 在点A 右侧,②点P 在点A 左侧两种情况,分别根据2OQ AP =建立方程,解方程即可得.【详解】解:(1)(9,4)M ,9AM ∴=,设t 秒后PQ 平行于y 轴,()cm,92cm OQ t AP AM PM t ∴==-=-, AM 垂直于y 轴,OA 垂直于x 轴,PQ 平行于y 轴,∴四边形OAPQ 是矩形,AP OQ ∴=,即92t t -=,解得3t =,即3秒后PQ 平行于y 轴;(2)由题意得:经过b 秒后,2cm,cm PM b OQ b ==, AM 垂直于y 轴,点P 在直线AM 上,且点A 的坐标为(0,4)A ,∴点P 的纵坐标为4,①当点P 在点A 右侧时,(92)cm AP AM PM b =-=-,由2OQ AP =得:()292b b =-, 解得185b =,18992(cm)55AP ∴=-⨯=, ∴此时点P 的坐标为9(,4)5P ;②当点P 在点A 左侧时,(29)cm AP PM AM b =-=-,由2OQ AP =得:()229b b =-,解得6b =,2693(cm)AP ∴=⨯-=,∴此时点P 的坐标为(3,4)P -;综上,点P 的坐标为9(,4)5或()3,4-.【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.2、见解析【分析】连结AM ,由对称的性质可知F DAF MA ∆≌,进而可证E BAE MA ∆≌,即可得45EAF ∠=︒,由∠AON =90°,可得45AND ∠=︒.【详解】证明:连结AM ,D 、M 关于AF 对称,∴AF 垂直平分DM ,FD FM ∴=,∴F DAF MA ∆≌,∴90AMF ADF AME ∠=∠=︒=∠,AM AD AB ==,在Rt ABE △和Rt AME △中AE AE AM AB=⎧⎨=⎩ ABE Rt AME Rt ∆≅∆∴,∴BAE MAE ∠=∠,又DAF MAF ∠=∠,∴45EAF ∠=︒,∴45AND ∠=︒.【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,全等三角形的判定与性质,综合性较强,有一定难度.准确作出辅助线是解题的关键.有关45°角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解.3、(1)MN =AM +CN ;(2)MN =AM +CN ,理由见解析;(3)MN =CN -AM ,理由见解析【分析】(1)把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则AM =CM',BM =BM',∠A =∠BCM',∠ABM =∠M'BC ,可得到点M'、C 、N 三点共线,再由∠MBN =45°,可得∠M'BN =∠MBN ,从而证得△NBM ≌△NBM',即可求解;(2)把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则AM =CM',BM =BM',∠A =∠BCM',∠ABM =∠M'BC ,由∠A +∠C =180°,可得点M'、C 、N 三点共线,再由∠MBN =12∠ABC ,可得到∠M'BN =∠MBN ,从而证得△NBM ≌△NBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.∠MBN=12【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=1∠ABC,2∠ABC=∠MBN,∴∠ABM+∠CBN=12∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CB M',∴AM=C M',BM=B M',∠ABM=∠CB M',∴∠MA M'=∠ABC,∠ABC,∵∠MBN=12∠MA M'=∠M'BN,∴∠MBN=12∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N=CN-C M',∴MN=CN-AM.故答案是:MN =CN -AM .【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.4、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA =OC ,OB =OD ,从而得到OE =OG ,OF =OH ,即可求证;(2)根据三角形中位线定理,可得11,22EF AB FG BC ==,从而得到()12EF FG AB BC +=+ ,再由(1)四边形EFGH 是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵点 E 、 F 、G 、H 分别是OA 、OB 、OC 、OD 的中点, ∴1111,,,2222OE OA OF OB OG OC OH OD ====,∴OE =OG ,OF =OH ,∴四边形EFGH 是平行四边形;(2)∵点 E 、 F 、G 、H 分别是OA 、OB 、OC 、OD 的中点, ∴11,22EF AB FG BC ==, ∴()12EF FG AB BC +=+ , ∵ABCD 的周长为2(AB +BC )=32,∴16AB BC += ,∴8EF FG += ,由(1)知:四边形EFGH 是平行四边形,∴四边形EFGH 的周长为()22816EF FG +=⨯= .【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.5、(1)见解析;(2)见解析【分析】(1)由垂直平分线的性质可求解;(2)由“ASA ”可证AOF COE ∆≅∆,可得EO FO =,且AO CO =,AC EF ⊥,由菱形的判定可证四边形AECF 是菱形.【详解】解:(1)EF 是AC 的垂直平分线,OA OC ∴=,EF AC ⊥,OE OF ≠∴不能得出OE OF =;(2)四边形ABCD 是平行四边形,//AD BC ∴.FAC ECA ∴∠=∠ EF 是AC 的垂直平分线,EF AC ∴⊥,OA OC =,且FAC ECA ∠=∠,AOF COE ∠=∠()AOF COE ASA ∴∆≅∆EO FO ∴=,且AO CO =∴四边形AECF是平行四边形⊥.EF AC∴四边形AECF是菱形.【点睛】本题考查了菱形的判定,全等三角形的判定和性质,线段垂直平分线的性质,平行四边形的性质,解题的关键是熟练运用线段垂直平分线的性质.。
人教版八年级数学第18章《平行四边形》单元提优测试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是()A.22 B.20 C.22或20 D.182.如图,在□ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7 B.10 C.11 D.12第2题图第3题图第4题图3.如图,□ABCD的周长为16 cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE的周长为()A.4 cm B.6 cm C.8 cm D.10 cm4.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB 边上一动点,以PA,PC为边作□PAQC,则对角线PQ长度的最小值为()A.6 B.8 C.2 2 D.4 25.在□ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为()A.3 B.5 C.2或3 D.3或56.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤第6题图第7题图7.如图,在△ABC中,∠B=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.108.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F.在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=12ADC.AB=AF D.BE=AD-DF第8题图第9题图第10题图9.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°10.如图,有一▱ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为()A.50°B.55°C.70°D.75°二、填空题(每题5分,共20分)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为.12.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是.第11题图 第12题图13.如图,将长8 cm ,宽4 cm 的矩形纸片ABCD 折叠,使点A 与点C 重合,则折痕EF 的长为 cm.第13题图 第14题图14.如图,正方形ABCD 的面积为5,正方形BEFG 面积为4,那么△GCE 的面积是 .三、解答题(共90分)15.(8分)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.16.(8分)如图,□ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.17.(8分)如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别 平分∠DAB 和∠CBA. (1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长.18.(8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB,CD分别相交于点E ,F ,连接EC. (1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.19.(10分)如图,在□ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.20.(10分)如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求线段DH 的长.21.(12分)如图所示,在四边形ABCD中,AD∥BC,AD=24 cm,BC=30 cm,点P从点A向点D以1 cm/s的速度运动,到点D即停止.点Q从点C向点B以2 cm/s 的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?22.(12分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F 处,FC交AD 于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.23.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE. (1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.人教版八年级数学第18章《平行四边形》单元提优测试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
人教版八年级数学下册第十八章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.下面的性质中,平行四边形不一定具有的是( )A.对角互补 B.邻角互补C.对角相等 D.对边相等2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE=4,则BC的长为( )A.2 B.4 C.6 D.83. 如图,在菱形ABCD中,下列结论错误的是( )A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠24. 如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )A.4 cm B.5 cm C.D.8 cm5.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是( )A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD6.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且DE=3BE,则AE的长为( )A.2 B..3 D.7.如图,四边形ABCD 的两条对角线相交于点O,且互相平分.添加下列条件后,不能判定四边形ABCD为菱形的是( )A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.67.5° B.22.5° C.30° D.45°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD==2,则四边形OCED的面积为( )A..4 C..810. 如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD= PM时,t=4或6二.填空题(共8小题,每小题3分,共24分)11.在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为__________.12. .如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,E,F是正方形ABCD的对角线AC上的两点,若AC=8,AE=CF=2,则四边形BEDF的周长是________.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE =1 cm,则BF=__________cm.16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加______________条件,才能保证四边形EFGH是矩形.17.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为"协调平行四边形",称该边为"协调边".当协调边为6时,这个平行四边形的周长为________.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,…,以此类推,第n个正方形的面积为________.三.解答题(共7小题, 66分)19.(8分) 如图,在▱ABCD中,E为AD延长线上的一点,F为CB延长线上的一点,且DE=BF,连接AF,CE.求证:四边形AFCE是平行四边形.20.(8分) 如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.21.(8分) 如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.22.(8分) 在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(10分)如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.24.(10分)如图,在正方形ABCD中,点E,F分别在BC和CD上,且BE=DF,连接EF.(1)求证:AE=AF;(2)过点E作EM∥AF,过点F作FM∥AE,求证:四边形AEMF是菱形.25.(14分)如图,在矩形ABCD中,AB=3,BC=4.点M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.参考答案1-5ADAAB 6-10CCBAD11. AB ∥DC(答案不唯一)_12. 3013. 三15.(216.AC ⊥BD(答案不唯一) 17. 16或2018. 2n -1 19.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC,AD =BC,∴AE ∥CF. 又∵DE =BF,∴AD +DE =BC +BF,即AE =CF,∴四边形AFCE 是平行四边形20.证明:∵四边形ABCD 是平行四边形,∴AD =BC,AD ∥BC,∠A =∠C.∴∠F =∠E.∵BE =DF,∴AD +DF =CB+BE,即AF =CE.在△AGF 和△CHE 中, {∠A =∠CAF =CE ∠F =∠E ∴△AGF ≌△CHE(ASA).∴AG =CH.21. 证明:(1)∵BF =DE,∴BF -EF =DE -EF,即BE =DF.(2)∵四边形ABCD 为平行四边形,∴AB =CD,且AB ∥CD.∴∠ABE =∠CDF.在△ABE 和△CDF 中, {AB =CD∠ABE =∠CDF BE =DF∴△ABE ≌△CDF(SAS).22. 证明:(1)∵四边形ABCD 是正方形,∴AB =AD,∠B =∠D =90°.又∵BE =DF,∴Rt△ABE≌Rt△ADF(SAS),∴AE =AF(2)∵EM ∥AF,FM ∥AE,∴四边形AEMF 是平行四边形.又由(1)知AE =AF,∴▱AEMF 是菱形23. (1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB,∠D =∠B =90°.∵E,F 分别为DC,BC 的中点,∴DE =12DC,BF =12BC.∴DE =BF.在△ADE 和△ABF 中, {AD =AB∠D =∠B DE =BF ∴△ADE ≌△ABF(SAS).(2)解:由题易知△ABF,△ADE,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.24. (1)证明:∵AF ∥BC,∴∠AFE =∠DBE.∵E 是AD 的中点,∴AE =DE.在△AFE 和△DBE 中, {∠AFE =∠DBE∠FEA =∠BED AE =DE ∴△AFE ≌△DBE(AAS).∴AF =BD.∵AD 是BC 边上的中线,∴DC =BD.∴AF =DC.(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC,又∵AF ∥BC,∴四边形ADCF 是平行四边形.∵AC ⊥AB,AD是斜边BC 上的中线,∴AD =12BC =DC.∴四边形ADCF 是菱形.25.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD,AB =CD,∴∠MAB =∠NCD.在△ABM 和△CDN 中,{AB =CD∠MAB =∠NCDAM =CN ∴△ABM ≌△CDN(SAS)(2)如图,连接EF,交AC 于点O.∵四边形ABCD 是矩形,∴AD =BC,∠ABC =90°,∵AB =3,BC =4,∴AC =5,∵E,F 分别是AD,BC 的中点,∴AE =BF =CF,∴四边形ABFE 是矩形,∴EF =AB =3.在△AEO 和△CFO 中,{∠EOA =∠FOC∠EAO =∠FCO AE =CF ∴△AEO ≌△CFO(AAS),∴EO =FO,AO =CO,∴O 为EF,AC 中点.∵∠EGF =90°,OG =12EF =32,∴AG =AO -OG =1或AG =AO +OG =4,∴AG 的长为1或4。
人教版数学8年级下册第18单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( )A.100°B.160°C.80°D.60°2.(3分)如图,点O为矩形ABCD的对角线AC的中点,OP∥AB交BC于点P,连接OD,若OP=3,AD=8,则OD的长为( )A.3B.4C.5D.63.(3分)如图,在矩形ABCD中,AC、BD交于点O,E为BC边上一点,若BC=8,BO =5,EC=3,则OE的长为( )A.B.4C D.34.(3分)菱形具有而矩形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角相等D.对边平行5.(3分)如图,在矩形ABCD中,AB=3,AD=4,对角线AC、BD相交于点O,点P是AD上一动点(不与A、D重合),过点P作AC和BD的垂线,垂足分别为E、F,则PE+PF 的值是( )A .125B .65C .35D .36.(3分)如图,将正方形ABCD 剪去4个全等的直角三角形(图中阴影部分),得到边长为c 的四边形EFGH .下列等式成立的是( )A .a +b =cB .c 2=(a +b )2﹣4abC .c 2=(a +b )(a ﹣b )D .a 2+b 2=c 27.(3分)菱形ABCD 如图所示,对角线AC 、BD 相交于点O ,若BD =6,菱形ABCD 面积等于24,且点E 为AD 的中点,则线段OE 的长为( )A .2B .2.5C .4D .58.(3分)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC ,若AB =3,AC =8,则BD 的长是( )A .8B .9C .10D .129.(3分)如图,菱形ABCD 的对角线AC 和BD 相交于点O ,AC =8,BD =12,E 是OB 的中点,P 是CD 的中点,连接PE ,则线段PE 的长为( )A .BC .D 10.(3分)如图,点H ,F 分别在菱形ABCD 的边AD ,BC 上,点E ,G 分别在BA ,DC 的延长线上,且AE =AH =CG =CF .连结EH ,EF ,GF ,GH ,若菱形ABCD 和四边形EFGH 的面积相等,则AH AD的值为( )A .12BCD .1二.填空题(共6小题,满分18分,每小题3分)11.(3分)在▱ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为 .12.(3分)如图,E 为正方形ABCD 的边AB 上一动点,过E 作EF ∥BC 交AC 于点F ,G 为DE 的中点,连接FG ,AB =4,则FG 的最小值是 .13.(3分)已知一个菱形的两条对角线长分别为16cm 和30cm ,则这个菱形的高为 .14.(3分)如图,在平行四边形ABCD 中,过对角线AC 中点O 作直线分别交BC ,AD 于点E ,F ,只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是 (写出一个即可).15.(3分)如图,过△ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若S △AEG =7,则S △AEI = .16.(3分)如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =35°,则∠OBC 的大小为 度.三.解答题(共10小题,满分72分)17.(5分)如图,已知ABCD 是正方形,点E 是BC 的中点,连接AE ,过B 作BO ⊥AE 于O ,延长BO 交CD 于F .求证:F 是CD 的中点.18.(5分)如图所示,已知四边形ABCD 是平行四边形,AD =3,CD =5,若AF ,BE 分别是∠DAB ,∠CBA 的平分线.求EF 的长.19.(5分)如图,已知四边形ABCD是平行四边形,对角线AC与BD交于点O,若M、N 是BD上两点,且BM=DN,AC=2MO.求证:四边形AMCN是矩形.20.(7分)如图、在菱形ABCD中,对角线AC,BD相交于点O.过点D作对角线BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=8,BD=6,求△CDE的周长.21.(8分)如图,正方形ABCD中,点E是BC边上一点,点F是BA延长线上一点,AF=CE,连接EF,交AD于点K,过点D作DH⊥EF,垂足为点H,延长DH交BF于点G,连接HC,HB.(1)求证:HD=12 EF;(2)若DK•HC=HE的长.22.(8分)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:四边形OCEB是矩形;(2)如果设AC=12,BD=16,求OE的长.23.(8分)如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF ∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE交AD于点G.当AB=1,∠ACB=30°时,求BG的长.24.(8分)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB 交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=AB的长.25.(8分)如图,在△ABC中,D是AC边上一点,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)如果BD是△ABC的角平分线,求证:四边形BEDF是菱形.(2)如果BD是△ABC的中线且AC=2BD,请判断四边形BEDF的形状并说明理由.26.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB 交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.参考答案1.A;2.C;3.C;4.B;5.A;6.D;7.B;8.C;9.A;10.D;11.1213.24017cm;14.∠AEC=90°(答案不唯一);15.3.5;16.55;17.证明:∵点E是BC的中点,∴BE=EC,∵BO⊥AE,∴∠AEB+∠FBC=90°=∠AEB+∠BAE,∴∠BAE=∠FBC,在△ABE和△BCF中,∠BAE=∠CBFAB=BC∠ABE=∠BCF,∴△ABE≌△BCF(ASA),∴CF=BE=12BC=12CD,∴点F是CD的中点.18.解:∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC,∵AD=3,∴DF=3,同理:CE=3,∵AB=DC=5∴EF=DF+EC﹣DC=2BC﹣DC=3+3﹣5=1.19.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵MO=NO,∴MN=2MO,∵AC=2MO,∴MN=AC,∴四边形AMCN是矩形.20.(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∵DE⊥BD,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=12AC=4,DO=12BD=3,AC⊥BD,∴∠AOD=90°,∴CD=AD=5,由(1)得:四边形ACDE是平行四边形,∴CE=AD=5,DE=AC=12,∴△CDE的周长=AD+AE+DE=5+5+8=18.21.(1)证明:∵四边形ABCD为正方形,∴CD=AD,∠DCE=∠DAF=90°,∵CE=AF,∴△DCE≌△DAF(SAS);∴DE=DF,∠CDE=∠ADF,∴∠FDE=∠ADF+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴△DFE为等腰直角三角形,∵DH⊥EF,∴点H是EF的中点,∴DH=12 EF;(2)解:∵四边形ABCD为正方形,∴CD=CB,∵点H是EF的中点,∠ABC=90°,∴HB=12 EF,∴DH=HB,又∵CH=CH,∴△DCH≌△BCH(SSS),∴∠DCH=∠BCH=45°,∵△DEF为等腰直角三角形,∴∠DFE=45°,∴∠HCE=∠DFK,∵四边形ABCD为正方形,∴AD∥BC,∴∠DKF=∠HEC,∴△DKF∽△HEC,∴DKHE=DFHC,∴DK•HC=DF•HE,在等腰直角三角形DFH中,DF==,∴DK•HC=DF•HE2=∴HE=2.22.(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形;(2)解:∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90°,CD==10,∵平行四边形OCED为矩形,∴OE=CD=10.23.(1)证明:∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE,∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD,∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF,∴AE=EF=AC=CF,∴四边形ACFE是菱形;(2)解:∵四边形ABCD是矩形,∴∠ABC=∠BCE=90°,CD=AB,∵AB=1,DE=CD=1,∵∠ACB=30°,∴AC =2AB =2,∴BC CE =2,∴BE =∵AB =CD =DE ,∠BAG =∠EDG =90°,在△ABG 和△DEG 中,∠BAG =∠EDG =90°∠BGA =∠DGE AB =DE,∴△ABG ≌△DEG (AAS ),∴BG =EG ,∴BG =12BE 24.(1)证明:∵AB ∥CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,∠CAD =∠ACE∠ADE =∠CED AF =CF.∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G .在△ACG 中,∠AGC =90°,AC CAG =45°,∴由勾股定理得CG =AG =1.在△BCG 中,∠BGC =90°,∠B =30°,CG =1,∴BC =2,∴BG =∴AB=AG+BG=.25.(1)证明:∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:四边形BEDF是矩形,理由如下:∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∵BD是△ABC的中线,∴AD=CD=12 AC,∵AC=2BD,∴AD=CD=BD,∴∠BAC=∠ABD,∠BCA=∠CBD,∵∠BAC+∠ABD+∠BCA+∠CBD=180°,即2∠ABD+2∠CBD=180°,∴∠ABD+∠CBD=90°,即∠ABC=90°,∴平行四边形BEDF是矩形.26.(1)证明:如图1,∵AM是△ABC的中线,D与M重合,∴DC=BD,∵DE∥AB,∴∠EDC=∠B,∵CE∥AM,即CE∥AD,∴∠ECD=∠ADB,在△ECD和△ADB中,∠EDC=∠BDC=BD,∠ECD=∠ADB∴△ECD≌△ADB(ASA),∴DE=AB,∴四边形ABDE是平行四边形.(2)成立,理由如下:如图2,过点M作MG∥AB交CG于点G,∵DE∥AB,∴MG∥DE,∵CE∥AM,∴四边形DEGM是平行四边形,∴MG=DE,由(1)得MG=AB,∴DE=AB,∴四边形ABDE是平行四边形.。
人教版八年级数学下册第十八章检测卷(附答案)一、选择题1.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36° B.108°C.72° D.60°2.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为()A.9B.6 C.3 D.3.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补4.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°5.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形6.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm27.矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对8.如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有()A.2个B.3个C.4个D.5个二、填空题9.在四边形ABCD中,AB=DC,AD=BC,请再添加一个条件,使四边形ABCD是矩形.你添加的条件是.(写出一种即可)10.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.11.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=.12.已知平行四边形ABCD两条对角线的交点坐标是坐标系的原点,点A,B的坐标分别为(﹣1,﹣5),(﹣1,2),则C,D的坐标分别是,.13.已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是.三、解答题14.如图,已知平行四边形ABCD,用图①,②的两种方法可以将ABCD分成面积相等的四部分.你还能用其他不同的方法(不包括如图①,②的两种方法),将平行四边形ABCD分成面积相等的四部分吗?请画出对应的示意图.15.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.16.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.17.已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.18.已知:如图,正方形ABCD中,E为CD边上一点,F为BC边延长线上一点,CE=CF.(1)观察猜想BE和DF的大小关系,并证明你的猜想;(2)若∠BEC=60°,求∠EFD的度数.答案1.B.2.D.3.A.4.D.5.D.6.B.7.B.8.B.9.对角线相等.10.8.11.115°.12.(1,5)(1,﹣2)13.4<BD<20.14.解:15.证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.16.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.17.证明:方法一:∵AE∥FC.∴∠EAC=∠FCA.∵在△AOE与△COF中,,∴△AOE≌△COF(ASA).∴EO=FO,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形;方法二:同方法一,证得△AOE≌△COF.∴AE=CF.∴四边形AFCE是平行四边形.又∵EF是AC的垂直平分线,∴EA=EC,∴四边形AFCE是菱形;18.解:(1)BE=DF.理由如下:如图,∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠DCF=90°,又∵CE=CF,∴△BCE≌△DCF,∴BE=DF;(2)∵△BCE≌△DCF,∠BEC=60°,∴∠DFC=∠BEC=60°,∵∠DCF=90°,CE=CF,∴∠CFE=45°,∴∠EFD=∠DFC﹣∠CFE=15°.。
人教版八年级数学下册第十八章综合测试卷一、选择题(每题3分,共30分)1.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2.[2022·广东]如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE =()(第2题)A.14B.12C.1D.23.[2023·北京四中期中]如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()(第3题)A.AD=BCB.AB=CDC.AD∥BCD.∠A=∠C4.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()(第4题)A.54°B.64°C.72°D.75°5.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图,丝带重叠的部分一定是()(第5题)A.正方形B.矩形C.菱形D.都有可能6.(母题:教材P50习题T8)如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(4,0),则点C的坐标为()(第6题)A.(6,3)B.(8,3)C.(6,4)D.(8,4)7.[2022·宁波]将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等,若知道图中阴影部分的面积,则一定能求出()(第7题)A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积8.[2023·郑州外国语中学模拟]如图所示,边长为4的菱形ABCD中,∠ABC=60°,对角线AC与BD交于点O,P为AB的中点,Q为OD的中点,连接PQ,则PQ 的长为()(第8题)A.2√3B.3√2C.√13D.√159.[2023·德阳]如图,▱ABCD的面积为12,AC=BD=6,AC与BD交于点O,分别过点C,D作BD,AC的平行线相交于点F,点G是CD的中点,点P是四边形OCFD边上的动点,则PG的最小值是()(第9题)A.1B.√32C.32D.310.如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()(第10题)A.当t=4 s时,四边形ABMP为矩形B.当t=5 s时,四边形CDPM为平行四边形C.当CD=PM时,t=4 sD.当CD=PM时,t=4 s或6 s二、填空题(每题3分,共24分)11.如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于点G,H.添加一个条件使△AEG≌△CFH,这个条件可以是.(只需写一种情况)(第11题)12.(母题:教材P57练习T2)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为.(第12题)13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为.(第13题)14.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于.(第14题)15.[2023·金昌]如图,菱形ABCD中,∠DAB=60°,BE⊥AB,DF⊥CD,垂足分别为B,D,若AB=6 cm,则EF=cm.(第15题)16.[2023·滨州]如图,矩形ABCD的对角线AC,BD相交于点O,点E,F分别是线段OB,OA上的点,若AE=BF,AB=5,AF=1,BE=3,则BF的长为.(第16题)17.如果一个平行四边形的一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当协调边为6时,这个平行四边形的周长为.18.[2023·南京外国语学校期中]如图,将边长为2的正方形纸片ABCD沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则△GPQ周长的最小值是.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.[2023·北大附中期中]如图,点E,F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DF=BE.20.[2023·张家界]如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE=BF,CE=DF.(1)求证:AE∥BF;(2)若DF=FC,求证:四边形DECF是菱形.21.如图①,在一平面内,从左到右,点A,D,O,C,B均在同一直线上,线段AB=4,线段CD=2,O分别是AB,CD的中点,如图②,固定点O 以及线段AB,让线段CD绕点O顺时针旋转α(0°<α<180°).连接AC,AD,BC,BD.(1)求证:四边形ADBC为平行四边形;(2)当α=90°时,求四边形ADBC的周长;22.如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.23.如图,在正方形ABCD中,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)BF与DE有怎样的数量关系?请证明你的结论.(2)在其他条件都保持不变的情况下,当点E运动到AC的中点时,四边形AFBE是什么特殊四边形?请证明你的结论.24.已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG.当点E在线段BC上时,如图①,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图②),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图③),直接写出AB,CG,CE之间的关系.第十八章综合答案一、1.C 2.D3.A 【点拨】A.当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,故此选项符合题意;B.当AB∥CD,AB=CD时,一组对边平行且相等,可证明四边形ABCD为平行四边形,故此选项不符合题意;C.当AB∥CD,AD∥BC时,两组对边分别平行,可证明四边形ABCD为平行四边形,故此选项不符合题意;D.∵AB∥CD,∴∠A+∠D=180°.∵∠A=∠C,∴∠C+∠D=180°.∴AD∥BC. ∴四边形ABCD为平行四边形,故此选项不符合题意.故选A.4.A5.C6.C7.C 【点拨】根据题意知四边形EFGH为正方形,设正方形纸片的边长为x,正方形EFGH的边长为y,则矩形纸片的宽为x-y.根据矩形纸片和正方形纸片的周长相等,可得矩形纸片的长为x+y,先表示出图中阴影部分的面积,再分别表示出四个选项中的面积,即可得出正确答案.8.C 【点拨】过点P作PM⊥OB,垂足为M,根据∠ABC=60°,AB=BC,得到△ABC 为等边三角形,从而得到∠ABD=30°,计算出MO=1OB=√3=OQ,PM=1,2再计算出MQ=OM+OQ=2OM=2√3,最后根据勾股定理计算出PQ.9.A 【点拨】先判定四边形OCFD为菱形,找出当GP垂直于菱形OCFD的一边时,PG有最小值,过D点作DM⊥AC于点M,过G点作GP⊥AC于点P,则GP∥MD,利用平行四边形的面积求DM的长,再利用三角形的中位线定理可求PG的长,进而可求解.10.D二、11.BE=DF(答案不唯一)12.3013.1014.65°15.2√316.√22【点拨】如图,过A作AN⊥BD于N,过B作BM⊥AC于M,∴∠ANO=∠ANB=∠BMO=∠BMA=90°.∵四边形ABCD是矩形,∴OB =12BD ,OA =12AC ,AC =BD .∴OB =OA . ∵S △AOB =12OB·AN =12OA·BM ,∴AN =BM . ∵AE =BF ,∴Rt △ANE ≌Rt △BMF (HL ). ∴FM =EN . 设FM =EN =x .∵AF =1,BE =3,∴BN =3-x ,AM =1+x .易知BN =AM . ∴3-x =1+x .∴x =1.∴FM =1. ∴AM =2.∵AB =5,∴BM =√AB 2-AM 2=√21. ∴BF =√FM 2+BM 2=√1+21=√22. 17.16或20 【点拨】如图所示.①当AE =2,DE =4时,∵四边形ABCD 是平行四边形, ∴BC =AD =6,AB =CD ,AD ∥BC .∴∠AEB =∠CBE . ∵BE 平分∠ABC ,∴∠ABE =∠CBE . ∴∠ABE =∠AEB .∴AB =AE =2.∴平行四边形ABCD 的周长为2(AB +AD )=16.②当AE =4,DE =2时,同理可得AB =AE =4,平行四边形ABCD 的周长为2(AB +AD )=20.综上所述,这个平行四边形的周长为16或20.18.√5+1 【点拨】如图,取CD 的中点N ,连接PN ,PB ,BN ,易得BN =√5.由折叠的性质以及对称性可知 PQ =PN ,PG =PC ,GH =CD =2. ∵点Q 是GH 的中点,∴QG =12GH =1,∵∠CBG =90°,PC =PG , ∴PB =PG =PC .∴PQ +PG =PN +PB ≥BN =√5.∴PQ +PG 的最小值为√5.∴△GPQ 的周长的最小值为√5+1. 三、19.【证明】∵四边形ABCD 是平行四边形, ∴AB ∥CD ,CD =AB .∴∠DCF =∠BAE ,在△CDF 和△ABE 中,{CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△CDF ≌△ABE (SAS ).∴DF =BE . 20.【证明】(1)∵AD =BC , ∴AD +CD =BC +CD ,∴AC =BD . ∵AE =BF ,CE =DF , ∴△AEC ≌△BFD (SSS ), ∴∠A =∠B ,∴AE ∥BF . (2)∵△AEC ≌△BFD , ∴∠ECA =∠FDB ,∴EC ∥DF .∵EC =DF ,∴四边形DECF 是平行四边形. ∵DF =FC ,∴四边形DECF 是菱形. 21.(1)【证明】∵O 分别是AB ,CD 的中点, ∴OA =OB ,OC =OD . ∴四边形ADBC 为平行四边形. (2)【解】∵α=90°,∴AB ⊥CD . 又∵四边形ADBC 为平行四边形, ∴四边形ADBC 为菱形.∵AB =4,CD =2,∴OA =2,OD =1. ∴AD =√OD 2+OA 2=√12+22=√5. ∴四边形ADBC 的周长为4√5.22.(1)【证明】∵D ,E 分别是AB ,AC 的中点, ∴ED 是Rt △ABC 的中位线.∴ED ∥FC .又∵EF∥DC,∴四边形CDEF是平行四边形.(2)【解】∵四边形CDEF是平行四边形,∴DC=EF. ∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC.又∵ED是Rt△ABC的中位线,∴BC=2DE.∴四边形CDEF的周长为AB+BC.∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.∴线段AB的长度为13 cm.23.【解】(1)BF=DE.证明如下:∵四边形ABCD是正方形,∴AB=AD,∠DAC=∠BAC=45°.∵AF⊥AC,∴∠BAF=∠BAC=∠DAC=45°.又∵AB=AD,AF=AE,∴△AFB≌△AED(SAS).∴BF=DE.(2)四边形AFBE是正方形.证明如下:∵四边形ABCD是正方形,E是AC的中点,∴AE=BE.在△ABF和△ABE中,{AF=AE,∠FAB=∠EAB=45°,AB=AB,∴△ABF≌△ABE(SAS).∴BF=BE.∴AE=BE=BF=AF.∴四边形AFBE是菱形. 又∵AF⊥AE,∴四边形AFBE是正方形. 24.【解】(1)AB=CG-CE.证明如下:∵四边形ABCD是菱形,∴AB=BC.又∵∠BAC=60°,∴△ABC是等边三角形. ∴AB=AC.∵∠EAG=60°,∴∠BAC=∠EAG.∴∠BAC+∠CAE=∠EAG+∠CAE,即∠BAE=∠CAG.又∵四边形AEFG 是菱形,∴AE =AG .在△ABE 和△ACG 中,{AB =AC ,∠BAE =∠CAG ,AE =AG ,∴△ABE ≌△ACG (SAS ).∴BE =CG . ∵AB =BC =BE -CE ,∴AB =CG -CE .(2)AB =CE -CG .。
人教版数学八年级下册第18章平行四边形达标检测卷4份第18章单元测试(1)班级姓名成绩一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.□ ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在□ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm 6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个. A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在□ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若□ABCD•的周长为38cm,△ABD的周长比□ABCD的周长少10cm,则□ABCD的一组邻边长分别为______.14.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则□ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所示,□ABCD 的周长是,AB 的长是DE ⊥AB 于E ,DF ⊥CB 交CB•的延长线于点F ,DE 的长是3,求(1)∠C 的大小;(2)DF 的长.24.如图所示,□ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、•∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).FCDAEB25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S =60,•求∠C的度数.△ABE27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是□ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF=S .△EFC答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130°• •15.10 16.结论题设 17.同旁内角互补,两直线平行18.5..13 直角三、21.□ABCD的周长为20cm 22.略24.略23.(1)∠C=45°(2)DF=225.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略第18章单元测试(2)班级姓名成绩一、选择题(3′×10=30′)1.下列判断四边形是平行四边形的是().A.两组角相等的四边形; B.对角线平分的四边形; C.一组对边相等,一组对角相等的四边形; D.两组对边分别相等的四边形2.根据下列条件,能作出平行四边形的是().A.两组对边长分别是3cm和7cm;B.相邻两边的边长分别是2cm和4cm,一条对角线长是7cm;C.一条边长为6cm,另一条对角线长为10cm,一条边长为8cm;D.一条边长为7cm,两条对角线长为6cm和8cm3.如图1所示,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• ).A.12个 B.16个 C.14个 D.18个(1) (2) (3) 4.已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形.•其中能判断是平行四边形的命题个数为().A.1个 B.2个 C.3个 D.4个5.以不共线的三点为平行四边形的其中三个顶点作平行四边形,•一共可作平行四边形的个数是().A.2个 B.3个 C.4个 D.5个6.平行四边形的一边为32,则它的两条对角线长不可能是().A.20和40 B.30和50 C.40和50 D.20和607.如图2所示,EF过□ABCD对角线的交点O,分别交AD于E,交BC于点F,若OE=5,四边形CDEF的周长为25,则□ABCD的周长为().A.20 B.30 C.40 D.508.在□ABCD中,∠A:∠B:∠C:∠D的值可以是().A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:49.已知O为□ABCD对角线的交点,且△AOB的周长为1,则□ABCD的面积为() A.1 B.2 C.3 D.410.已知O为□ABCD对角线的交点,且△AOB的周长比△BOC的周长多23,则CD-AD•的值为().A.23B.32C.2 D.3二、填空题(3′×10=30′)11.□ABCD中,∠A:∠B=7:2,则∠C=______.12.如图3所示,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.13.若平行四边形的周长为40cm,对角线AC、BD•相交于点O,•△BOC•的周长比△AOB的周长大2cm,则AB=________.14.若平行四边形的周长为56cm,相邻两边的长度比为3:4,则四边形的四边长分别为_____________.15.如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是_________.16.四边形ABCD中,∠ADC=∠ABC,要判断这个四边形是平行四边形,•只需判断出__________即可,根据是________________.17.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为___________.18.过平行四边形对角线的交点,且与一组边平行的直线将平行四边形分成的两个四边形________平行四边形.(填“是”或“不是”)19.四边形ABCD中,AC、BD交于点O,且OA=OC,OB=•OD,•∠ABC=•80•°,•则∠ADC=_____.20.已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,•需要增加条件________.(只需填写一个你认为正确的即可)三、解答题(共60′)21.(6′)如右图所示,在□ABCD中,AE、CF分别是∠DAB、∠BCD的平分线,求证:四边形AFCE是平行四边形.22.(6′)如右图所示,O为等边△ABC内任意一点,OD∥BC,OE∥AC,OF∥AB,•并且D、E、F分别在AB、BC、AC上,求证:OD+OE+OF=BC.23.(8′)如下图所示,已知平行四边形ABCD的周长是36cm,由钝角顶点D向AB、•BC引两条高DE、DF,且,cm,求平行四边形ABCD的面积.24.(8′)如下图所示,□ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=•60•°,BE=2,CF=1,连结DE,求△DEC的面积.25.(8′)求证:顺次连结四边形各边中点所得的四边形是平行四边形.26.(8′)如右图所示,△ABC中,CD是△ABC的角平分线,AE⊥CD于E,F为AC的中点,试问EF∥BC吗?为什么?27.(8′)已知□ABCD中,E、F分别是BC、CD的中点,AE、AF分别交BD于M、N.求证:BM=MN=ND.28.(8′)已知如下图所示,在□ABCD中,∠A=60°,E、F分别是AB、CD•的中点,•且AB=2AD.(1)求证:EF:(2)试判断EF与BD的位置关系?答案:一、1.D 2.A 3.D 4.C 5.B 6.A 7.B 8.D 9.D 10.A二、11.140° 12.50° 13.9cm 14.12cm,16cm,12cm,16cm 15.•平行四边形16.∠BAD=∠BCD 两组对角分别相等,则四边形是平行四边形 17.•平行四边形 •18.是 19.80° 20.AB∥DC三、21.略 22.略 23.2 24..提示:连结AC 26.略27.略28.(1)提示:连结DE (2)EF⊥BD第18章单元测试(3)一、选择题.(每小题4分,共32分)1.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.102.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°第2题图第3题图3.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.84. 下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF=2,则BD=()A.2B.3C.4D.6第5题图第6题图第7题第8题6.如图所示,将□ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对7.如图所示,在正方形ABCD中,点E、F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AFB.∠DAF=∠BECC.∠AFB+∠BEC=90°D.AG⊥BE8. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题.(每小题4分,共32分)9.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F= .第9题图第10题图10.如图所示,在R t△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线;②只填一个符合要求的条件)11.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=8,BC=10,则EF的长为 .第11题图第12题图12. 如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是 .13.已知一个平行四边形的一条对角线将其分为两个全等的等腰直角三角形,且这条对角线的长为6,则另一条对角线的长为 .14. 如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 cm.15.如图,已知点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接PA、EF.则线段PA与EF之间的大小关系是 .第15题图第16题图16.如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BC于H、G,若CG=7,BC=8,则GH等于 .三、解答题.(共56分)17.(8分)如图所示,一根长2.5m的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍顶端A沿墙下滑,且底端B沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4 m,那么木棍的底端B向外移动了多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.18.(8分)如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(8分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.20.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A出发沿AD边向D以1cm/s的速度运动,点Q从点C出发沿CB边向B以2cm/s的速度运动,如果P、Q分别从A、C同时出发,设运动时间为t s.求:(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?21.(12分)(2016·湖北十堰)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.22.(12分)如图①,菱形ABCD对角线AC,BD的交点O是四边形EFGH 对角线FH的中点,四个顶点A,B,C,D分别在四边形EFGH的边EF,FG,GH,HE 上.(1)求证:四边形EFGH是平行四边形;(2)如图②,若四边形EFGH是矩形,当AC与FH重合时,已知ACBD=2,且菱形ABCD的面积是20,求矩形EFGH的长与宽.答案第十八章达标检测卷一、选择题(每题3分,共30分)1.如图,▱ABCD中,AC=3 cm,BD=5 cm,则边AD的长可以是() A.3 cm B.4 cm C.5 cm D.6 cm2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE =4,则BC的长为()A.2 B.4 C.6 D.83.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是()A.20 cm B.21 cm C.22 cm D.23 cm4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC =90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,在菱形ABCD中,AB=2,∠A=120°,P,Q,K分别为线段BC,CD,BD上的任意一点,则P K+Q K的最小值为()A.1 B. 3 C.2 D.3+110.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.若第一个矩形的面积为1,则第n个矩形的面积为()A.14 B.14n-1C.14n D.14n+1二、填空题(每题3分,共30分)11.如图,在▱OABC中,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(4,2),则点C的坐标为__________.12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于________.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,则EC的长度是________.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是线段AO,BO的中点.若AC+BD=30 cm,△OAB的周长为23 cm,则EF的长为__________.16.如图,在▱ABCD中,点E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则有下列结论:①∠B=60°;②AC=BC;③∠AED=∠ACD;④△ABC≌△EAD.其中正确的是__________(在横线上填所有正确结论的序号).17.如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.18.菱形ABCD在平面直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 020 s 时,点P的坐标为__________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于点E,F.求证AE=CF.22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.23.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交AB于点G,交CB的延长线于点F,连接AF,BE.(1)求证△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.24.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD,AC,BC 于点E,O,F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的周长.25.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)①当四边形CEDF是矩形时,求AE的长;②当四边形CEDF是菱形时,求AE的长.26.如图,在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并证明.答案一、1.A 2.D 3.C 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:由题易得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.B10.B 点拨:第一个矩形的面积为1,易知第二个矩形的面积为14,第三个矩形的面积是116……故第n 个矩形的面积为14n -1. 二、11.(1,2) 12.30 13.65° 14.2.515.4 cm16.①③④ 点拨:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD =BC ,AD ∥BC .∴∠DAE =∠AEB .∵AE 平分∠DAB ,∴∠DAE =∠BAE .∴∠BAE =∠AEB .∴AB =BE .又AB =AE ,∴AB =AE =BE .∴△ABE 为等边三角形.∴∠B =∠BAE =60°.∴∠B =∠DAE .∵∠BAC =∠BAE +∠EAC =60°+∠EAC >∠B ,∴BC >AC .在△ABC 和△EAD 中,⎩⎨⎧AB =EA ,∠ABC =∠EAD ,BC =AD ,∴△ABC ≌△EAD (SAS ).∴∠BAC=∠AED.∵AB∥CD,∴∠BAC=∠ACD.∴∠AED=∠ACD.故正确的是①③④.17.75°点拨:如图,连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形.由P为AB的中点,利用等腰三角形三线合一的性质得到∠ADP=30°.由题意易得∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出∠DEC=75°.18.(0,3)19.16点拨:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=BF-BC=4-y.在Rt△DCF中,DC2+CF2=DF2,即x2+(4-y)2=42=16,∴x2+(y-4)2=16.20.25或52或652三、21.证明:∵四边形ABCD为平行四边形,∴AD=BC,∠D=∠B,∠BAD=∠BCD.又∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=12∠BAD,∠BCF=12∠BCD.∴∠DAE=∠BCF.在△DAE和△BCF中,⎩⎨⎧∠D =∠B ,DA =BC ,∠DAE =∠BCF ,∴△DAE ≌△BCF (ASA ).∴AE =CF .22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC .∴DE =BF .在△ADE 和△ABF 中,⎩⎨⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF (SAS ).(2)解:由题易知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AEG =∠BFG .∵EF 垂直平分AB ,∴EF ⊥AB ,AG =BG .在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF (AAS ).(2)解:四边形AFBE 是菱形.理由如下:∵△AGE ≌△BGF ,∴AE =BF .∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.24.(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°.∵四边形ABCD 是矩形,∴AD ∥BC .∴∠EAO =∠FCO .在△AEO 和△CFO 中,⎩⎨⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO (ASA ).∴OE =OF .∵OA =OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴四边形AECF 是菱形.(2)解:设AF =x .∵EF 是AC 的垂直平分线,∴AF =CF =x ,∴BF =8-x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即42+(8-x )2=x 2,解得x =5.∴AF =5.∴菱形AECF 的周长为20.25.(1)证明:∵四边形ABCD 是平行四边形,∴CF ∥ED .∴∠FCG =∠EDG .∵G 是CD 的中点,∴CG =DG .在△FCG 和△EDG 中,⎩⎨⎧∠FCG =∠EDG ,CG =DG ,∠CGF =∠DGE ,∴△FCG ≌△EDG (ASA ).∴FG =EG .∵CG =DG ,∴四边形CEDF 是平行四边形.(2)解:①∵四边形ABCD 是平行四边形,∴∠CDA =∠B =60°,DC =AB =3 cm ,BC =AD =5 cm .∵四边形CEDF 是矩形,∴∠CED =90°.在Rt △CED 中,易得ED =12CD =1.5 cm ,∴AE =AD -ED =3.5(cm).故当四边形CEDF 是矩形时,AE =3.5 cm.②若四边形CEDF 是菱形,则CE =ED .由①可知∠CDA =60°,∴△CED 是等边三角形.∴DE =CD =3 cm.∴AE =AD -DE =5-3=2(cm).故当四边形CEDF 是菱形时,AE =2 cm.点拨:在判定三角形全等时,关键是选择恰当的判定条件,有时还需添加适当的辅助线构造全等三角形.同时全等三角形也为平行四边形、矩形、菱形的判定构筑了重要的平台和保障.26.解:(1)如图①所示.(2)如图②,连接AE.∵点E是点B关于直线AP的对称点,∴∠P AE=∠P AB=20°,AE=AB.∵四边形ABCD是正方形,∴AE=AB=AD,∠BAD=90°.∴∠AED=∠ADE,∠EAD=∠DAB+∠BAP+∠P AE=130°.∴∠ADF=180°-130°2=25°.(3)EF2+FD2=2AB2.证明:如图③,连接AE,BF,BD,由轴对称和正方形的性质可得EF=BF,AE =AB=AD,易得∠ABF=∠AEF=∠ADF,又∵∠BAD=90°,∴∠ABF+∠FBD+∠ADB=90°.∴∠ADF+∠ADB+∠FBD=90°.∴∠BFD=90°.在Rt△BFD中,由勾股定理得BF2+FD2=BD2;在Rt△ABD中,由勾股定理得BD2=AB2+AD2=2AB2,∴EF2+FD2=2AB2.。
人教版八年级数学下册第十八章-平行四边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABCD 的对角线交于点O ,E 是CD 的中点,若32ABCDS =,则DOE S △的值为( )A .2B .4C .8D .162、如图所示,在 ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AD 于点E ,BC 于点F , 35AOE BOF S S ==, ,则 ABCD 的面积为( )A .24B .32C .40D .483、如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为24,面积为24,则PE PF +的值为( )A.4 B.245C.6 D.4854、如图,阴影部分是将一个菱形剪去一个平行四边形后剩下的,要想知道阴影部分的周长,需要测量一些线段的长,这些线段可以是()A.AF B.AB C.AB与BC D.BC与CD5、如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC6、如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,则AE的长为()A.3cm B.2cm C.D7、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为EBD∆,那么下列说法错误的是()A.EBD∆是等腰三角形B.EBA∆全等∆和EDCC.折叠后得到的图形是轴对称图形D.折叠后ABE∠相等∠和CBD8、如图,已知在正方形ABCD中,10A B C D∠=∠=∠=∠=︒,点E在边AB====厘米,90AB BC CD AD上,且4AE=厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或29、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为()A.14 B.25 C.26 D.1310、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A B C D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是__________.2、已知正方形ABCD的一条对角线长为______.3、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_________cm.4、如图,正方形ABCD中,BD为对角线,且BE为∠ABD的角平分线,并交CD延长线于点E,则∠E=______°.5、如图所示,正方形ABCD的面积为6,△CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为 _____________.三、解答题(5小题,每小题10分,共计50分)1、阅读探究小明遇到这样一个问题:在ABC中,已知AB,BC,AC ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC的3个顶点都在小正方形的顶点处),从而借助网格就能计算出ABC的面积.他把这种解决问题的方法称为构图法,(1)图1中ABC的面积为________.实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个66⨯的正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2的格点DEF.②DEF的面积为________(写出计算过程).拓展延伸(3)如图3,已知PQR,以PQ,PR为边向外作正方形PQAF和正方形PRDE,连接EF.若PQ=PR=QR=AQRDEF的面积为________(在图4中构图并填空).2、如图,在平行四边形ABCD 中,E 是AB 上一点.(1)用尺规完成以下基本操作:在AD 下方作DAF ∠,使得DAF BCE ∠=∠,AF 交DC 于点F .(保留作图痕迹,不写作法)(2)在(1)所作的图形中,已知17BCE ∠=︒,58B ∠=︒,求EAF ∠的度数.3、如图,四边形ABCD 是正方形,BE ⊥BF ,BE =BF ,EF 与BC 交于点G .(1)求证:AE =CF ;(2)若∠ABE =62°,求∠GFC +∠BCF 的值.4、已知:如图,30∠=︒,45B∠=︒,AD是BC上的高线,CE是AB边上的中线,DG CE于G.ACDAB=,求线段AC的长;(1)若6(2)求证:CG EG.5、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.(1)求证:四边形ADCE是菱形;(2)若AB=8,∠DAE=60°,则△ACB的面积为(直接填空).---------参考答案-----------一、单选题1、B【解析】【分析】根据平行四边形的性质可得,S △BOC =S △AOD =S △COD =S △AOB =8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得S △DOE =4,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,32ABCD S =, ∴S △BOC =S △AOD =S △COD =S △AOB =8,∵点E 是CD 的中点,∴S △DOE =12S △COD =4,故选:B .【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键.2、B【解析】【分析】先根据平行四边形的性质可得,OB OD AD BC =,再根据三角形全等的判定定理证出DOE BOF ≅,根据全等三角形的性质可得5DOE BOF S S ==,从而可得8AOD S =△,然后根据平行四边形的性质即可得.【详解】解:∵四边形ABCD 是平行四边形,,OB OD AD BC ∴=,EDO FBO ∴∠=∠,在DOE △和BOF 中,∵EDO FBO OD OB DOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴≅,5DOE BOFS S ∴==, 358AOD AOE DOE S S S ∴=+=+=,则ABCD 的面积为44832AOD S=⨯=,故选:B .【点睛】 本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键.3、A【解析】【分析】连接BP ,通过菱形ABCD 的周长为24,求出边长,菱形面积为24,求出ABC S的面积,然后利用面积法,=+ABC ABP CBP S S S ,即可求出PE PF +的值.【详解】解:如图所示,连接BP ,∵菱形ABCD 的周长为24,∴2446AB BC ==÷=,又∵菱形ABCD 的面积为24,∴24212=÷=ABCS , ∴12=+=ABC ABP CBP SS S , ∴111222⋅+⋅=AB PF BC PE ,∵AB BC =, ∴()1122⋅+=AB PE PF ,∵6AB =,∴4PE PF +=,故选:A .【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系.4、A【解析】【分析】如图,延长AB,ED交于点H,证明BC DH=,再利用菱形的性质证明:阴影部分的周长=,CD BH=+++++=,从而可得答案.4AB BC CD DE EF AF AF【详解】解:如图,延长AB,ED交于点H,四边形BCDH是平行四边形,=,BC DH∴=,CD BH四边形AFEH是菱形,∴===,AF EF EH AH∴阴影部分的周长4=+++++=,AB BC CD DE EF AF AF故需要测量AF的长度,故选A.【点睛】本题考查的是平行四边形的性质,菱形的性质,证明阴影部分的周长4AF=是解本题的关键.5、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;当▱ABCD是菱形时,AB=BC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.6、D【解析】【分析】根据矩形和直角三角形的性质求出∠BAE=30°,再根据直角三角形的性质计算即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,cm),∴AE故选:D.【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键.7、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.【详解】解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.8、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】a=,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,解:当2BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当2a≠,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=252 2.5BP÷=÷=(秒).综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.9、D【解析】【分析】由菱形的性质和勾股定理即可求得AB的长.【详解】解:∵四边形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=12BD=12,OA=OC=12AC=5,在Rt△ABO中,AB,故选:D.【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键.10、A【解析】【分析】DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,根据三角形的中位线定理得出EF=12此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,DN,∴EF=12∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在R t△ADH中,∵∠A=60°∴∠=︒ADH30∴AH=2×1=1,DH2∴BH=AB﹣AH=3﹣1=2,∴DBDB,∴EF max=12∴EF故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=12 DN是解题的关键.二、填空题1、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【详解】解:图象如图所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件.2、6【解析】【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解:正方形ABCD的一条对角线长为1S23236,2故答案为:6.【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.3、24【解析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵ 如图,H、I、J分别为BC,AC,AB的中点∴12HI AB=,12IJ BC=,12HJ AC=又∵30HI IJ HJ++=∴60AB BC AC++=∵AB:AC:BC=4:5:6,即BC边最长∴660=244+5+6BC=⨯故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.4、22.5【解析】【分析】由平行线的性质可知BE E∴=∠,由角平分线的定义得12ABE EBD ABD∠=∠=∠,进而可求∠E的度数.解:ABCD 为正方形,//AB CD ∴,45ABD ∠=,ABE E ∴∠=∠, BE 平分ABD ∠,12ABE EBD ABD ∴∠=∠=∠, 又45ABD ∠=,122.52E ABE ABD ∴∠=∠=∠=, 故答案为:22.5.【点睛】本题考查了正方形的性质,平行线的性质,角平分线的定义,熟练掌握正方形的性质是解答本题的关键.5【解析】【分析】根据正方形的性质可知C 、A 关于BD 对称,推出CK =AK ,推出EK +AK ≥CE ,根据等边三角形性质推出CE =CD ,根据正方形面积公式求出CD 即可.【详解】解:∵四边形ABCD 是正方形,∴C 、A 关于BD 对称,即C 关于BD 的对称点是A ,如图,连接CK ,则CK =AK ,∴EK +CK ≥CE ,∵△CDE 是等边三角形,∴CE =CD ,∵正方形ABCD 的面积为6,∴CD ,∴KA +KE【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K 的位置和求出KA +KE 的最小值是CE .三、解答题1、(1)72;(2)①作图见详解;②8;(3)在网格中作图见详解;31.【分析】(1)根据网格可直接用割补法求解三角形的面积;(2直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出PH PQ =,EH RQ =,进而可得PQR PHE ≌,得出PE PH =,进而利用割补法在网格中求解六边形的面积即可.【详解】解:(1)△ABC 的面积为:1117331321322222⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:72;(2)①作图如下(答案不唯一):②DEF 的面积为:111452342258222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:8;(3)在网格中作出PH PQ =,EH RQ =,在PQR 与PHE 中,PH PQ EH RQ PE PR =⎧⎪=⎨⎪=⎩, ∴PQR PHE ≌,∴PF PH =,PEF PEH PQR S S S ∴==,∴六边形AQRDEF 的面积=正方形PQAF 的面积+正方形PRDE 的面积+2PEF 的面积(22111++243412223=31222⎛⎫=⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪⎝⎭, 故答案为:31.【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.2、(1)见解析;(2)105︒【分析】(1)延长CE ,在射线CE 上截取两点,M N ,使得AM AN =,作MN 的垂线l ,交EC 于点K ,在l 上截取AH AK =,作HK 的中垂线,交CD 于点F ,则DAF ∠即为所求;(2)根据三角形的外角性质以及平行线的性质即可求得EAF ∠的度数【详解】(1)如图所示,根据作图可知AF EC ∥,四边形ABCD 是平行四边形AE FC ∴∥,B D ∠=∠∴四边形AECF 是平行四边形AEC AFC ∴∠=∠,AFC D DAF AEC B ECB ∠=∠+∠∠=∠+∠DAF BCE ∴∠=∠则DAF ∠即为所求;(2)17BCE ∠=︒,58B ∠=︒,∴75AEC B BCE ∠=∠+∠=︒18075105BEC ∴∠=︒-︒=︒由(1)可知AF EC ∥105EAF BEC ∴∠=∠=︒【点睛】本题考查了尺规作图-作垂线,平行四边形的性质,三角形的外角性质,平行线的性质,掌握基本作图是解题的关键.3、(1)证明见解析;(2)73°.【分析】(1)根据正方形的性质及各角之间的关系可得:ABE CBF ∠=∠,由全等三角形的判定定理可得AEB CFB ≌,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得45BEF EFB ∠=∠=︒,再由三角形的外角的性质可得EGC GFC BCF EBG BEF ∠=∠+∠=∠+∠,由此计算即可.【详解】(1)证明:∵四边形ABCD 是正方形,∴90ABC ∠=︒,AB BC =,∵BE BF ⊥,∴90FBE ∠=︒,∵90ABE EBC ∠+∠=°,90CBF EBC ∠+∠=︒,∴ABE CBF ∠=∠,在AEB 和CFB 中,AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩, ∴AEB CFB ≌,∴AE CF =;(2)解:∵BE ⊥BF ,∴90FBE ∠=︒,又∵BE BF =,∴45BEF EFB ∠=∠=︒,∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵62ABE ∠=︒,∴906228EBG ∠=︒-︒=︒,∴452873EGC GFC BCF EBG BEF ∠=∠+∠=∠+∠=︒+︒=︒.∴GFC BCF ∠+∠的值为73︒.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.4、(1)(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD =3,根据等腰直角三角形,得到CD =AD =3,根据勾股定理,得到AC 的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE =DC ,根据等腰三角形三线合一性质,证明即可.【详解】(1)AD BC ⊥90ADB ADC ∴∠=∠=︒30B ∠=︒,6AB =132AD AB ∴==45ACD ∠=︒45CAD ∴∠=︒3AD CD ∴==AC ∴=(2)连接DE90ADB ∠=︒,AE BE =12ED AB ∴=,12AD AB =,AD CD =, ED CD ∴=,GD EC ⊥,EG CG ∴=.【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.5、(1)见解析;(2)【分析】(1)由AD //CE ,CD //AE ,得四边形AECD 为平行四边形,根据直角三角形斜边上中线性质,得CE =AE ,可知四边形ADCE 是菱形;(2)由菱形的性质可得当∠DAE =60°时,∠CAE =30°,可求BC ,再根据勾股定理求出AC ,最后求面积即可.【详解】解:(1)∵AD ∥CE ,CD ∥AE ,∴四边形ADCE 是平行四边形.∵90ACB ∠=︒,E 是AB 的中点,∴12CE AE AB ==,∴四边形ADCE 是菱形;(2)∵四边形ADCE 是菱形,60DAE ∠=︒,∴1=302CAE DAE ∠=︒∠.∵在Rt △ABC 中,90ACB ∠=︒,30CAE ∠=︒,=8AB ,∴142CB AB ==, ∴2243AC AB BC .∴12ACB S AC BC =⋅= 【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.。
人教版八年级下册数学第十八章平行四边形含答案一、单选题(共15题,共计45分)1、平行四边形的一边长为12,那么这个平行四边形的两条对角线长可以是()A.8和14B.10和14C.18和20D.10和342、如图,平行四边形ABCD的周长为40,ΔBOC的周长比ΔAOB的周长多10,则AB为( )A.20B.15C.10D.5.3、已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF 于C、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG= BG;(4)S△ABE =3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个4、菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形5、如图,已知∠MON=30°,点A在射线OM上,0A=4 ,长度为2的线段BC在射线ON上移动,连结AB, AC,则△ABC周长的最小值为()A.6B.8C.4D.0A=4 +26、下列说法中错误的是()A.四边相等的四边形是菱形B.对角线相等的平行四边形是矩形C.菱形的对角线互相垂直且相等D.正方形的邻边相等7、在正方形ABCD中,AD=6,点M在边DC上,连结AM,△ADM沿直线AM翻折后点D落到点N,过点N作NE⊥CD,垂足为点E.如图,如果ED=2EC,则DM=()A.4+B.3+C.9-D.6-8、如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°9、如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为( ).A.20cmB.20 cmC.20 cmD.25 cm10、下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形11、如图,菱形ABCD中,AB=AC,点E,F分别为边AB,BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE·AD=AH·AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个12、菱形,矩形,正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等13、平行四边形、矩形、菱形、正方形共有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角形互相垂直平分14、如图,四边形OABC是矩形,等腰△ODE中,OE=DE,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=的图象上,OA =5,OC=1,则△ODE的面积为()A.2.5B.5C.7.5D.1015、顺次连接某个四边形各边中点得到一个正方形,则原四边形一定是()A.正方形B.对角线互相垂直的等腰梯形C.菱形D.对角线互相垂直且相等的四边形二、填空题(共10题,共计30分)16、把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=6cm,BC=10cm,则AE= ________cm.17、如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为________;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.18、如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,图中四个直角三角形是全等的,若大正方形ABCD的面积是小正方形EFGH面积的13倍,则的值为________.19、在菱形ABCD中,∠BAD=108°,AB的垂直平分线交AC于点N,点M为垂足,连接DN,则∠CDN的度数是________.20、在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是________.21、已知直角三角形的三边长为 4,5,,为斜边,则以为边长的正方形面积为________.22、如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是________.23、如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是________ .(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.24、如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于________25、菱形两条对角线长分别是4和6,则这个菱形的面积为________ .三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE等于多少时时,四边形BFCE是菱形.28、证明:对角线互相垂直的平行四边形是菱形.29、已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.30、如图,中,F在延长线上,,交于点E.求证:.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、B6、C7、C8、C9、A11、D12、C13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。
第十八章创优检测卷
一、选择题(每小题3分,共10小题,满分30分)
1.如图,在平行四边形ABCD中,点E在AB的延长线上,∠1=60°,则∠D的度数是()
A.120°
B.60°
C.45°
D.30°
2.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是()
A.1∶2∶3∶4
B.3∶4∶4∶3
C.3∶3∶4∶4
D.3∶4∶3∶4
3.下列性质中,菱形对角线不一定具有的性质是()
A.对角线互相垂直
B.对角线所在的直线是对称轴
C.对角线相等
D.对角线互相平分
4.如图,已知菱形ABCD的周长为12,∠A=60°,则BD的长为()
A.3
B.4
C.6
D.8
5.如图,已知正方形ABCD,连接BD并延长至点E,连接CE,F、G分别为BE,CE 的中点,连接FG,若AB=6,则FG的长度为()
A.3
B.4
C.5
D.6
6.如图,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平形四边形()
A.AE=CF
B.DE=BF
C.∠ADE=∠CBF
D.∠ABE=∠CDF
7.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()
A.四边形AEDF是平行四边形
B.若∠BAC=90°,则四边形AEDF是矩形
C.若AD平分∠BAC,则四边形AEDF是矩形
D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
8.(2017·辽宁大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E
是AB的中点,CD=DE=a,则AB的长为()
A.2a
B.22a
C.3a
D.
33
4
a
9.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB 交CD于点F,则AE的长为()
A.4
B.4.8
C.2.4
D.3.2
10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF.其中正确的结论有()
A.1个
B.2个
C.3个
D.4个
二、填空题(每小题3分,共8小题,满分24分)
11.在平行四边形ABCD中,对角线AC、BD相交于点O,若四边形ABCD的周长是22 cm,△AOB的周长比△BOC的周长小3 cm,则BC的长是.
12.如图,在四边形ABCD中,已知AB∥CD,AB=CD,在不添加任何辅助线的前提下,要想该四边形成为菱形,只需再添加上的一个条件是.
13.(山东威海中考)如图,有一直角三角形纸片ABC,BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为 .
14.如图,菱形ABCD的边长是4 cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为.
15.点P是正方形ABCD对角线BD上的一点,BP=BC,则∠ACP的度数是.
16.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E的度数是.
17.如图所示,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于.
18.(2017·天津)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G 分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.
三、解答题(本大题共7小题,满分66分)
19.(8分)如图,已知点E,C在线段BF上,BE=CF,∠B=∠DEF,∠ACB=∠F,求证:四边形ABED为平行四边形.
20.(8分)(2017·辽宁大连)如图,在ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.
21.(8分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1∶2,周长是48 cm.求:
(1)两条对角线的长度;
(2)菱形的面积.
22.(10分)(2017·辽宁沈阳)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.
求证:(1)△ADE≌△CDF;
(2)∠BEF=∠BFE.
23.(10分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形;
(2)若∠ADF:∠FDC=3∶2,DF⊥AC,则∠BDF的度数是多少?
24.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
25.(12分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC 于F,连接DF.
(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形.。