第二换元积分法
- 格式:ppt
- 大小:642.00 KB
- 文档页数:23
常用积分换元公式换元积分法的公式积分换元法是求解积分的一种重要方法,通过引入合适的变量替换的方式,将原积分转化为更容易求解的形式。
下面是一些常用的积分换元公式和换元积分法:1.换元公式(1)第一类换元公式:设函数u=u(x)具有一阶连续导数,则有如下公式:∫f(u)du = ∫f(u(x))u'(x)dx(2)第二类换元公式:设函数x=x(u)可导,且反函数存在,则有如下公式:∫f(x)dx = ∫f(x(u))x'(u)du(3)第三类换元公式:设函数x=x(t),y=y(t)可导,且满足y=y(x),则有如下公式:∫f(x,y)dx = ∫f(x(t),y(t))x'(t)dt2.常见换元积分法(1)坐标换元法:根据问题中给定的坐标关系,选择适当的新坐标,从而简化积分的计算。
常见的坐标换元法包括:极坐标、柱坐标、球坐标等。
(2) 幂次换元法:对于形如∫f(x)(ax+b)^n dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为幂函数的积分。
(3) 三角换元法:对于形如∫f(x)sin(ax+b) dx或∫f(x)cos(ax+b) dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为三角函数的积分。
(4) 指数换元法:对于形如∫f(x)e^x dx的积分,可以引入变量u=e^x进行代换,从而将积分转化为指数函数的积分。
(5) 对数换元法:对于形如∫f(x)/x dx的积分,可以引入变量u=ln,x,进行代换,从而将积分转化为对数函数的积分。
(6) 倒代换法:对于形如∫f(g(x))dg(x)的积分,可以引入变量u=g(x)进行代换,然后将dg(x)用du表示,从而将积分转化为对u的积分。
(7) Weierstrass换元法:对于形如∫R(x,√(ax^2+bx+c)) dx的积分,可以引入变量u=√(ax^2+bx+c)+px+q进行代换,然后将积分转化为对u的积分。
第一类换元积分法和第二类换元积分法第一类换元法通过配凑导数,将配凑到的导数u'和dx合在一起形成du,构成形如f(u)du的形式求积分,这里的f(u)通常为易求的积分形式
而第二类换元法则是令x=g(t),把dx拆分为g'(t)dt,从而把简单函数变为一个复合函数,高数中常常用三角函数代换分母中的多项式,再利用三角恒等变换使分母简单化从而得解
换句话来说,第一类换元法是先将函数分为两部分,一部分为u',另一部分为f(u),其中u'dx=du,于是待求积分从f(x)dx转化为f(u)du,而第二类换元法是将x用g(t)代换,再将dx拆分为g'(t)dt从而使积分可求,而其不同于第一类换元法表现在其后须使用t=g-(x)将t换掉得到关于x的积分。
不定积分第二类换元法公式
换元的根本目的是要将式子中原本的根号去掉。
比如:
被积函数含根式√(a^2-x^2),令x = asint,源式化为a*cost。
利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式x = φ(t)。
此方法主要是求无理函数(带有根号的函数)的不定积分。
由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。
下面我简单介绍第二类换元法中常用的方法:
(1)根式代换:被积函数中带有根式√(ax+b),可直接令t =√(ax+b);
(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:
被积函数含根式√(a^2-x^2),令x = asint
被积函数含根式√(a^2+x^2),令x = atant
被积函数含根式√(x^2-a^2),令x = asect
注:记住三角形示意图可为变量还原提供方便。
第二类换元积分
第二类换元积分法是一种基本的积分方法,它将积分变量的值域从实数轴上扩展到复平面上,从而使得原来的被积函数在新的变量下变得更加简单。
在本文中,我们将介绍第二类换元积分法的具体步骤和应用技巧,以帮助读者更好地掌握这一重要的数学工具。
我们将从简单的例子开始,逐步深入,直到探讨更为复杂和有趣的积分问题。
同时,我们还将介绍一些常见的积分公式和技巧,以及一些与第二类换元积分相关的数学概念和定理。
通过学习本文,读者将能够更好地理解和应用第二类换元积分法,提高自己的数学水平和解题能力。
- 1 -。
浅析计算不定积分方法之第二类换元积分不定积分的计算是高等数学的重要考点,第一类换元积分法的理论依据是⎰⎰+=+==C x F C u F du u f x u dx x x f ))(()()()()('))((ϕϕϕϕ,之所以称其为第一类换元积分法是因为还有第二类换元积分法。
那第二类换元积分法的理论依据是什么呢?就是如果)(t x ϕ=是单调,可导的函数,且0)('≠x ϕ,设)('))((t t f ϕϕ具有原函数)(t G ,则⎰dx x f )(1()(())'()()[()]x t f t t dt G t G x C ϕϕϕϕ-===+⎰如果大家仔细观察会发现第二类换元法的上述的式子和第一类换元法其实是同一个式子反过来用了,在第一类换元法中我们是凑微分,能不能做出来其实主要取决于我们的微分能不能凑出来,所以我们是稍显被动的。
然而在第二类换元法中从上面的式子可以看出来我们可以主动令)(t x ϕ=,那是不是随意设)(t ϕ都可以呢?并不是的,我们的)(t ϕ要求是单调可导的函数,为什么要单调呢?因为我们最终的表达式仍然是通过x 来表示的,也就要求)(t ϕ必须存在反函数。
那为什么要求)(t ϕ可导呢,因为在上面的表达始终我们看到了)(t ϕ应为可微的。
那是不是只要我们找到一个单调可导的)(t ϕ就可以用它来代替以前的积分变量x 了呢?让我们看下面这个例子:du u e e u t dt e e e x dx x u u t t t 2arctan arctan 111arctan 111++=+=+⎰⎰⎰虽然整个上面的表达式是没有问题的,但是这样做有什么意义呢?我们想换元是因为想把复杂的变成简单的,但是上面的式子却和我们的想法背道而驰,越化越复杂。
所以看似主动权掌握在我们手里,但是越是这样我们就越要小心使用我们的主动权,因为你会发现在实际做题过程中,一旦使用不小心都会变成上面那个例子那样越化越复杂。
换元积分法公式
换元积分法是求解不定积分的一种重要方法,其基本思想是通过变量代换将原函数中的变量替换为一个新的变量,从而将原不定积分转化为一个更容易求解的形式。
常用的换元积分法有三种:第一类换元法,第二类换元法以及特殊换元法。
下面将分别介绍这三种换元积分法的公式。
第一类换元积分法的公式如下:
若对于函数f(x),存在一个可导函数g(x),满足f(x) = h(g(x))g'(x),其中h(t)为可导函数,则有∫f(x)dx = ∫h(g(x))g'(x)dx = H(g(x)) + C,其中C为常数,H(t)为h(t)的一个原函数。
第二类换元积分法的公式如下:
若对于函数f(x),存在一个可导函数g(x),满足f(x)中至少含有一个因式为g(x),则有∫f(x)dx = ∫f(g(t))g'(t)dt,其中x = g(t)。
特殊换元积分法的公式如下:
常用的特殊换元积分法包括三角换元法、指数换元法、倒代换法、万能代换法等。
以上是换元积分法的三种常用公式。
在实际应用中,需要根据具体问题的不同选择不同的换元积分法,以求出较为简单的积分形式。
同时,需要注意选取合适的换元变量,并保证换元变量的可导性和可逆性,避免引入新的难以求解的形式。