14.1.1 直角三角形三边的关系(第二课时)
- 格式:ppt
- 大小:458.00 KB
- 文档页数:22
第十四章勾股定理14.1.1 直角三角形三边的关系(1)教学目标:1.探索并掌握勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.会应用勾股定理解决实际问题教学重点:探索勾股定理的证明过程教学难点:运用勾股定理解决实际问题教学过程:一。
探索勾股定理试一试测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:三角尺直角边a直角边b斜边c 关系12根据已经得到的数据,请猜想三边的长度a、b、c之间的关系.由图14.1.1得出等腰直角三角形的三边关系图14.1.1是正方形瓷砖拼成的地面,观察图中用阴影画出的三个正方形,很显然,两个小正方形P、Q的面积之和等于大正方形R的面积.即AC2+BC2=AB2,图14.1.1这说明,在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方.那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?试一试观察图14.1.2,如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积=平方厘米;正方形Q的面积=平方厘米;(每一小方格表示1平方厘米)图14.1.2正方形R的面积=平方厘米.我们发现,正方形P、Q、R的面积之间的关系是.由此,我们得出直角三角形ABC的三边的长度之间存在关系.由图14.1.2得出一般直角三角形的三边关系.若∠C=90°,则222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方△ABC 中,∠C=90°, 则222c b a =+(a 、b 表示两直角边,c 表示斜边) 变式:222222,a c b b c a-=-=2.介绍勾股定理的历史背景。
二.例题分析:例1.Rt △ABC 中,AB=c,BC=a,AC=b,∠B=90° (1) 已知a=8,b=10,求c. (c=6) (2)已知a=5,c=12,求b (b=13)注意:“∠B 为直角”这个条件。
三、引申提高:例2如图14.1.4,将长为5.41米的梯子AC 斜靠在墙上,BC长为2.16米,求梯子上端A 到墙的底边的垂直距离AB.(精确到0.01米)解 如图14.1.4,在Rt △ABC中,BC=2.16米, AC=5.41米, 根据勾股定理可得AB=-BC AC 22=22 16.-2 41.5≈4.96(米).答: 梯子上端A 到墙的底边的垂直距离 AB 约为4.96米 四.巩固练习: 1.书本P51.1.2 五.课时小结: 1. 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方2.已知直角三角形两边的长或知道两边关系和第三边的长,可以利用勾股定理求出三角形未知边长,并可运用面积关系式求斜边上的高。