高中数学人教版选修2-1教师专用同步作业解析(含答案)第一章 常用逻辑用语 章末复习提升
- 格式:docx
- 大小:445.24 KB
- 文档页数:7
§1.2充分条件与必要条件【课时目标】 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.1.如果已知“若p,则q”为真,即p⇒q,那么我们说p是q的__________,q是p的__________.2.如果既有p⇒q,又有q⇒p,就记作________.这时p是q的____________条件,简称________条件,实际上p与q互为________条件.如果p⇒q且q⇒p,则p是q的________________条件.一、选择题1.“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的()A.必要不充分条件B.充分不必要条件C.充分必要条件二、填空题7.用符号“⇒”或“⇒”填空.(1)a>b________ac2>bc2;(2)ab≠0________a≠0.8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是________.9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.三、解答题10.下列命题中,判断条件p是条件q的什么条件:(1)p:|x|=|y|,q:x=y.(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形.11.设x,y∈R,求证|x+y|=|x|+|y|成立的充要条件是xy≥0.12.已知P={x|a-4<x<a+4},Q={x|x2-4x+3<0},若x∈P是x∈Q的必要条件,求实数a的取值范围.【能力提升】13.记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为min {}x 1,x 2,…,x n .已知△ABC 的三边边长为a ,b ,c (a ≤b ≤c ),定义它的倾斜度为l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a , 则“l =1”是“△ABC 为等边三角形”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件14.已知数列{a n }的前n 项和为S n =(n +1)2+c ,探究{a n }是等差数列的充要条件.1.判断p 是q 的什么条件,常用的方法是验证由p 能否推出q ,由q 能否推出p ,对于否定性命题,注意利用等价命题来判断.2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A 的充要条件为B ”的命题的证明:A ⇒B 证明了必要性;B ⇒A 证明了充分性.“A 是B 的充要条件”的命题的证明:A ⇒B 证明了充分性;B ⇒A 证明了必要性.§1.2 充分条件与必要条件知识梳理1.充分条件 必要条件2.p ⇔q 充分必要 充要 充要 既不充分又不必要作业设计1.A [对于“x >0”⇒“x ≠0”,反之不一定成立.因此“x >0”是“x ≠0”的充分而不必要条件.]2.A [∵q ⇒p ,∴綈p ⇒綈q ,反之不一定成立,因此綈p 是綈q 的充分不必要条件.]3.B [因为N M .所以“a ∈M ”是“a ∈N ”的必要而不充分条件.]4.A [把k =1代入x -y +k =0,推得“直线x -y +k =0与圆x 2+y 2=1相交”;但“直线x -y +k =0与圆x 2+y 2=1相交”不一定推得“k =1”.故“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分而不必要条件.]5.A [l ⊥α⇒l ⊥m 且l ⊥n ,而m ,n 是平面α内两条直线,并不一定相交,所以l ⊥m 且l ⊥n 不能得到l ⊥α.]6.B [当a <0时,由韦达定理知x 1x 2=1a<0,故此一元二次方程有一正根和一负根,符合题意;当ax 2+2x +1=0至少有一个负数根时,a 可以为0,因为当a =0时,该方程仅有一根为-12,所以a 不一定小于0.由上述推理可知,“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的充分不必要条件.]7.(1) ⇒ (2)⇒8.a >2解析 不等式变形为(x +1)(x +a )<0,因当-2<x <-1时不等式成立,所以不等式的解为-a <x <-1.由题意有(-2,-1)(-a ,-1),∴-2>-a ,即a >2.9.b ≥-2a 解析 由二次函数的图象可知当-b 2a≤1,即b ≥-2a 时,函数y =ax 2+bx +c 在[1,+∞)上单调递增.10.解 (1)∵|x |=|y |⇒x =y ,但x =y ⇒|x |=|y |,∴p 是q 的必要条件,但不是充分条件.(2)△ABC 是直角三角形⇒△ABC 是等腰三角形.△ABC 是等腰三角形⇒△ABC 是直角三角形.∴p 既不是q 的充分条件,也不是q 的必要条件.(3)四边形的对角线互相平分⇒四边形是矩形.四边形是矩形⇒四边形的对角线互相平分.∴p 是q 的必要条件,但不是充分条件.11.证明 ①充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,则|x +y |=|y |,|x |+|y |=|y |,∴等式成立.当xy >0时,即x >0,y >0,或x <0,y <0,又当x >0,y >0时,|x +y |=x +y ,|x |+|y |=x +y ,∴等式成立.当x <0,y <0时,|x +y |=-(x +y ),|x |+|y |=-x -y ,∴等式成立.总之,当xy ≥0时,|x +y |=|x |+|y |成立.②必要性:若|x +y |=|x |+|y |且x ,y ∈R ,则|x +y |2=(|x |+|y |)2,即x 2+2xy +y 2=x 2+y 2+2|x ||y |,∴|xy |=xy ,∴xy ≥0.综上可知,xy ≥0是等式|x +y |=|x |+|y |成立的充要条件.12.解 由题意知,Q ={x |1<x <3},Q ⇒P ,∴⎩⎪⎨⎪⎧a -4≤1a +4≥3,解得-1≤a ≤5. ∴实数a 的取值范围是[-1,5].13.A [当△ABC 是等边三角形时,a =b =c ,∴l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =1×1=1. ∴“l =1”是“△ABC 为等边三角形”的必要条件.∵a ≤b ≤c ,∴max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =c a. 又∵l =1,∴min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =a c, 即a b =a c 或b c =a c, 得b =c 或b =a ,可知△ABC 为等腰三角形,而不能推出△ABC 为等边三角形. ∴“l =1”不是“△ABC 为等边三角形”的充分条件.]14.解 当{a n }是等差数列时,∵S n =(n +1)2+c ,∴当n ≥2时,S n -1=n 2+c ,∴a n =S n -S n -1=2n +1,∴a n +1-a n =2为常数.又a 1=S 1=4+c ,∴a 2-a 1=5-(4+c )=1-c ,∵{a n }是等差数列,∴a 2-a 1=2,∴1-c =2.∴c =-1,反之,当c =-1时,S n =n 2+2n ,可得a n =2n +1 (n ≥1)为等差数列,∴{a n }为等差数列的充要条件是c =-1.。
第一章 1.1 1.1.1一、选择题1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0B.1 C.2 D.3[答案] C[解析]①④是命题,②③不是命题.地球上的四大洋是不完整的句子.2.若a>1,则函数f(x)=a x是增函数()A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案] B[解析]当a>1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α[答案] D[解析]验证排除法:A选项中缺少条件m与n相交;B选项中两平行平面内的两条直线m与n关系不能确定;C选项中缺少条件n⊄α.4.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中是真命题的是()A.①②③B.①②④C.①③④D.②③④[答案] B[解析]①中Δ=4-4(-k)=4+4k>0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.5.对于向量a、b、c和实数λ,下列命题中的真命题是()A. a·b=0,则a=0或b=0B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-bD.若a·b=a·c,则b=c[答案] B[解析]A选项中可能有a⊥b;C选项中a2=b2说明|a|=|b|,a与b并不一定共线,D选项中a·b=a·c说明a·(b-c)=0,则a⊥(b-c)6.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是() A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形[答案] C[解析]该命题的条件是“一个四边形是平行四边形”,结论是“这个四边形的对角线既互相平分,也互相垂直”.二、填空题7.(1)三角形的三个内角的和等于180°.(2)今年运动会我们班还能得第一吗?(3)2012年奥运会的举办城市是英国伦敦.(4)这是一棵大树呀!(5)实数的平方是正数.(6)能被4整除的数一定能被2整除.上述语句中是命题的序号是________.[答案](1)(3)(5)(6)[解析](2)是疑问句不是命题;(4)是感叹句不是命题,(1)(3)(5)(6)是命题.8.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.[答案]0[解析]∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b时,两平面内分别可以作出直线a与c,即直线a与c不一定共面,∴命题④不正确.综上所述,真命题的个数为0.三、解答题9.判断下列语句中哪些是命题,是命题的,请判断真假.(1)末位是0的整数能被5整除;(2)△ABC中,若∠A=∠B,则sin A=sin B;(3)余弦函数是周期函数吗?(4)求证:当x∈R时,方程x2+x+2=0无实根.[解析](1)是命题,真命题.(2)是命题,真命题.(3)、(4)不是命题.10.把下列命题改写成“若p,则q”的形式,并判断真假.(1)对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.[解析](1)可写为:“若四棱柱的对角线相等,则它是长方体”,这个命题是假命题,如底面是等腰梯形的直四棱柱.(2)可写为:“若一个数是整数,则它的平方是非负整数”,真命题.(3)可写为:“若一个数能被10整除,则它既能被2整除,也能被5整除”,真命题.一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,在当时条件下,可以作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[答案] A[解析]“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.2.设α、β、γ为两两不重合的平面,c、m、n为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c⊂α,则c∥β;③如果α∩β=c,β∩γ=m,γ∩α=n,c∥γ,则m∥n.其中真命题个数是()A.0个B.1个C.2个D.3个[答案] C[解析]①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c⊂α,∴c与β无公共点,∴c∥β,故②正确;由c∥γ,c⊂β,β∩γ=m得c∥m,同理可得c ∥n,∴m∥n,故③正确.3.下面的命题中是真命题的是( )A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a>0 C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB →·BC →>0,则△ABC 为锐角三角形[答案] B[解析] y =sin 2x =1-cos2x 2,T =2π2=π,故A 为假命题; 当M ⊆N 时,M ∪N =N ,故C 为假命题;当AB →·BC →>0时,向量AB →与BC →的夹角为锐角,B 为钝角,故D 为假命题.4.“若x 2-2x -8<0,则p ”为真命题,那么p 是( )A .{x |-2<x <4}B .{x |2<x <4}C .{x |x >4或x <-2}D .{x |x >4或x <2} [答案] A[解析] x 2-2x -8<0解得-2<x <4,∴p 是{x |-2<x <4},故选A.二、填空题5.给出下列四个命题:①若a >b >0,则1a >1b ;②若a >b >0,则a -1a >b -1b ;③若a >b >0,则2a +b a +2b >a b;④若a >0,b >0,且2a +b =1,则2a +1b的最小值为9. 其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ②④[解析] ①在a >b >0两端同乘以1ab 可得1b >1a,故①错; ②由于⎝⎛⎭⎫a -1a -⎝⎛⎭⎫b -1b =(a -b )⎝⎛⎭⎫1+1ab >0, 故②正确;③由于2a +b a +2b -a b =b 2-a 2(a +2b )b <0,即2a +b a +2b <a b, 故③错;④由2a +1b =⎝⎛⎭⎫2a +1b ·(2a +b )=5+2b a +2a b≥5+22b a ·2a b =9,当且仅当2b a =2a b ,即a =b =13时取得等号,故④正确.6.命题:若a >0,则二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包括边界),条件p :________,结论q :______________________________,是________命题.(填“真”或“假”)[答案] a >0 二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包括边界) 真三、解答题7.把下列命题改写成“若p ,则q ”的形式.(1)ac >bc ⇒a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)方程x 2-2x -3=0的解为x =3或x =-1.[解析] (1)若ac >bc ,则a >b .(2)若m >14,则mx 2-x +1=0无实根. (3)若x 2-2x -3=0,则x =3或x =-1.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.[解析] 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0.解得x ≤-1或x ≥3.故命题p :x ≤-1或x ≥3.又命题q :0<x <4,且命题p 为真,命题q 为假,则⎩⎪⎨⎪⎧x ≤-1或x ≥3x ≤0或x ≥4, 所以x ≤-1或x ≥4.所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).。
第一章章末学考测评(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题是真命题的是(B)A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.底面是正多边形的直棱柱叫做正棱柱C.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台D.侧棱与底面垂直的平行六面体叫长方体解析由立体几何知识知,选项B为真命题.2.已知a∈R,则“a>2”是“a2>2a”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析a>2⇒a2>2a,反之不成立.如a<0.3.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R 上是增函数”的(A)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析由函数f(x)=a x在R上是减函数可得0<a<1;由函数g(x)=(2-a)x3在R上是增函数可得a<2.因为0<a<1⇒a<2,a<2⇒/0<a<1,所以题干中前者为后者的充分不必要条件,故选A.4.(2018·广东顺德质检)给出命题:p:3>1,q:4∈{2,3},则在下列三个命题:“p∧q”“p ∨q”“¬p”中,真命题的个数为(D)A.0B.3C.2D.1解析因为p真q假,所以“p∧q”为假,“p∨q”为真,“¬p”为假.5.全称命题“∀x∈R,x2+5x=4”的否定是(C)A.∃x0∈R,x20+5x0=4B.∀x∈R,x2+5x≠4C.∃x0∈R,x20+5x0≠4D.以上都不正确解析全称命题的否定是特称命题.6.下列有关命题的说法错误的是(C)A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.对于命题p:∃x0∈R,使得x20+x0+1<0,则¬p:∀x∈R,均有x2+x+1≥0 解析C中,p∧q为假,p,q有可能一真一假,也有可能都为假.7.已知p:x≥k,q:3x+1<1,如果p是q的充分不必要条件,则实数k的取值范围是(B)A.[1,+∞)B.(2,+∞)C.[-1,+∞)D.(-∞,-1)解析3x+1<1⇔x<-1或x>2,又p是q的充分不必要条件,则k>2,故选B.8.设x,y是两个实数,则命题“x,y中至少有一个大于1”的充分不必要条件是(B) A.x+y=2B.x+y>2C.x2+y2>2D.xy>1解析若x≤1且y≤1时,可得x+y≤2,反之不成立(用特殊值即可判定),故“x≤1且y≤1”是“x+y≤2”的充分不必要条件,那么根据原命题与逆否命题的等价性,可得“x +y>2”是“x,y中至少有一个大于1”的充分不必要条件.故选B.9.设a,b∈R,则“(a-b)a2<0”是“a<b”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析∵(a-b)a2<0⇒a<b,而当a=0时,a<b⇒/(a-b)a2<0,∴“(a-b)a2<0”是“a<b”的充分不必要条件.故选A.10.以下说法正确的是(D)A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N,x3>x2”的否定是“∃x0∈N,x30>x20”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期为π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析“负数的平方是正数”即为“∀x<0,x2>0”,是全称命题,所以A不正确;因为全称命题“∀x∈N,x3>x2”的否定为“∃x0∈N,x30≤x20”,所以B不正确;因为f (x )=cos 2ax -sin 2ax =cos 2ax ,当其最小正周期为π时,有2π|2a |=π,则|a |=1⇒a =±1.故“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,所以C 不正确,故选D .11.若对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( C ) A .{k |-4≤k ≤0} B .{k |-4≤k <0} C .{k |-4<k ≤0}D .{k |-4<k <0}解析 依题意,有k =0或⎩⎪⎨⎪⎧k <0,k 2+4k <0,解得-4<k ≤0.12.“a =18”是“对任意的正数x,2x +ax ≥1”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 a =18⇒2x +a x =2x +18x≥22x ·18x =1.另一方面,对任意正数x,2x +ax≥1⇒2x 2+a ≥x ⇒2x 2-x +a ≥0恒成立⇒2⎝⎛⎭⎫x -142≥18-a 恒成立⇒18-a ≤0,即a ≥18,故选A . 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围是___[-1,3]__.解析 由题意,得“∀x ∈R ,x 2+(a -1)x +1≥0”是真命题,∴Δ=(a -1)2-4≤0,解得-1≤a ≤3.14.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的范围是__[1,2)__. 解析 由x ∈[2,5]或x ∈{x |x <1或x >4}得x <1或x ≥2.∵此命题是假命题,∴1≤x <2. 15.已知A 和B 两个命题,若A 是B 的充分不必要条件,则“¬A ”是“¬B ”的__必要不充分__条件.16.(2018·湖北武汉检测)若y =f (x )为定义在D 上的函数,则“存在x 0∈D ,使得[f (-x 0)]2≠[f (x 0)]2”是“函数y =f (x )为非奇非偶函数”的__充分不必要__条件.解析 当x 0∈D 时,若[f (-x 0)]2≠[f (x 0)]2,则f (-x 0)≠f (x 0)或f (-x 0)≠-f (x 0),所以函数y =f (x )为非奇非偶函数;若函数y =f (x )为非奇非偶函数,但当x 0=0时,有f (-x 0)=f (x 0),即[f (-x 0)]2=[f (x 0)]2.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)写出由下列各组命题构成的“p 或q ”“p 且q ”以及“非p ”形式的命题,并判断它们的真假.(1)p :3是质数,q :3是偶数;(2)p :x =-2是方程x 2+x -2=0的解,q :x =1是方程x 2+x -2=0的解. 解析 (1)p 或q :3是质数或3是偶数; p 且q :3是质数且3是偶数; 非p :3不是质数.因为p 真,q 假,所以“p 或q ”为真命题,“p 且q ”为假命题,“非p ”为假命题. (2)p 或q :x =-2是方程x 2+x -2=0的解或x =1是方程x 2+x -2=0的解; p 且q :x =-2是方程x 2+x -2=0的解且x =1是方程x 2+x -2=0的解; 非p :x =-2不是方程x 2+x -2=0的解.因为p 真,q 真,所以“p 或q ”为真命题,“p 且q ”为真命题,“非p ”为假命题. 18.(12分)写出命题“若x 2+7x -8=0,则x =-8或x =1”的逆命题、否命题、逆否命题,并分别判断它们的真假.解析 逆命题:若x =-8或x =1,则x 2+7x -8=0. 逆命题为真.否命题:若x 2+7x -8≠0,则x ≠-8且x ≠1. 否命题为真.逆否命题:若x ≠-8且x ≠1,则x 2+7x -8≠0. 逆否命题为真.19.(12分)(2018·黑龙江哈尔滨调研)已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,当m ∈[-1,1]时,不等式a 2-5a -3≥|x 1-x 2|恒成立;命题q :不等式ax 2+2x -1>0有解.若“p ∧q ”是假命题,“¬p ”也是假命题,求实数a 的取值范围.解析 ∵“p ∧q ”是假命题,“¬p ”是假命题, ∴命题p 是真命题,命题q 是假命题. ∵x 1,x 2是方程x 2-mx -2=0的两个实根,∴⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=-2, ∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8,∴当m ∈[-1,1]时,|x 1-x 2|max =3, ∴a 2-5a -3≥3, ∴a ≥6或a ≤-1.∴当命题p 为真命题时,a ≥6或a ≤-1. 命题q :不等式ax 2+2x -1>0有解, ①当a >0时,Δ=4+4a >0,不等式有解; ②当a =0时,2x -1>0有解;③当a <0时,令Δ=4+4a >0,得-1<a <0. ∴当命题q 为真命题时,a >-1. 又命题q 是假命题,∴a ≤-1.由⎩⎪⎨⎪⎧a ≥6或a ≤-1a ≤-1⇒a ≤-1. ∴实数a 的取值范围为{a |a ≤-1}.20.(12分)(2018·天津一中模拟)求证:ax 2+bx +c =0有一根是1的充要条件是a +b +c =0.证明 必要性:由ax 2+bx +c =0有一根为1,把它代入方程,即得a +b +c =0. 充分性:由a +b +c =0,得a =-b -c ,代入ax 2+bx +c =0,得(-b -c )x 2+bx +c =0,即-bx 2-cx 2+bx +c =0,所以bx (1-x )+c (1-x 2)=0, 即(1-x )[bx +c (1+x )]=0,则x =1是方程ax 2+bx +c =0的一个根.所以ax 2+bx +c =0有一根是1的充要条件是a +b +c =0.21.(12分)(2018·江苏泰州海陵期中)已知p :实数x 满足x -a <0,q :实数x 满足x 2-4x +3≤0.(1)若a =2时,“p ∧q ”为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.解析 (1)由x -a <0,得x <a .当a =2时,x <2,即p 为真命题时,x <2. 由x 2-4x +3≤0,得1≤x ≤3,∴q 为真命题时,1≤x ≤3.若“p ∧q ”为真,∴1≤x <2,∴实数x 的取值范围为[1,2).(2)设A ={x |x ∈p (x )}=(-∞,a ),B ={x |x ∈q (x )}=[1,3].又q 是p 的充分不必要条件,∴B ⊆A ,∴a >3,∴实数a 的取值范围为(3,+∞).22.(12分)已知p :关于x 的方程x 2+mx +1=0有两个不等的负实根,q :函数f (x )=x 2-2mx +m 2+1在区间(1,3)内的最小值为1,是否存在实数m ,使“p ∨q ”为真,“p ∧q ”为假,若存在,求m 的取值范围;若不存在,说明理由并加以证明.解析 因为x 2+mx +1=0有两个不相等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m <0,解得m >2.即命题p :m >2. 由f (x )=x 2-2mx +m 2+1=(x -m )2+1≥1在区间(1,3)内有最小值1,所以1<m <3. 即命题q :1<m <3.因为“p ∧q ”为假,“p ∨q ”为真,则p 与q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧m >2,m ≥3或m ≤1,所以m ≥3.若p 假q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,所以1<m ≤2.所以m 的取值范围为{m |1<m ≤2或m ≥3}.。
1.1.3四种命题间的相互关系【课时目标】 1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)(2)①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是()A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是________________________________________,它是______命题.(填“真”“假”)8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”、“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.12.若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【能力提升】13.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b 1+b; ②若正整数m 和n 满足m ≤n ,则m (n -m )≤n 2; ③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( )A .0B .1C .2D .314.a 、b 、c 为三个人,命题A :“如果b 的年龄不是最大的,那么a 的年龄最小”和命题B :“如果c 的年龄不是最小的,那么a 的年龄最大”都是真命题,则a 、b 、c 的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.]2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.证明若a,b,c都是奇数,则a2,b2,c2都是奇数.得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,即原命题的逆否命题为真,故原命题也为真命题.所以a,b,c不可能都是奇数.13.B [①用“分部分式”判断,具体:a 1+a ≥b 1+b ⇔1-11+a ≥1-11+b ⇔11+a ≤11+b,又a ≥b >-1⇔a +1≥b +1>0知本命题为真命题.②用基本不等式:2xy ≤x 2+y 2 (x >0,y >0),取x =m ,y =n -m ,知本命题为真. ③圆O 1上存在两个点A 、B 满足弦AB =1,所以P 、O 2可能都在圆O 1上,当O 2在圆O 1上时,圆O 1与圆O 2相交.故本命题为假命题.]14.解 能确定.理由如下:显然命题A 和B 的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A 为真可知,当b 不是最大时,则a 是最小的,即若c 最大,则a 最小,所以c >b >a ;而它的逆否命题也为真,即“a 不是最小,则b 是最大”为真,所以b >a >c .总之由命题A 为真可知:c >b >a 或b >a >c .②同理由命题B 为真可知a >c >b 或b >a >c .从而可知,b >a >c .所以三个人年龄的大小顺序为b 最大,a 次之,c 最小.。
高中数学人教a版高二选修2-1_第一章_常用逻辑用语_1.2.1、1.2.2有答案(建议用时:45分钟)[学业达标]一、选择题1.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】∵A={1,a},B={1,2,3},A⊆B,∴a∈B且a≠1,∴a=2或3,∴“a=3”是“A⊆B”的充分而不必要条件.【答案】 A2.已知命题甲:“a,b,c成等差数列”,命题乙:“ab+cb=2”,则命题甲是命题乙的()A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件【解析】若ab+cb=2,则a+c=2b,由此可得a,b,c成等差数列;当a,b,c成等差数列时,可得a+c=2b,但不一定得出ab+cb=2,如a=-1,b=0,c=1.所以命题甲是命题乙的必要而不充分条件.【答案】 A3.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.【答案】 A4.“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.【答案】 B5.肃临夏期中)已知函数f(x)=x+b cos x,其中b为常数,那么“b=0”是“f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】当b=0时,f(x)=x为奇函数;当f(x)为奇函数时,f(-x)=-f(x),∴-x+b cos x=-x-b cos x,从而2b cos x=0,b=0.【答案】 C二、填空题6.“b2=ac”是“a,b,c成等比数列”的________条件.【解析】“b2=ac”⇒/“a,b,c成等比数列”,如b2=ac=0;而“a,b,c成等比数列”⇒“b2=ac”.【答案】必要不充分7.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.【解析】 若直线l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行,则需满足1×2(a -1)-a ×(3-a )=0,化简整理得a 2-a -2=0,解得a =-1或a =2,经验证得当a =-1时,两直线平行,当a =2时,两直线重合,故“a =-1”是“l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行”的充要条件.【答案】 充要8.在下列各项中选择一项填空:①充分不必要条件;②必要不充分条件;③充要条件;④既不充分也不必要条件.(1)集合A ={-1,p ,2},B ={2,3},则“p =3”是“A ∩B =B ”的________;(2)“a =1”是“函数f (x )=|2x -a |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数”的________. 【解析】 (1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在⎣⎢⎡⎭⎪⎫12,+∞上是增函数;但由f (x )=|2x -a |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数”的充分不必要条件.【答案】 (1)③ (2)①三、解答题9.下列各题中,p 是q 的什么条件,q 是p 的什么条件,并说明理由.(1)p :|x |=|y |,q :x =y;(2)在△ABC ,p :sin A >12,q :A >π6. 【解】 (1)因为|x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |,所以p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)因为A ∈(0,π)时,sin A ∈(0,1],且A ∈⎝⎛⎦⎥⎤0,π2时,y =sin A 单调递增,A ∈⎣⎢⎡⎭⎪⎫π2,π时,y =sin A 单调递减,所以sin A >12⇒A >π6,但A >π6⇒/ sin A >12. 所以p 是q 的充分不必要条件,q 是p 的必要不充分条件.10.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B. 即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A -B =B ,sin(A -B )=sin B ,sin(A +B )=sin A cos B +cos A sin B ,sin(A -B )=sin A cos B -cos A sin B .∴sin(A +B )=sin B (1+2cos A ).∵A ,B ,C 为△ABC 的内角,∴sin(A +B )=sin C ,即sin C =sin B (1+2cos A ).∴sin C sin B =1+2cos A =1+b 2+c 2-a 2bc =b 2+c 2-a 2+bc bc, 即c b =b 2+c 2+bc -a 2bc. 化简得a 2=b (b +c ).∴“a 2=b (b +c )”是“A =2B ”的充要条件.[能力提升]1.如果A 是B 的必要不充分条件,B 是C 的充要条件,D 是C 的充分不必要条件,那么A 是D 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】由条件,知D⇒C⇔B⇒A,即D⇒A,但A⇒/D,故选A.【答案】 A2.设有如下命题:甲:相交两直线l,m在平面α内,且都不在平面β内;乙:l,m中至少有一条与β相交;丙:α与β相交.那么当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C.乙是丙的充分必要条件D.乙既不是丙的充分条件,又不是丙的必要条件【解析】当l,m中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙⇒丙,反之,当α与β相交时,l,m中也至少有一条与β相交,否则若l,m都不与β相交,又都不在β内,则l∥β,m∥β,从而α∥β,与已知α与β相交矛盾,即丙⇒乙,故选C.【答案】 C3.已知f(x)是R上的增函数,且f(-1)=-4,f(2)=2,设P={x|f(x+t)<2},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围是________.【解析】因为f(x)是R上的增函数,f(-1)=-4,f(x)<-4,f(2)=2,f(x+t)<2,所以x<-1,x+t<2,x<2-t.又因为“x∈P”是“x∈Q”的充分不必要条件,所以2-t<-1,即t>3.【答案】(3,+∞)4.已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}为等比数列的充要条件为q=-1.【证明】充分性:因为q=-1,所以a1=S1=p-1.当n≥2时,a n=S n-S n-1=p n-1(p-1),显然,当n=1时,也成立.因为p≠0,且p≠1,所以a n+1a n=p n(p-1)p n-1(p-1)=p,即数列{a n}为等比数列,必要性:当n=1时,a1=S1=p+q.当n≥2时,a n=S n-S n-1=p n-1(p-1).因为p≠0,且p≠1,所以a n+1a n=p n(p-1)p n-1(p-1)=p.因为{a n}为等比数列,所以a2a1=a n+1a n=p,即p2-pp+q=p.所以-p=pq,即q=-1.所以数列{a n}为等比数列的充要条件为q=-1.。
章末总结知识点一四种命题间的关系命题是能够判断真假、用文字或符号表述的语句.一个命题与它的逆命题、否命题之间的关系是不确定的,与它的逆否命题的真假性相同,两个命题是等价的;原命题的逆命题和否命题也是互为逆否命题.【例1】判断下列命题的真假.(1)若x∈A∪B,则x∈B的逆命题与逆否命题;(2)若0<x<5,则|x-2|<3的否命题与逆否命题;(3)设a、b为非零向量,如果a⊥b,则a·b=0的逆命题和否命题.知识点二充要条件及其应用充分条件和必要条件的判定是高中数学的重点内容,综合考察数学各部分知识,是高考的热点,判断方法有以下几种:(1)定义法(2)传递法:对于较复杂的关系,常用推出符号进行传递,根据这些符号所组成的图示就可以得出结论.互为逆否的两个命题具有等价性,运用这一原理,可将不易直接判断的命题化为其逆否命题加以判断.(3)等价命题法:对于含有逻辑联结词“非”的充分条件、必要条件的判断,往往利用原命题与其逆否命题是等价命题的结论进行转化.(4)集合法:与逻辑有关的许多数学问题可以用范围解两个命题之间的关系,这时如果能运用数形结合的思想(如数轴或Venn图等)就能更加直观、形象地判断出它们之间的关系.【例2】若p:-2<a<0,0<b<1;q:关于x的方程x2+ax+b=0有两个小于1的正根,则p是q的什么条件?【例3】设p:实数x满足x2-4ax+3a2<0,a<0.q:实数x满足x2-x-6≤0或x2+2x-8>0.且綈p是綈q的必要不充分条件,求实数a的取值范围.知识点三逻辑联结词的应用对于含逻辑联结词的命题,根据逻辑联结词的含义,利用真值表判定真假.利用含逻辑联结词命题的真假,判定字母的取值范围是各类考试的热点之一.【例4】判断下列命题的真假.(1)对于任意x,若x-3=0,则x-3≤0;(2)若x=3或x=5,则(x-3)(x-6)=0.【例5】 设命题p :函数f (x )=lg ⎝⎛⎭⎫ax 2-x +116a 的定义域为R ;命题q :不等式2x +1<1+ax 对一切正实数均成立.如果命题p 或q 为真命题,命题p 且q 为假命题,求实数a的取值范围.知识点四 全称命题与特称命题全称命题与特称命题的判断以及含一个量词的命题的否定是高考的一个重点,多以客观题出现.全称命题要对一个范围内的所有对象成立,要否定一个全称命题,只要找到一个反例就行.特称命题只要在给定范围内找到一个满足条件的对象即可. 全称命题的否定是特称命题,应含存在量词. 特称命题的否定是全称命题,应含全称量词. 【例6】 写出下列命题的否定,并判断其真假. (1)3=2; (2)5>4;(3)对任意实数x ,x >0; (4)有些质数是奇数.【例7】 已知函数f (x )=x 2-2x +5.(1)是否存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立,并说明理由. (2)若存在一个实数x 0,使不等式m -f (x 0)>0成立,求实数m 的取值范围.章末总结重点解读例1 解 (1)若x ∈A ∪B ,则x ∈B 是假命题,故其逆否命题为假,逆命题为若x ∈B ,则x ∈A ∪B ,为真命题.(2)∵0<x <5,∴-2<x -2<3, ∴0≤|x -2|<3.原命题为真,故其逆否命题为真. 否命题:若x ≤0或x ≥5,则|x -2|≥3.例如当x =-12,⎪⎪⎪⎪-12-2=52<3. 故否命题为假.(3)原命题:a ,b 为非零向量,a ⊥b ⇒a·b =0为真命题. 逆命题:若a ,b 为非零向量,a·b =0⇒a ⊥b 为真命题. 否命题:设a ,b 为非零向量,a 不垂直b ⇒a·b ≠0也为真.例2 解 若a =-1,b =12,则Δ=a 2-4b <0,关于x 的方程x 2+ax +b =0无实根,故p ⇒q .若关于x 的方程x 2+ax +b =0有两个小于1的正根,不妨设这两个根为x 1、x 2,且0<x 1≤x 2<1,则x 1+x 2=-a ,x 1x 2=b . 于是0<-a <2,0<b <1,即-2<a <0,0<b <1,故q ⇒p .所以,p 是q 的必要不充分条件.例3 解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0}. B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0} ={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件.∴A B ,∴⎩⎪⎨⎪⎧ a ≤-4a <0或⎩⎪⎨⎪⎧3a ≥-2a <0,解得-23≤a <0或a ≤-4.故实数a 的取值范围为(-∞,-4]∪⎣⎡⎭⎫-23,0. 例4 解 (1)∵x -3=0,有x -3≤0,∴命题为真;(2)∵当x =5时,(x -3)(x -6)≠0, ∴命题为假.例5 解 p :由ax 2-x +116a >0恒成立得⎩⎪⎨⎪⎧a >0Δ=1-4×a ×a 16<0,∴a >2. q :由2x +1<1+ax 对一切正实数均成立,令t =2x +1>1,则x =t 2-12,∴t <1+a ·t 2-12,∴2(t -1)<a (t 2-1)对一切t >1均成立.∴2<a (t +1),∴a >2t +1,∴a ≥1.∵p 或q 为真,p 且q 为假,∴p 与q 一真一假. 若p 真q 假,a >2且a <1不存在.若p 假q 真,则a ≤2且a ≥1,∴1≤a ≤2. 故a 的取值范围为1≤a ≤2. 例6 解 (1)3≠2,真命题; (2)5≤4,假命题;(3)存在一个实数x ,x ≤0,真命题; (4)所有质数都不是奇数,假命题.例7 解 (1)不等式m +f (x )>0可化为m >-f (x ), 即m >-x 2+2x -5=-(x -1)2-4.要使m >-(x -1)2-4对于任意x ∈R 恒成立,只需m >-4即可.故存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立,此时,只需m >-4. (2)不等式m -f (x 0)>0可化为m >f (x 0),若存在一个实数x 0,使不等式m >f (x 0)成立, 只需m >f (x )min .又f (x )=(x -1)2+4,∴f (x )min =4,∴m >4. 所以,所求实数m 的取值范围是(4,+∞)......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
第一章一、选择题.(·蚌埠高二检测)命题“若、都是奇数,则必为奇数”的等价命题是( ).如果是奇数,则、都是奇数.如果不是奇数,则、不都是奇数.如果、都是奇数,则不是奇数.如果、不都是奇数,则不是奇数[答案][解析]等价命题即其逆否命题..命题“若¬,则”是真命题,则下列命题一定是真命题的是( ).若,则¬.若,则¬.若¬,则.若¬,则¬[答案][解析]原命题与逆否命题互为等价命题,同真同假..命题“若>,则>(、、∈)”与它的逆命题、否命题、逆否命题中,真命题的个数为( )....[答案][解析]逆命题与否命题为真..(·厦门高二检测)给出命题:已知、为实数,若+=,则≤.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )....[答案][解析],∈,则≤()=,∴原命题为真,∴逆否命题为真,而≤,+不一定等于,∴真命题个..(·山东济宁高二月考)以下说法错误的是( ).如果一个命题的逆命题为真命题,那么它的否命题也必为真命题.如果一个命题的否命题为假命题,那么它本身一定为真命题.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数.一个命题的逆命题、否命题、逆否命题可以同为假命题[答案][解析]原命题与其逆否命题有相同的真假性,原命题与其逆命题、否命题的真假性没有关系,故选..(·东北师大附中高二检测)有下列四个命题:()“若-=,则、为相等的实数”的逆命题;()“若>,则>”的逆否命题;()“若>,则-->”的否命题;()“若是无理数,则、是无理数”的逆命题.其中真命题的个数是( )....[答案][解析]()逆命题“、为相等的实数,则-=”是真命题.()∵原命题为假,∴其逆否命题为假命题.()否命题“若≤,则--≤”,假如=-<,但--=>.为假命题.()逆命题“若,”是无理数,则也是无理数,假如=(),=,则=是有理数.二、填空题.(·广州高二检测)已知命题“若-<<+,则<<”的逆命题为真命题,则的取值范围是[答案][][解析]逆命题是“若<<,则-<<+”.∴(\\(-≤+≥))⇒≤≤∴的取值范围[]..设有两个命题:①关于的不等式+≥的解集是;②函数()=是减函数(>且≠).如果这两个命题中有且只有一个真命题,则的取值范围是[答案]{}∪[,+∞)[解析]①中当=时≥恒成立当≠时(\\(>,Δ≤))⇒>∴≥②()为减函数<<∵两个命题有且只有一个真命题∴两个命题一真一假(\\(≥≤或≥))或(\\(<<<))∴=或≥∴的取值范围{}∪[,+∞).。
1.1.3四种命题间的相互关系【课时目标】 1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)(2)①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是()A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是________________________________________,它是______命题.(填“真”“假”)8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”、“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.12.若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【能力提升】13.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b 1+b; ②若正整数m 和n 满足m ≤n ,则m (n -m )≤n 2; ③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( )A .0B .1C .2D .314.a 、b 、c 为三个人,命题A :“如果b 的年龄不是最大的,那么a 的年龄最小”和命题B :“如果c 的年龄不是最小的,那么a 的年龄最大”都是真命题,则a 、b 、c 的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.]2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.证明若a,b,c都是奇数,则a2,b2,c2都是奇数.得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,即原命题的逆否命题为真,故原命题也为真命题.所以a,b,c不可能都是奇数.13.B [①用“分部分式”判断,具体:a 1+a ≥b 1+b ⇔1-11+a ≥1-11+b ⇔11+a ≤11+b,又a ≥b >-1⇔a +1≥b +1>0知本命题为真命题.②用基本不等式:2xy ≤x 2+y 2 (x >0,y >0),取x =m ,y =n -m ,知本命题为真. ③圆O 1上存在两个点A 、B 满足弦AB =1,所以P 、O 2可能都在圆O 1上,当O 2在圆O 1上时,圆O 1与圆O 2相交.故本命题为假命题.]14.解 能确定.理由如下:显然命题A 和B 的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A 为真可知,当b 不是最大时,则a 是最小的,即若c 最大,则a 最小,所以c >b >a ;而它的逆否命题也为真,即“a 不是最小,则b 是最大”为真,所以b >a >c .总之由命题A 为真可知:c >b >a 或b >a >c .②同理由命题B 为真可知a >c >b 或b >a >c .从而可知,b >a >c .所以三个人年龄的大小顺序为b 最大,a 次之,c 最小.。
常用逻辑用语 1.要注意全称命题、特称命题的自然语言之间的转换. 2.正确理解“或”的意义,日常用语中的“或”有两类用法:其一是“不可兼”的“或”;其二是“可兼”的“或”,我们这里仅研究“可兼”的“或”. 3.有的命题中省略了“且”“或”,要正确区分. 4.常用“都是”表示全称肯定,它的特称否定为“不都是”,两者互为否定;用“都不是”表示全称否定,它的特称肯定可用“至少有一个是”来表示. 5.在判定充分条件、必要条件时,要注意既要看由p能否推出q,又要看由q能否推出p,不能顾此失彼.证明题一般是要求就充要条件进行论证,证明时要分两个方面,防止将充分条件和必要条件的证明弄混. 6.否命题与命题的否定的区别.对于命题“若p,则q”,其否命题形式为“若綈p,则綈q”,其命题的否定为“若p,则綈q”,即否命题是将条件、结论同时否定,而命题的否定是只否定结论.有时一个命题的叙述方式是简略式,此时应先分清条件p,结论q,改写成“若p,则q”的形式再判断.
1.转化与化归思想 将所研究的对象在一定条件下转化并归结为另一种研究对象的思想方法称之为转化与化归 思想.一般将有待解决的问题进行转化,使之成为大家熟悉的或容易解决的问题模式.本章主要体现原命题与其逆否命题之间的转化、逻辑语言与一般数学语言的转化等.通过转化,使复杂问题简单化,抽象问题具体化. 例1 判断下列命题的真假. (1)对角线不相等的四边形不是等腰梯形; (2)若x∉A∩B,则x∉A且x∉B; (3)若x≠y或x≠-y,则|x|≠|y|. 解 (1)该命题的逆否命题:“若一个四边形是等腰梯形,则它的对角线相等”,它为真命题,故原命题为真. (2)该命题的逆否命题:“若x∈A或x∈B,则x∈A∩B”,它为假命题,故原命题为假. (3)该命题的逆否命题:“若|x|=|y|,则x=y且x=-y”,它为假命题,故原命题为假. 跟踪训练1 下列各题中,p是q的什么条件? (1)p:圆x2+y2=r2与直线ax+by+c=0相切,q:c2=(a2+b2)r2(其中r>0); (2)p:x+y≠-2,q:x,y不都是-1. 解 (1)若圆x2+y2=r2与直线ax+by+c=0相切,圆心到直线ax+by+c=0的距离等于r,
即r=|c|a2+b2,所以c2=(a2+b2)r2;反过来,若c2=(a2+b2)r2,则|c|a2+b2=r成立,说明圆x2+y2=r2与直线ax+by+c=0相切,故p是q的充要条件. (2) 綈q:x=-1且y=-1,綈p:x+y=-2. ∵綈q⇒綈p,而綈pD⇒/綈q,∴綈q是綈p的充分不必要条件,从而,p是q的充分不必要条件.
例2 设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足 x2-x-6≤0,x2+2x-8>0. (1)若a=1,且p∧q为真,求实数x的取值范围; (2)若綈p是綈q的充分不必要条件,求实数a的取值范围. 解 (1)由x2-4ax+3a2<0得(x-3a)(x-a)<0. 又a>0,所以a当a=1时,1即p为真命题时,实数x的取值范围是1
由 x2-x-6≤0,x2+2x-8>0,解得 -2≤x≤3,x<-4或x>2. 即2所以q为真时,实数x的取值范围是2若p∧q为真,则 1所以实数x的取值范围是(2,3). (2) 綈p是綈q的充分不必要条件, 即綈p⇒綈q且綈q⇒綈p. 设A={x|x≤a或x≥3a},B={x|x≤2或x>3}, 则AB. 所以03,即1所以实数a的取值范围是(1,2]. 跟踪训练2 命题p:∀x∈R,x2+1>a,命题q:a2-4>0,若p∨q为真,p∧q为假,求实数a的取值范围. 解 若p为真命题,则a<1; 若q为真命题,则a2>4,即a>2或a<-2. 由已知条件知:p与q一真一假,
当p为真,q为假时有: a<1,-2≤a≤2,所以-2≤a<1,
当q为真,p为假时有: a≥1,a>2或a<-2,所以a>2, 综上所述,-2≤a<1或a>2. 2.分类讨论思想 分类讨论又称逻辑划分,是中学数学常用思想方法之一,分类讨论的关键是逻辑划分标准要准确,从而对问题进行分类求解,常用逻辑用语一章所涉及的不等式大多是含有字母参数的,对这类含参数的问题要进行分类讨论,讨论时要做到不重复、不遗漏. 例3 已知a>0,a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点,如果p∨q为真,p∧q为假,求a的取值范围. 解 方法一 由题意知,p和q有且只有一个为真.p为真时,0<a<1;∵y=x2+(2a-3)x
+1与x轴有两个不同交点,∴Δ=(2a-3)2-4>0,得a<12或a>52,即q为真时,0
a>52. (1)当p为真,且q为假时,a∈(0,1)∩([12,1)∪(1,52]),即a∈[12,1). (2)当p为假,且q为真时,a∈(1,+∞)∩((0,12)∪(52,+∞)),即a∈(52,+∞). 综上,a的取值范围为[12,1)∪(52,+∞). 方法二 ∵A={a|p(a)}={a|052}, ∴p和q有且只有一个为真⇔a∈A∪B且a∉A∩B, 故a的取值范围为[12,1)∪(52,+∞).
跟踪训练3 命题p:函数f(x)=lg(ax2+2x+1)的定义域为R;命题q:函数g(x)=x+ax-2在(2,+∞)上是增函数.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围. 解 当p为真命题时,ax2+2x+1>0恒成立,
∴ a>0,Δ<0,即 a>0,4-4a<0,解得 a>0,a>1,∴a>1.
当q为真命题时,g(x)=x-2+2+ax-2=1+a+2x-2在(2,+∞)上是增函数, ∴a+2<0,即a<-2. ∵p∨q为真命题,p∧q为假命题, ∴p与q一真一假, ∴a的取值范围是(-∞,-2)∪(1,+∞). 3.数形结合思想 “数形结合”指的是在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到解决.本章中数形结合主要体现在命题真假的判断、充要条件的判定上. 例4 设函数f(x)=|log2x|,则f(x)在区间(m,2m+1)(m>0)上不是单调函数的充要条件是________. 答案 0
解析 作出函数f(x)=|log2x|的图象如图所示,可得 01,
故00)上不是单调函数的充要条件.故填0跟踪训练4 已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是( )
A.(0,12) B.(12,1) C.(1,2) D.(2,+∞) 答案 B 解析 先作出函数f(x)=|x-2|+1的图象,如图所示,当直线g(x)=kx与直线AB平行时斜
率为1,当直线g(x)=kx过A点时斜率为12,故f(x)=g(x)有两个不相等的实根时,k的取值
范围为(12,1).
4.反证法 反证法是一种间接证法,它回避了从正面直接证明命题,它从命题结论的反面出发,引出矛盾,从而肯定命题的结论. 从逻辑角度看,命题“若p,则q”的否定是“若p,则綈q”,由此进行推理,如果产生矛盾,那么就说明“若p,则綈q”为假,从而可以得出“若p,则q”为真,达到证明的目的.反证法是高中数学解题的一种基本方法. 例5 如果a,b,c,d为实数,a+b=1,c+d=1,且ac+bd>1,求证a,b,c,d中至少有一个负数. 证明 假设a,b,c,d中至少有一个负数不成立,则a,b,c,d都为非负数,即a≥0,b≥0,c≥0,d≥0. 因为a+b=1,c+d=1, 所以(a+b)(c+d)=1, 即(ac+bd)+(bc+ad)=1. 因为a,b,c,d均为非负数,于是bc+ad≥0, 故由上式可以知道ac+bd≤1, 这与已知条件的ac+bd>1矛盾, 所以假设不成立,故a,b,c,d中至少有一个负数. 跟踪训练5 用反证法证明:钝角三角形最大边上的中线小于该边长的一半.
已知:在△ABC中,∠BAC>90°,D是BC边上的中点, 求证:AD<12BC(如图所示). 证明 假设AD≥12BC. ①若AD=12BC,由平面几何知识“如果三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”知∠BAC=90°,与题设矛盾.所以AD≠12BC. ②若AD>12BC,因为BD=DC=12BC, 所以在△ABD中,AD>BD, 从而∠B>∠BAD,同理∠C>∠CAD. 所以∠B+∠C>∠BAD+∠CAD, 即∠B+∠C >∠BAC. 因为∠B+∠C=180°-∠BAC, 所以180°-∠BAC>∠BAC. 故∠BAC<90°,与题设矛盾.
由①②知AD<12BC.
1.对于命题的判断问题,在考试中往往涉及多个知识点综合进行考查. 考查知识点涉及逻辑联结词、三角函数、不等式、立体几何等诸多内容,得到命题者的青睐.该部分的考查重点有两个:(1)是综合其他知识,考查一些简单命题真假的判断;(2)是考查命题四种形式之间的关系. 体现了考纲对“命题、充分条件、三角函数的有界性、不等式的性质以及空间线面关系等”的要求.解决此类问题的关键是灵活根据题干和选项进行判断,主要是选出错误的命题,所以可以利用特例法确定选项,即只需举出一个反例即可说明命题是假命题,对于较难判断的问题,可以转化为它的逆否命题来解决. 2.充分条件、必要条件和充要条件是对命题进行研究和考查的重要途径.通过对命题条件和结论的分析,考查对数学概念的准确记忆和深层次的理解. 3.正确理解逻辑联结词的含义,准确把握含有三个逻辑联结词的命题的判断方法,熟记规律:已知命题p、q,只要有一个命题为假,p∧q就为假;只要有一个为真,p∨q就为真,綈p与p真假相对.另外注意命题的否定与命题的否命题的区别,这是两个很容易混淆的概念,要准确把握它们的基本形式,不能混淆. 4.解决全称量词与存在量词问题需要注意两个方面:一是准确掌握含有全称量词与存在量词