2.2平稳随机过程和各态历经过程
- 格式:ppt
- 大小:2.07 MB
- 文档页数:19
各态历经过程
问题的提出
z在随机过程的概率分布未知情况下,如要得到随机过程的数字特征如:E[X(t)]、D[X(t)]、Rx(t1,t2 )…,只有通过做大量重复的观察试验找到“所有样本函数{χ(t)}”,找到各个样本函数χ(t)发生的概率,再对过程的“所有样本函数
{χ(t)}”求统计平均才可能得到。
z这在实际应用中不易实现。
z因此,人们想到:能否从一个样本函数χ(t)中提取到整个过程统计特征的信息?
解决方法
•19世纪俄国的数学家-辛钦,从理论上证明:存在一种平稳过程,在具备了一定的补充条件(略)下,对它的任何一个样本函数χ(t)所做的时间平均,在概率意义上趋近于它的统计平均,对于具有这样特性的随机过程←称之为“各态历经过程”。
•可以理解为:“各态历经过程”的任一个样本函数χ(t)都经历了过程的各种可能状态,从它的一个样本函数χ(t)中可以提取到整个过程统计特征的信息。
•因此,可以用它的一个样本函数χ(t)的“时间平均”来代替它的“统计平均”。
←目地。
第一章 绪论 1.传码率B R即波型(码元)传输速率,每秒钟传输的码元速率。
常表示为B R ,单位为“波特(Baud )”。
)(1Baud T R B =(1.1-1)式中:T 是每个码元占有的时间长度,单位是s 。
2.传信率b R :即信息传输速率,指每秒钟传输的信息量。
常表示为b R ,单位是“比特/秒(bit/s 或bps )”。
对于二进制码元,传码率和传信率数值相等,但单位不同。
对于多进制码元,两者不同,但可以通过下列公式进行转换。
)/(log 2s bit N R R B b ⋅= (1.1-2)式中:N 是进制数。
3.误码率e P是指错误接收的码元数在传送总码元数中所占的比例,或者更确切地说,误码率是码元在传输系统中被传错的概率。
即e P = 错误接收码元数目/传输码元总数目 (1.1-3) 4.误信率b P又称误比特率,是指错误接收的信息量在传送信息总量中所占的比例,或者说,它是码元的信息量在传输系统中被丢失的概率。
即b P = 错误接收比特数/传输总比特数 (1.1-4)5.信息量单个符号的信息量[])(1log )(log )(i a i a i x P x P x I =-= (1.2-2)6.熵(平均信息量)∑∑-==Xa Xx P x P x I x P X H )(log )()()()( (1.2-10)式中X 为离散信源符号集合,)(X H 的单位取决于对数底a 的取值,通常情况下取2=a ,这时,)(X H 的单位为bit /符号。
若离散信源X 中只有M 个符号,则上式又可以表示成下式∑=-=Mi i a i x P x P X H 1)(log )()( (1.2-11)7.连续信道连续信道的信道容量,由著名的香农(Shannon )公式确定,其内容为:假设信道的带宽为)(Hz B ,信道输出的信号功率为)(W S ,输出的加性带限高斯白噪声功率为)(W N ,则该信道的信道容量为())/(/1log 2s bit N S B C += (1.3-26)若噪声的单边功率谱密度为0n ,则有噪声功率为B n N 0=,可得香农公式的另一种形式[])/()/(1log 02s bit B n S B C += (1.3-27)其中0称为信道容量的“三要素”。
平稳各态遍历随机过程的概念在概率论和数理统计中,平稳各态遍历随机过程是一种重要的概念,它由平稳性和各态遍历性两个性质共同定义。
这种随机过程在许多实际应用领域,如物理学、经济学、生物学等,都有广泛的出现。
本文将详细介绍平稳各态遍历随机过程的概念,包括平稳性、各态遍历性、随机过程和遍历性等方面。
1. 平稳性平稳性是指随机过程的统计特性不随时间的推移而改变。
换句话说,平稳随机过程在任何时间点的概率分布与时间无关。
例如,在金融市场中,如果一个股票价格的时间序列是平稳的,那么无论何时观察该股票价格,其均值和方差等统计特性都保持不变。
2. 各态遍历性各态遍历性是指随机过程在长时间内能够充分地展现出所有可能的状态。
具体来说,如果一个随机过程是各态遍历的,那么对于任何给定的时间间隔,在间隔内的任何时刻观察到的样本点都具有相同的概率分布。
例如,在气象学中,如果一个气候模型的时间序列是各态遍历的,那么可以通过观察该时间序列来预测未来任何时间点的气候状态。
3. 随机过程随机过程是指一系列随时间变化的随机变量。
例如,在金融市场中,股票价格可以看作是一个随机过程,它随时间变化,并且每个时刻的股票价格都是一个随机变量。
随机过程可以用来描述许多自然现象和人为现象,如天气变化、交通流量、人口增长等。
4. 遍历性遍历性是指一个随机过程能够覆盖所有可能的状态。
具体来说,如果一个随机过程是遍历的,那么在足够长的时间内,该过程可以展现出所有可能的状态。
例如,在密码学中,一个随机密钥生成器是遍历的,意味着在足够多的次数之后,该生成器能够产生所有可能的密钥。
总的来说,平稳各态遍历随机过程是指具有平稳性和各态遍历性的随机过程。
这种随机过程在许多领域都有广泛的应用,如预测气候变化、金融市场分析、密码学等。
通过对其概念的理解和研究,可以更好地应用这些方法来处理和分析实际问题。