直角三角形的边角关系(教材分析)
- 格式:ppt
- 大小:392.50 KB
- 文档页数:24
第一章直角三角形的边角关系§1.1.1 从梯子的倾斜程度谈起教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。
这一章,我们继续学习直角三角形的边角关系。
二、师生共同研究形成概念1、梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。
这就涉及到倾斜角的问题。
用倾斜角刻画倾斜程度是非常自然的。
但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。
1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。
2、想一想(比值不变)☆想一想书本P 3 想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。
当倾斜角确定时,其对边与邻边的比值随之确定。
这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。
3、 正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan (3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。
☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°,1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ; 3) 若AC = 8,AB = 10,则tanA = ;tanB = ;b 、 如图,在△ACB 中,tanA = 。
九年级数学第一章直角三角形的边角关系教案一、本章教学的指导意见:本章内容从梯子的倾斜程度说起,引出第一个三角函数——正切。
因为相比之下,正切是生活当中用得最多的三角函数概念,如刻画物体的倾斜程度、山的坡度等。
正弦和余弦的概念,是在正切的基础上、利用直角三角形、通过学生的说理得到的。
接着,又从学生熟悉的三角板引入特殊角30°、45°、60°角的三角函数值的问题。
对于一般包括锐角三角函数值的计算问题,需要借助计算器。
教科书仔细地介绍了如何从角得值、从值得角的方法,并且提供了相应的训练和解决问题的机会。
利用锐角三角函数解决实际问题,也是本章重要的内容之一。
除“船有触礁的危险吗?”“测量物体的高度”两节外,很多实际应用问题穿插于各节内容之中。
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一,锐角三角函数在解决现实问题中有着重要的作用,如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,一般说来,这些实际问题的数量关系往往归结为直角三角形中边和角的关系问题。
研究图形之中各个元素之间的关系,如边和角之间的关系,把这种关系用数量的形式表示出来,即进行量化,是分析问题和解决问题过程中常用的方法,是数学中重要的思想方法。
通过这一章内容的学习,学生将进一步感受数形结合的思想、体会数形结合的方法。
通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。
直角三角形中边角之间关系的学习,也将为一般性地学习三角函数的知识及进一步学习其它数学知识奠定基础。
(二)教学重点1.使学生经历探索直角三角形中边角之间关系、探索30°、45°、60°角的三角函数值的过程,从中发展学生观察、分析、发现的能力;2.理解锐角三角函数的概念,并能够通过实例进行说明;3.会计算包括30°、45°、60°角的三角函数值的问题;4.能够借助计算器由已知锐角求出它的三角函数值,或由已知三角函数值求出相应的锐角;5.能够运用三角函数,解直角三角形及解决与直角三角形有关的实际问题,培养学生分析问题和解决问题的能力;6.体会数、形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题。
九年级上册第二章《直角三角形的边角关系》复习课教学设计学生学法:实践、探索、小组讨论,练习。
教学过程教学环节教师活动学生活动设计意图一、题组练习回顾知识一、基础知识回顾:练习一:1、在Rt△ABC中,∠C=900,已知∠A=48°则∠B= .2、如图1,在某一平地上,有一棵高6米的大树,一棵高3米的小树,两树之间相距4米。
今一只小鸟在其中一棵树的树梢上要飞到另一棵树的树梢上,问它飞行的最短距离是图2图1知识清单:练习二:1、如图2,在Rt△ABC中,∠C=90°, AC=4,AB=5,求sin A 、cosA和tanA的值。
2、ABCRt∆中,如果各边长度都扩大2倍,则锐角A的各个三角函数值()A 不变化B 扩大2倍C 缩小21 D不能确定3、若︒<<︒900α,则下列说法不正确的是()A αsin随α的增大而增大; B cosα随α的减小而减小;C tanα随α的增大而增大;D cosα随α的增大而减小;4、已知∠A+∠B=090,若8888.0cos=A,则=Bsin。
知识清单:学生初步认识本节课的学习目标,引发思考。
练习回答交流回答展示吸引学生注意,使学生安静,注意倾听,引发思考。
通过练习一回顾直角三角形的两锐角、三边的关系。
通过练习二回顾锐角三角函数函数的定义、性质ABC┌二、构建知识网络练习三:(1)已知α为锐角,且sin(α-10°)=23,则α等于()A 50°B 60°C 70°D 80°知识清单:练习四:1、在R t⊿ABC中,已知∠C=90°,a=4, c=8.解这个直角三角形。
2、在R t⊿ABC中,已知∠C=90°,c=128, ∠B =60°,解这个直角三角形。
知识清单:二、构建知识网络:学生思考、口答观察演示动画,思考回答问题。
记忆思考回答通过练习三帮助学生回顾特殊角的三角函数值交流展示解直角三角形的思路、方法、和完整过程在练习思考的基础上,师生共同梳理出本章的知识网络图。
第一章直角三角形的边角关系1.锐角三角函数(1)一、教材分析这节课的内容是:义务教育课程标准实验教科书(北师大版)九年级下册第一章《直角三角形的边角关系》中《锐角三角函数》的第一节,是属于数学新知识教学。
学生已经学过有关直角三角形的知识,但关于直角三角形了解只能停留在边与边之间的关系(勾股定理)和角与角之间的关系(直角三角形两锐角互余)。
那么,是不是有某种介质能把直角三角形的边与角之间联系在一路呢?这对具有必然数学能力的九年级学生来讲,是有挑战性,因为他们是不同类的两个事物(一个是角度的大小,另一个是线段的长度)。
因此,本节课从农村生活中常见的实物——梯子动身,让学生观看多种梯子倾斜的情形。
而关于梯子的倾斜问题学生在生活中也有必然的生活体会,能够通过观看分析出简单的梯子倾斜情形,但关于倾斜角度超级接近的情形,就需要通过本节课的学习,利用直角三角形边和角的关系来判定。
锐角三角函数是在现实生活中有着重要的的作用。
如在测量、建筑、交通运输、工程技术和物理学中,人们常常碰到距离、高度、角度、方位的计算问题,这些问题最终归结于直角三角形的边角关系。
但相较之下,在实际生活中“正切”是最经常使用,如物体的倾斜程度,高山的坡度等都往往用正切,后面要学的正弦、余弦的概念也能由正切的概念类比取得。
因此本节的内容在教材中的作用超级大。
二、学情分析九年级的学生具有必然的数学基础知识和大体技术,拥有一些数学思想和数学模型,因此他们思维敏捷,自我意识强。
经历观看、质疑、猜想、交流、合作、归纳等进程,利用数形结合,从特殊到一样,能熟悉事物的一样规律。
但关于农村初中的学生来讲,他们的视野范围窄、思维局限、抽象能力不强,专门是自主学习、自主探讨的能力差。
三、教学目标分析知识与技术1.了解正切的产生背景,并明白得它的概念,会用它表示生活中物体的倾斜程度、坡度等。
2.能够用tanA表示直角三角形中两直角边的比,用正切进行简单的计算。
北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要介绍了直角三角形的性质,包括锐角三角函数的概念、直角三角形的边角关系等。
本章内容是初中数学的重要知识点,为后续学习三角形相似、解直角三角形等知识打下基础。
二. 学情分析九年级的学生已经掌握了三角形的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对锐角三角函数的理解和应用存在困难,因此需要通过本章内容的学习,帮助学生巩固直角三角形的性质,提高解题能力。
三. 教学目标1.理解直角三角形的性质,掌握锐角三角函数的概念。
2.学会运用直角三角形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重点:直角三角形的性质,锐角三角函数的概念。
2.难点:锐角三角函数的应用,解直角三角形。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.教学课件:制作直角三角形性质、锐角三角函数的课件。
2.教学素材:提供相关案例,如实际问题、例题等。
3.学习工具:准备好直角三角形、锐角三角函数的相关资料。
七. 教学过程1.导入(5分钟)利用生活中的实例,如测量身高、测距等,引出直角三角形的性质和锐角三角函数的概念。
激发学生的学习兴趣,引导学生思考直角三角形在实际生活中的应用。
2.呈现(15分钟)呈现直角三角形的性质和锐角三角函数的定义,通过动画、图片等形式展示,帮助学生直观地理解。
同时,给出相关案例,让学生体会直角三角形性质和锐角三角函数在实际问题中的作用。
3.操练(15分钟)针对直角三角形的性质和锐角三角函数,设计一系列练习题。
让学生独立完成,巩固所学知识。
教师及时批改、讲解,解答学生的疑问。
4.巩固(10分钟)通过小组合作学习,让学生运用直角三角形的性质和锐角三角函数解决实际问题。
《直角三角形的边角关系》说课稿一、教材分析(一)教材的地位与作用《直角三角形的边角关系》是在学生已经学习了直角三角形及有关性质,如直角三角形的两锐角互余,勾股定理及其逆定理等知识的前提下,对直角三角形的边与角之间的关系的进一步探讨与学习、应用。
本章内容既是前面所学知识的应用,也是学生以后进一步学习三角函数和解斜三角形的预备知识,它的学习还蕴含着深刻的数学思想方法(转化化归),另外由于解直角三角形在实际生活中应用非常广泛,所以本章内容在教材中有着非常重要的地位与作用。
(二)教学目标根据新课程标准,本章内容在教材中的地位与作用,结合素质教育的要求,确定本节课的教学目标为:1、通过复习进一步理解锐角三角形函数的概念,能熟练地应用sinA,cosA,tanA,cotA表示直角三角形(其中有一个锐角是A)中的两边的比,熟记30°,45°,60°角的各三角函数的数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角数值说出这个角。
2、理解直角三角形中边角之间的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,并会用解直角三角形的有关知识来解某些简单的实际问题(包括一些能用直角三角形解的斜三角形问题)从而进一步把数和形结合起来,培养应用数学知识的意识。
3、通过解答与三角形或四边形有关的问题,增强分析能力和逻辑推理能力。
(三)教学重、难点本章的重点是直角三角形中锐角三角函数的定义,特殊锐角的三角函数值,及互余两角的三角函数关系,运用这些知识解直角三角形的实际应用,既是重点也是难点。
二、教法与学法三、教学过程(一)知识梳理现在新课程的知识点教学都是分模块出现,通过复习课的教学,师生共同回顾基础知识,弥补知识缺漏,对所学的知识进行系统整理,使之“竖成线”、“横成片“,达到提纲挈领的目的;同时,针对知识的重点、学习的难点、学生的弱点,引导学生按一定的标准把有关知识进行整理、分类、综合,这样才能搞清楚来龙去脉,把各知识点分类整理,形成完整的网络,构建完整的知识体系。
锐角三角函数一、教材分析1 •教材内容本节课是义务教育课程标准北师大版实验教科书九年级(下)第一章《直角三角形的边角关系》的第一节•本课为第一课时,主要内容是:理解正切的概念,会进行简单的计算,了解坡度.2. 地位及作用正切在生活中的运用非常广泛,如物体的倾斜程度、山的坡度等都往往用正切来刻画•同时正切也是学生接触的第一个三角函数•学好正切,既为正弦余弦的学习打下基础,又为高中系统学习三角函数做好铺垫•因此本节内容极其重要.二、学情分析1. 知识基础九年级学生已经学习了直角三角形,函数和相似三角形的相关知识,具备了学习锐角三角函数的知识基础•但是,锐角三角函数和学生以前学习过的一次函数、反比例函数有所不同,它揭示的是角度与线段比值之间的对应关系•学生是第一次接触用符号表示的函数,因此学生对锐角三角函数的理解仍然比较抽象和困难.2. 能力基础学生已经经历了多次小组合作,探索新知的过程,对探究性学习掌握了一定的方法,具有一定的活动学习的经验,这为本节课采用小组活动来感知概念打下了基础.3. 任教学生特点我班学生数学基础较扎实,求知欲强,想彖力丰富•能较好地运用所学的知识解决问题.三、目标分析1 •教学目标:(1)经历探索直角三角形边角关系的过程,理解正切的概念并能进行简单的计算.(2)经历数学活动过程,发展合情推理能力,能有条理的、清晰的阐述自己的观点.教学环节教师活动学生活动以诗句引导学生欣赏剑门关、乐山大佛、窦团山登山阶梯图片,再由“激流勇进”让学生感受斜坡的陡悄,提出问题:我们用数学知识怎样來比较阶梯的倾斜程度呢?设计意图用实际问题引出本课的探索问题,让学生感悟数学来源2. 教学重点理解正切概念.3. 教学难点正切概念的形成过程.4•突出重点、突破难点的策略抓住学生的认知盲点,教师加以启发诱导,抽象出本节课重要的数学模型——直角三角形,配合实验直观展示,帮助学生理解一个锐角和它的对边与邻边的比值之间的对应关系,确定这是一种函数关系,给出正切概念,突破本节课的难点•理解概念后,通过小组合作辨析、应用概念,突出本节课重点.四、教法、学法教法:启发式与自主探究结合的教法.学法:自主探究、合作交流的学法.五、过程设计结合教材知识内容和教学目标,本课的教学环节如下:感悟概念C=> 理解概念应用概念 ^=> 归纳小结生活.现实模型学生欣赏图片,思考问题合作探究念1・请学生观察4幅图片.教师提出问题并巡视各个小组交流情况.并请小组代表汇报观察得出的结论.小组活动1学牛观察4幅图片,展开讨论.学生代表发言,展示探究四幅图片的成果.判断梯子的倾斜程度可以通过研究倾斜角的度数.教师活动问题1:如图,梯子AB和DE 哪个更陡?你是怎么判断的?学生活动设计意图合作探感7S m1(图• 澜/顾]11\14f>Llmre L打Y'图1中的梯子等高,底小的更陡。
三角壹﹑教学目标与节数贰﹑教材地位分析参﹑教学摘要本章由锐角的正弦﹑余弦﹑正切函数开始介绍﹐进而了解正弦﹑余弦﹑正切函数之间的基本关系﹐并逐步引入广义角三角函数的概念。
其次﹐再由三角形的边角关系导出正弦定理与余弦定理及海龙公式。
接着介绍差角公式与和角公式﹐并引进倍角及半角公式。
最后介绍基本的三角测量。
本章共分五节﹐内容重点如下:1-1直角三角形的边角关系1. 直角三角形边的比例:固定θ之直角三角形﹐不论大小﹐其任两边长的比值恒为定值﹐依此定义正弦﹑余弦及正切;介绍30°﹐45°﹐60°之正弦﹑余弦﹑正切值及一些简单求值问题。
2. sin θ﹐cos θ﹐tan θ的性质:根据正弦﹑余弦及正切函数之定义﹐引出商数关系﹑平方关系﹑余角关系﹐利用这些关系式﹐能处理求值问题及证明简单三角恒等式。
3. 锐角的三角函数:透过特殊角函数值及四分之一单位圆的图形﹐能了解θ为锐角时﹐当θ增加﹐正弦值变大﹐余弦值变小﹐正切值变大之事实;并建立当θ确定时﹐正弦﹑余弦及正切唯一确定之函数关系。
1-2广义角与极坐标1. 广义角:介绍广义角之定义﹐再介绍标准位置角及同界角之定义。
2. 广义角的三角函数:在标准位置角之终边上取一点﹐利用该点坐标及其至原点的距离来定义广义角的三角函数;并能判断正弦﹑余弦及正切函数在不同象限之正负情形并求值。
3. 广义角三角函数的性质:根据正弦﹑余弦及正切函数之广义角定义﹐可得商数关系及平方关系;接着再利用负角关系﹑补角关系﹑余角关系及同界角关系﹐得将任意角度以参考角来表示的公式。
4. 极坐标:介绍极坐目标表示法﹐并能将极坐标所表示的点与直角坐目标点互相转换。
5. 弧度:藉由观察弧長半徑的大小与圆心角的大小成正比,且这个比值与单位无关,也与圆形的大小无关,因此我们可以利用此值来衡量角度的大小,此即弧度的概念;其次让学生了解角度有弧度量与度度量两种表示方式,并能熟练单位换算。
第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。
二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。
如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。
显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。
2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。
这样就突出了直角三角形中边与角之间的相互关系。
3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。
4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。
同时要强调三角函数的实质是比值。
防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。
如果学生产生类似的错误,应引导学生重新复习三角函数定义。
5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。