第二类换元积分法分部积分法
- 格式:ppt
- 大小:1.07 MB
- 文档页数:33
第一类换元积分法
部分常用的凑微分公式:
(1)
1
()
dx d ax b
a
=+(2)1
1
()
1
n n
x dx d x
n
+
=
+
(3
d
=(4)
2
11
()
dx d
x x
=-
(5)1
(ln)
dx d x
x
=(6)()
x x
e dx d e
=
(7)cos(sin)
xdx d x
=(8)sin(cos)
xdx d x
=-
常用的凑微分公式
第二类换元积分法
1.当被积函数中含有
1)sin
x a t
=或cos
x a t
=;
2)tan
x a t
=;
3)sec
x a t
=.
通过三角代换化掉根式。
但是,去掉被积函数根号并不一定要采用三角代换,
22
ch sh1
t t
-=,采用双曲代换sh
x a t
=或ch
x a t
=消去根式,所得结果一致。
所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。
2.当有理分式函数中分母的阶数较高时,可采用倒代换
1
x
t
=.
3.类型f dx
⎰:可令t=;类型f dx
⎰:可令t=(第四节内容)
4.类型()x
f a dx
⎰:可令x
t a
=.
适合用分部积分法求解的被积函数。
第八章 不定积分2 换元积分法与分部积分法(讲义)一、换元积分法定理8.4:(换元积分法)设g(u)在[α,β]上有定义,u=φ(x)在[a,b]上可导,且α≤φ(x)≤β,x ∈[a,b],并记f(x)=g(φ(x))φ’(x), x ∈[a,b].1、(第一换元积分法)若g(u)在[α,β]上存在原函数G(u),则f(x)在[a,b]上也存在原函数F(x),且F(x)=G(φ(x))+C ,即 ∫f(x)dx=∫g(φ(x))φ’(x)dx=∫g(u )du=G(u)+C=G(φ(x))+C .2、(第二换元积分法)若φ’(x)≠0, x ∈[a,b],则命题1可逆,即f(x)在[a,b]上存在原函数F(x)时,g(u)在[α,β]上也存在原函数G(u),且G(u)=F(φ-1(u))+C, 即∫g(u )du=∫g(φ(x))φ’(x)dx=∫f(x)dx=F(x)+C=F(φ-1(u))+C. 证:1、∵dxdG(φ(x))=G ’(φ(x))φ’(x)=g(φ(x))φ’(x)=f(x), ∴∫f(x)dx=∫g(φ(x))φ’(x)dx=∫g(u )du=G(u)+C=G(φ(x))+C . (亦可简写为:∫g(φ(x))φ’(x)dx=∫g(φ(x))d φ(x)=G(φ(x))+C .) 2、若φ’(x)≠0, x ∈[a,b],则u=φ(x)有反函数x=φ-1(x),且du dx =(x)φx 1-(x)φ1=',∴dx d F(φ-1(u))=F ’(x)·(x)φ1'=f(x)·(x)φ1'=g(φ(x))φ’(x)·(x)φ1'=g(φ(x))=g(u). ∴∫g(u )du=∫g(φ(x))φ’(x)dx=∫f(x)dx=F(x)+C=F(φ-1(u))+C.例1:求∫tanxdx. 解:∫tanxdx=∫cosx sinx dx=-∫cosx1d(cosx). 令u=cosx ,则 ∫tanxdx=-∫u1du=-ln|u|+C=-ln|cosx|+C.例2:求∫22xa dx+(a>0). 解:∫22x a dx +=a 1∫2a x 1ax d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a 1arctan a x +C.例3:求∫22x-a dx (a>0).解:∫22x -a dx =∫2a x -1a x d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=arcsin ax +C.例4:求∫22a -x dx(a ≠0). 解:∫22a -x dx =2a 1∫⎪⎭⎫⎝⎛+--a x 1a x 1dx=2a 1[∫a x 1-d(x-a)-∫a x 1+d(x+a)] =2a 1[ln|x-a|-ln|x+a|]+C=2a 1ln ax a-x ++C.例5:求∫secxdx.解法1:∫secxdx=∫cosxdx =∫2x sin 2x cos dx 22-=21∫⎪⎪⎪⎪⎭⎫⎝⎛+-+-+2x sin 2x cos 2x sin 2x cos 2x sin 2x cos 2x sin 2x cos dx =21(∫2x sin2x cos 2x sin 2x cos -+dx+∫2x sin 2x cos 2x sin 2x cos +-dx)= -∫2x sin 2x cos 2x sin 2x cos d -⎪⎭⎫ ⎝⎛-+∫2x sin 2x cos 2x sin 2x cos d +⎪⎭⎫ ⎝⎛+=-ln 2x sin 2x cos -+ln 2x sin 2x cos ++C=ln2x sin2x cos 2x sin2x cos -++C=ln cosx sinx 1++C. 解法2:∫secxdx=∫x cos cosx 2dx=∫xsin -112d(sinx)=21ln x sin 1sinx1-++C.解法3:∫secxdx=∫tanx secx tanx)secx(secx ++dx=∫tanxsecx tanx)d(secx ++=ln|secx+tanx|+C.例6:求∫3u-u du .解:令u=x 6,则x=6u ,原式=∫236x -x dx =6∫1-x x 3dx=6∫(1-x 1x 1-x 13-+)dx=6∫(1-x 1+x 2+x+1)dx=6[∫1-x 1d(x-1)+ ∫x 2dx+∫xdx+∫dx]=6(ln|x-1|+3x 3+2x 2+x)+C=6ln|x-1|+2x 3+3x 2+6x+C=6ln|6u -1|+2u +33u +66u +C.例7:求∫22x -a dx (a>0).解:令x=asint, |t|<2π,则t=arcsin ax ,原式=∫t sin a -a 222d(asint)=a 2∫cos 2tdt=4a 2∫(cos2t+1)d(2t)=4a 2[∫cos2td(2t)+∫d(2t)]=4a 2(sin2t+2t)+C =4a 2(2sinarcsin a x cosarcsin a x +2arcsin a x )+C=2a 2(ax2a x -1⎪⎭⎫⎝⎛+arcsin a x )+C.例8:求∫22a-x dx (a>0).解:令x=asect, 0<t<2π, 则t=arcsec ax , 原式=∫22a -)asect (d(asect)=∫ttan tantdtsect ⋅=∫sectdt=ln|sect+tant|+C 1 =ln|secarcsec a x +tanarcsec a x |+C 1=ln|a x +ax22xa -1|+C 1 =ln|a x +aa -x 22|+C 1=ln|x+22a -x |-lna+C 1=ln|x+22a -x |+C.例9:求∫222)a (x dx+(a>0). 解:令x=atant, |t|<2π, 则t=arctan ax ,原式=∫222]a )atant ([d(atant)+=3a 1∫t sec t sec 42dt=3a 1∫cos 2tdt=3a 1∫21cos2t +dt =34a 1∫(cos2t+1)d(2t)=34a 1[∫cos2td(2t)+∫d(2t)]=34a 1(sin2t+2t)+C =32a 1sintcost+32a t +C=)t tan 1(2a tant23++32a t +C=)ax1(2a a x223++32a a x arctan +C=32a 1(22a x ax ++arctan a x )+C.例10:求∫1-x xdx 22.解法1:(运用第一换元积分法)原式=∫23x1-1x dx =-∫2x 1-1)x 1d(x 1=2x 1-1+C=1-x x 12+C .解法2:(运用第二换元积分法)令x=sect, 则t=arcsecx. 原式=∫1-t sec t sec d(sect)22=∫tant t sec tant sect 2⋅⋅dt=∫costdt=sint+C=tsec 1-12+C =2x1-1+C=1-x x 12+C .二、分部积分法:定理8.5:(分部积分法)若u(x)与v(x)可导,不定积分∫u ’(x)v(x)dx 存在,则∫u(x)v ’(x)dx 也存在,并有∫u(x)v ’(x)dx=u(x)v(x)-∫u ’(x)v(x)dx. 可简写为:∫udv=uv-∫vdu. (分部积分公式) 证:由(u(x)v(x))’=u ’(x)v(x)+u(x)v ’(x),得∫(u(x)v(x))’dx=∫[u ’(x)v(x)+u(x)v ’(x)]dx=∫u ’(x)v(x)dx+∫u(x)v ’(x)dx ,即有 ∫u(x)v ’(x)dx=∫(u(x)v(x))’dx-∫u ’(x)v(x)dx=u(x)v(x)-∫u ’(x)v(x)dx.例11:求∫xcosxdx.解:∵∫sinxdx=-cosx+C ,∴∫xcosxdx=∫xdsinx=xsinx-∫sinxdx=xsinx+cosx+C.例12:求∫arctanxdx.解:∵∫xd(arctanx)=∫1x x 2+dx=21∫1x 12+d(x 2+1)=21ln(x 2+1)+C ,∴∫arctanxdx=xarctanx-∫xd(arctanx)=xarctanx-21ln(x 2+1)+C.例13:求∫x 3lnxdx.解:令t=lnx ,则x=e t ,∫x 3lnxdx=∫e 3t tde t =∫e 4t tdt=41∫tde 4t .∵∫e 4t dt=41e 4t +C ,∴41∫tde 4t =41(te 4t -∫e 4t dt)=161e 4t(4t-1)+C. ∴原式=161x 4(4lnx-1)+C.例14:求∫x 2e -x dx.解:∫x 2e -x dx=-∫x 2de -x ,又∫e -x dx 2=2∫x e -x dx=-2∫x de -x .∵∫e -x dx=-e -x +C ,∴∫xde -x =xe -x -∫e -x dx=xe -x +e -x +C ,∴∫e -x dx 2=-2(xe -x +e -x )+C , 原式=-(x 2e -x -∫e -x dx 2)=-x 2e -x -2(xe -x +e -x )+C=-x 2e -x -2xe -x -2e -x +C.例15:求I 1=∫e ax cosbxdx 和I 2=∫e ax sinbxdx.解:I 1=a1∫cosbxde ax =a1[e ax cosbx-∫e ax d(cosbx)]=a1(e ax cosbx+bI 2). I 2=a1∫sinbxde ax =a1[e ax sinbx-∫e ax d(sinbx)]=a1(e ax sinbx-bI 1).由此得方程组:⎩⎨⎧sinbx e =aI +bI coxbx e =bI -aI ax21ax 21. 解方程组得: I 1=22ax b a bsinbx)(acosbx e +++C ;I 2=22ax b a bcosbx)(asinbx e +-+C.。
§2 基本积分方法一、换元积分法⎩⎨⎧第二类换元积分法第一类换元积分法换元积分法◆ 1.第一类换元积分法:设f (u ),)(x ϕ为连续函数,)(x ϕ可导,且C u F du u f +=⎰)()(,则C x F C u F du u f dx x x f +=+=========⎰⎰)]([)()()(')]([ϕϕϕ常见得凑微分形式:① ⎰⎰++=+)()(1)(b ax d b ax f adx b ax f② ⎰⎰++=+)()(1)(b ax d b ax f nadx b ax f n n n ③⎰⎰=)(ln )(ln 1)(ln x d x f dx x x f④ ⎰⎰=)(ln )(ln 1)(ln x d x f dx xx f⑤⎰⎰=)(sin )(sin cos )(sin x d x f xdx x f⑥⎰⎰-=)(cos )(cos sin )(cos x d x f xdx x f ⑦⎰⎰=)(tan )(tan sec )(tan 2x d x f xdx x f⑧ ⎰⎰=-)(arcsin )(arcsin 1)(arcsin 2x d x f dx xx f 例2、1计算dx x x x⎰+)1(arctan 22解:令t x =arctan ,tdt dx 2sec =,则2cot )1(csc sec tan sec )1(arctan 2222222t t td dt t t dt tt t t dx x x x --=-==+⎰⎰⎰⎰=2cot cot 2t dt t t t -+-⎰=C t t t t +-+-2|sin |ln cot 2=C x x x x x +-++-22)(arctan 211||ln arctan 。
例2、2计算下列积分:(1))1ln(x x e e +⎰; (2)⎰+-dx xxcos 1cos 1解:(1)⎰⎰++=+)1()1ln()1ln(x x x x e d e e eC e e e dx ee e e e xx x xx xxx+-++=+⋅+-+⋅+=⎰)1ln()1(1)1()1()1ln( )(x u ϕ=(2)dx xxx dx x x x dx x x ⎰⎰⎰--=-+-=+-222sin cos 2sin 2)cos 1)(cos 1()cos 1(cos 1cos 1 C x x x xx d dx xdx ++--=--=⎰⎰⎰sin 2cot 2sin sin 2csc 222 ◆ 2.第二类换元积分法:)(t ϕ单调、可导且0)(≠'t ϕ,又)()]([t t f ϕϕ'有原函数)(t G 。