21.3 实际问题与一元二次方程(2)
- 格式:ppt
- 大小:1.98 MB
- 文档页数:12
21.3 实际问题与一元二次方程教学时间课题21.3实际问题与一元二次方程(2)课型新授教学媒体多媒体教学目标知识技能1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.过程方法通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.情感态度在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知课本45页探究1分析:○1设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.○2第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?○3第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?点题,板书课题.教师提出问题,并指导学生进行阅读,独立思考,学生根据个人理解,回答教师提出的问题.弄清题意,设出未知数,并表示相关量,根据相等关系尝试列方程,求根.根据实际问题要求,对根进行选择确定问题的解.教师组织学生合作交流,达到共识,联系上节课内容,进一步学习一元二次方程的应用弄清问题背景,特别注意分析清楚题意,题中没有特别说明,那么最早的患者没有痊愈,仍在继续传染别人.○4本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.课本47页探究3分析:○1正中央的长方形与整个封面的长宽比例相同,是什么含义?○2上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?○3若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?○4“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为9x㎝,宽为7x ㎝.尝试列出方程.○5方程的两个根都是正数,但是它们不都是问题的解,需要根据它们的值的大小来确定哪个更合乎实际,这种取舍选择更多的要考虑问题的实际意义.归纳:○1在实际生活中有许多几何图形的问题原型,可以用一元二次方程作为数学模型来分析和解决○2.对于比较复杂的问题,可以通过设间接未知数的方法来列方程.三、课堂训练补充练习:1.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().师生汇总生活中常见的类似问题,总结这类题的做题技巧.教师提出问题,让学生结合画图独立理解并解答问题,培养学生对几何图形的分析能力,将数学知识和实际问题相结合的应用意识教师总结,学生体会学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.让学生掌握这一类题型将几何图形的问题用一元二次方程方法来解决使学生巩固提高,了解学生掌握情况纳入知识系统,总结本节课内容,让学生体会方程刻画现实世界的模型作用.A.8cm B.64cm C.8cm2 D.64cm2 2.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)4.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?四小结归纳谈一节课的收获和体会.五、作业设计必做:P18:4-8选做:P19:10补充作业:某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?教学反思。
——Keep pushing——21.3实际问题与一元二次方程(第2课时)用一元二次方程解决增降率问题1.若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为__a(1±x)___,第二次增长(或降低)后的数量为__a(1±x)(1±x)___,即__a(1±x)2___.2.某商品进价为a元,售价为b元,则利润为__(b-a)___元,若一天的销售量为c,则总利润为__(b-a)c___元.知识点1:平均变化率问题1.(2014·昆明)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( D)A.144(1-x)2=100B.100(1-x)2=144C.144(1+x)2=100 D.100(1+x)2=1442.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是( A)A.10%B.15%C.20%D.25%3.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为__20%___.4.(2014·沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.解:设这个增长率为x,根据题意得20(1+x)2-20(1+x)=4.8,解得x1=0.2=20%,x2=-1.2(不合题意,舍去),则所求增长率为20%知识点2:市场经济问题5.某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元,若该商品两次调价的降价率相同,则这个降价率为__10%___;经调查,该商品每降价0.2元,即可多销售10件,若该商品原来每月销售500件,那么两次调价后,每月可销售商品__880___件.6.(2014·巴中)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?解:设每个商品的定价是x元,由题意得(x-40)[180-10(x-52)]=2000,整理得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(x-52)=200,不合题意,舍去;当x=60时,进货180-10(x-52)=100,符合题意,则该商品应进货100个,定1 / 1。
课前诊测1.“杂交水稻之父”袁隆平和他的团队探索培育的“海水稻”在某试验田的产量逐年增加,2018年平均亩产量约500公斤,2020年平均亩产量约800公斤.若设平均亩产量的年平均增长率为x,根据题意,可列方程为( )A.500(1+x)=800 B.500(1+2x)=800C.500(1+x2)=800 D.500(1+x)2=8002.某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为( )A.20% B.25% C.30% D.36%精准作业必做题1.某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为( ) A.400(1+x2)=900 B.400(1+2x)=900C.900(1-x)2=400 D.400(1+x)2=9002.某专卖店销售一种机床,3月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,就会少售出1台.4月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为( )A.3 万元B.5 万元C.8 万元D.3万元或5万元3.据统计,2021年第一季度某市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________________.4.去年某商店十一黄金周进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)该商店去年十一黄金周这七天的总营业额为________万元;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,十一黄金周这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.5.某超市于年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场当月获利4 250元?探究题某水果经销商上个月销售一种新上市的水果,平均售价为10元/千克,月销售量为1 000 千克.经市场调查,若将该水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b,且当x=7时,y=2 000;当x=5时,y=4 000.(1)求y与x之间的函数关系式;(2)已知该种水果上个月的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上个月增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价-成本价).参考答案课前诊断1.D2.A精准作业1.D2.D3.652(1+x)2=960_4.解:(1) 504(2)设该商店去年8,9月份营业额的月增长率为x,依题意,得350(1+x)2=504,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该商店去年8,9月份营业额的月增长率为20%.5.解:(1)设二、三月份销售量的月平均增长率为x,则256(1+x)2=400,解得:x1=25%,x2=-2.25(不合题意,舍去).答:二、三月份销售量的月平均增长率是25%.(2)设降价y元,(40-y-25)(400+5y)=4 250,整理得:y2+65y-350=0,解得:y1=5,y2=-70(不合题意,舍去).答:当商品降价5元时,商场当月获利4 250元.探究题解:(1)y=-1 000x+9 000(2)由题意,得1 000×(10-5)×(1+20%)=(-1 000x+9 000)·(x-4),整理,得x2-13x+42=0,解得x1=6,x2=7(舍去),答:该种水果价格每千克应调低至6元.。
实际问题与一元二次方程第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标1.掌握建立数学模型以解决增长率与降低率问题.2.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点如何解决增长率与降低率问题.教学难点某些量的变化状况,不能衡量另外一些量的变化状况.教学过程一、导入新课问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•x×100).则每件平均利润应是(0.3-x)元,总件数应是(500+0.1解:设每张贺年卡应降价x元,则x)=120.(0.3-x)(500+1000.1解得:x=0.1.答:每张贺年卡应降价0.1元.我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.二、新课教学例 1 某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从上面可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120. 即(34-y )(200+136y )=120 整理:得68y 2+49y -15=0y =49268-±⨯ ∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.例2 两年前生产1 t 甲种药品的成本是5 000元,生产1 t 乙种药品的成本是6 000元,随着生产技术的进步,现在生产1 t 甲种药品的成本是3 000元,生产1 t 乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析和解答见教材第20页.三、巩固练习1.填空.(1)一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.(2)甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.(3)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体x L ,则列出的方程是________.参考答案:(1)2 (2)1 (3)(1-63x )2=2863 2.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y =(销售单价x -销售成本40)×销售量[500-10(x -50)](3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6 750元.(2)y=(x-40)[500-10(x-50)]=-10x2+1 400x-40 000(3)由于水产品不超过10 000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8 000.解得:x1=80,x2=60.当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、课堂小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.五、布置作业习题21.3 第7题.21.1 一元二次方程【学习目标】1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力.2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.【重点难点】重点:由实际问题列出一元二次方程和一元二次方程的概念.难点:由实际问题列出一元二次方程,准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项.【自主先学】请观察一下,下列哪些是方程?⑴⑵2x+y=16⑶3x+y -1 ⑷3x-4=2x+6一元一次方程的概念:一元一次方程的一般形式:【课堂活动】一、请根据题目意思列出方程,并化简:1.要设计一座高2 m 的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,求雕像的下部应设计为高多少米?2.有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?二、这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的有什么共同点呢?不同点呢?对照一元一次方程,写出一元二次方程的概念:一元二次方程的一般式:练一练:1、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项(1)4x(x+2) =25 (2)(3 x -2)(x +1)=x -3 (3)x(x-4)=02、(小组合作)已知关于x的方程(a2— 4)x 2— ax +2x+a —2=0⑴若此方程是一元一次方程,则a的取值范围是什么?⑵若此方程是一元二次方程,则a的取值范围是什么?三、下面哪些数能使方程x2–x– 6 = 0 成立?-3 , -2 ,-1 ,0 , 1, 2, 3一元二次方程的解 : 叫作一元二次方程的解(又叫做根).练一练:若x =2是方程 的一个根,你能求出a 的值吗?四、课堂小结:一元二次方程的概念,一元二次方程的一般式,一元二次方程的解. 2450ax x +-=。