使用精确搜索算法确定步长的最速下降法
- 格式:doc
- 大小:973.00 KB
- 文档页数:9
最速下降法姓名:沈东东 班级:研1404 学号:1415033005一、最速下降法的原理目标函数:(1)n f R R n →>在决策变量的当前点()k n x R ∈处的一阶Taylor 展开式为()()()()()()()k k k T f x f x g x δδοδ+=++式中,()()k n g x R ∈为f 在点()k x 处的梯度向量。
当扰动量n R δ∈充分小时,有()()()()()()k k k T f x f x g x δδ+≈+设新的迭代点为(1)()k k x x δ+=+,于是得到(1)()()()()()k k k T f x f x g x δ+-≈为了使(1)k x +处的目标函数值比()k x 处有所下降,需要满足()()0k T g x δ<此外,梯度向量()()k g x 和扰动量δ的内积可以表示为()()()()cos k T k g x g x δδθ=式中,θ为两向量之间的夹角。
若要使目标函数值的下降量尽可能大,可知δ的方向应该为梯度方向的负方向,即cos 1θ=-。
函数f 在点()k x 处的负梯度方向称为该点的最速下降方向。
在每次迭代时都取最速下降方向作为搜索方向的方法就称为最速下降法。
二、最速下降法的特点1.若()k x 不是极小点,则f 在点()k x 处的最速下降方向总是下降方向。
2.如果每次迭代时都用精确搜索方法得到最佳步长作为搜索步长,则寻优过程中相邻的最速下降方向是正交的。
3最速下降法产生的迭代点序列在一定条件下是线性收敛的,其收敛性质与极小点*x 处的Hesse 矩阵有关。
三、最速下降法的计算步骤最速下降法的计算步骤如下:步骤1:已知待求问题的目标函数()f x ,选择初始点(0)x ,并设定精度要求tol ,令:0k =。
步骤2:计算()f x 在点()k x 处的梯度向量()()k g x ,得到最速下降方向()()()k k d g x =-。
机器学习算法系列最速下降法牛顿法拟牛顿法最速下降法、牛顿法和拟牛顿法都是常用的机器学习优化算法。
它们在求解函数最小化问题中起到关键作用。
1. 最速下降法(Gradient Descent):最速下降法是一种基于函数梯度的迭代优化算法。
其核心思想是沿着负梯度方向以步长α更新参数,直到达到收敛条件。
最速下降法的步骤如下:1)选择初始参数值;2)计算目标函数的梯度;3)沿着负梯度方向更新参数;4)重复步骤2和步骤3,直到达到停止条件。
最速下降法的优点是简单易实现,但它可能会面临局部最小值的问题,收敛速度较慢。
2. 牛顿法(Newton's Method):牛顿法是一种二阶优化算法,利用目标函数的一阶和二阶导数信息来更新参数。
它通过二阶导数矩阵(即Hessian矩阵)来指导方向和步长的选择。
牛顿法的步骤如下:1)选择初始参数值;2)计算目标函数的一阶和二阶导数;3)解线性方程(Hessian矩阵和梯度的乘积);4)更新参数;5)重复步骤2-步骤4,直到达到停止条件。
牛顿法的优点是收敛速度快,但它需要计算二阶导数矩阵,计算量较大,且可能收敛到非全局最小值。
3. 拟牛顿法(Quasi-Newton Methods):拟牛顿法是一种基于牛顿法思想的近似优化算法。
与牛顿法不同,拟牛顿法通过正定矩阵来近似二阶导数矩阵,从而避免了计算复杂的二阶导数矩阵。
拟牛顿法最经典的算法是BFGS算法(Broyden-Fletcher-Goldfarb-Shanno),它通过近似更新逆Hessian矩阵的方式来求解优化问题。
拟牛顿法的步骤如下:1)选择初始参数值和初始逆Hessian矩阵的估计;2)计算目标函数的梯度;3)更新参数;4)更新逆Hessian矩阵的估计;5)重复步骤2-步骤4,直到达到停止条件。
拟牛顿法的优点是避免了计算二阶导数矩阵,计算复杂度相对较低,且具有较好的收敛性质。
总结来说,最速下降法适用于简单的优化问题,牛顿法适用于二次型问题,而拟牛顿法在保持收敛速度的同时减少了计算复杂度。
随着人工智能、模糊控制、模式识别、人工网络等新技术的应用和发展。
可以让它们与广义预测控制相结合,建立高精度、多模态的预测模型。
使广义预测控制在异常情况下可以稳定运行,推进广义预测控制的进一步发展。
2.2.1最速下降法最速下降法是无约束最优化中是比较有效的方法,它是以d}=一可(x})作为下降方向的算法。
其迭代格式为xx+i=xx一。
*Of (xk)上式中,一般通过精确线搜索准则求得步长因子。
*,当然也不排除可以利用非精确线搜索准则来求得步长因子。
*。
不管最速下降法采取何种线搜索准则,它均具有全局收敛性,但是这也不能直接就认为最速下降算法就是一个良好的优化算法。
在实际试验中,有很多优化问题利用最速下降法并不是下降的特快,反而下将的十分缓慢。
这是因为出现了锯齿现象:就是在计算过程中,最速下降法开始几步还是挺快的,但是当目标函数f (x)的等高线接近于一个球的时候,就出现了类似锯齿现象,前进十分缓慢,降低了算法的效能。
2.2.12.2.2牛顿法牛顿法也是无约束最优化问题中的一种经典算法,它是利用目标函数.f (x)的二次泰勒展开式,并将二次泰勒展开式进行极小化。
其迭代格式为x}+}=xA十d}(2-5)其中步长因子。
、=l} d、为02f (x} )d + Of (xA ) = 0的解。
当目标函数f(x)是正定二次函数的时候,牛顿法可以一步达到最优解;当目标函数f (x)是非二次函数的时候,牛顿法经过有限次迭代之后就不能确保求得目标函数f (x)的最优解。
我们知道目标函数f (x)在极小点附近是很接近于二次函数的,所以,假如初始点非常靠近无约束最优化问题((1-1)的最优解x的时候,并且}Z.f (x.)正定的时候,那么牛顿法就会有很快的收敛速度,而由此算法产生的点列也具有了超线性收敛速度,同时还在一定条件下具有二次收敛性;假如初始点与无约束最优化问题(1-1)的最优解x’相距比较远的时候,这时的}Z.}(x})就不一定是正定的了,也就存在了一个问题,那就是此时的牛顿方向就不一定是下降方向,有可能是上升方向,此时由此算法产生的点列可能也就不收敛于无约束最优化问题((1-1)的最优解了。
数学与计算科学学院
实验报告
实验项目名称使用精度搜索算法确定步长的最速下降法
所属课程名称最优化方法
实验类型算法编程
实验日期2015.11.6
班级信计1201
学号
姓名
成绩
【实验小结】(收获体会)
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新性实验,还应注明其创新点、特色。
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。
数学与计算科学学院
实验报告
实验项目名称使用精确搜索算法确定步长的最速下降法所属课程名称最优化方法
实验类型算法编程
实验日期201
班级
学号
姓名
成绩
令,k:=k+1
【实验结论】
最小值:0.0006096631611
最优解时:x1=0.0329218107
X2=-0.008230452675
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
随着人工智能、模糊控制、模式识别、人工网络等新技术的应用和发展。
可以让它们与广义预测控制相结合,建立高精度、多模态的预测模型。
使广义预测控制在异常情况下可以稳定运行,推进广义预测控制的进一步发展。
2.2.1最速下降法最速下降法是无约束最优化中是比较有效的方法,它是以d}=一可(x})作为下降方向的算法。
其迭代格式为xx+i=xx一。
*Of (xk)上式中,一般通过精确线搜索准则求得步长因子。
*,当然也不排除可以利用非精确线搜索准则来求得步长因子。
*。
不管最速下降法采取何种线搜索准则,它均具有全局收敛性,但是这也不能直接就认为最速下降算法就是一个良好的优化算法。
在实际试验中,有很多优化问题利用最速下降法并不是下降的特快,反而下将的十分缓慢。
这是因为出现了锯齿现象:就是在计算过程中,最速下降法开始几步还是挺快的,但是当目标函数f (x)的等高线接近于一个球的时候,就出现了类似锯齿现象,前进十分缓慢,降低了算法的效能。
2.2.12.2.2牛顿法牛顿法也是无约束最优化问题中的一种经典算法,它是利用目标函数.f (x)的二次泰勒展开式,并将二次泰勒展开式进行极小化。
其迭代格式为x}+}=xA十d}(2-5)其中步长因子。
、=l} d、为02f (x} )d + Of (xA ) = 0的解。
当目标函数f(x)是正定二次函数的时候,牛顿法可以一步达到最优解;当目标函数f (x)是非二次函数的时候,牛顿法经过有限次迭代之后就不能确保求得目标函数f (x)的最优解。
我们知道目标函数f (x)在极小点附近是很接近于二次函数的,所以,假如初始点非常靠近无约束最优化问题((1-1)的最优解x的时候,并且}Z.f (x.)正定的时候,那么牛顿法就会有很快的收敛速度,而由此算法产生的点列也具有了超线性收敛速度,同时还在一定条件下具有二次收敛性;假如初始点与无约束最优化问题(1-1)的最优解x’相距比较远的时候,这时的}Z.}(x})就不一定是正定的了,也就存在了一个问题,那就是此时的牛顿方向就不一定是下降方向,有可能是上升方向,此时由此算法产生的点列可能也就不收敛于无约束最优化问题((1-1)的最优解了。
CENTRAL SOUTH UNIVERSITY MATLAB程序设计实践题目MATLAB程序设计实践学生姓名学号010*******指导教师学院材料科学与工程学院专业完成时间2013年3月24日第1题算法说明: 原理函数的负梯度表示如下:Tx x f x x f x x f x f x g ⎥⎦⎤⎢⎣⎡∂∂⋅⋅⋅∂∂∙∂∂-=-∇=-)()()()()( 搜索步长可调整,通常记为k α(第k 次迭代中的步长)。
该算法利用一维的线性搜索方法,如二次逼近法,沿着负梯度方向不断搜索函数的较小值,从而找出最优解。
步骤最速下降法的基本求解流程如下。
1:迭代次数初始化为k=0,求出初始点x0的函数值f0=f (x0)。
2:迭代次数加1,即k=k+1,用一维线性搜索方法确定沿负梯度方向-g k-1的步长αk-1,其中αk-1=ArgMin αf (x k-1-αg k-1/||g k-1||)。
3:沿着负梯度的方向寻找下一个接近最小值的点,其中步长为αk-1,得下一点的坐标为:x k =x k-1-αk-1g k-1/||g k-1||。
4:如果x k =x k-1,且f (x k )≈f (x k-1),那么就认为x k 为所求的最小值点,并结束循环;否则,跳到步骤2。
流程图:源程序代码:%在MA TLAB中编程实现的最速下降算法为:Opt_Steepest。
功能:最速下降算法求无约束最优化解。
调用格式:[xo,fo]=Opt_Steepest(f,grad,x0,TolX,TolFun,dist0,MaxIter)。
其中,f为函数名;grad为梯度函数;x0为搜索初始值;TolX为最优值点间的误差阀值;TolFun为函数的误差阀值;dist0为初始步长;MaxIter为最大迭代次数;xo为最优化点值;fo为函数在点xo处的函数值。
function [xo,fo]=Opt_Steepest(f,grad,x0,TolX,TolFun,dist0,MaxIter)%最速下降法求最优化解%f为函数名;%grad为梯度函数;%x0为搜索初始值;%TolX为最优值点间的误差阀值;%TolFun为函数的误差阀值;%dist0为初始步长;%MaxIter为最大迭代次数;%xo为最优化点值;%fo为函数在点xo处的函数值。
数学与计算科学学院实验报告实验项目名称使用非精确线搜索Armijo算法确定步长的最速下降法所属课程名称最优化方法实验类型算法编程实验日期班级学号姓名成绩)](-)([11-)(-)( )2.3(||-||21)-()-(21)(-)( 0)( )(,*2*12**T *****x f x f x f x f x x x x Q x x x f x f q Qx x f x q Qx x f k k Q ⎪⎭⎫ ⎝⎛+≤===+=∇+=∇+κκ可以改写成所以则处且在由于对于二次函数.,( .,1 , ,1,,,)2.3(算法收敛很慢接近病态)较大时而当求出最优解算法只需一次迭代即可的所有特征值相等时即当特别最速下降收敛很快接近于当有关的条件数矩阵最速下降的收敛速度与看到由收敛速度估计式Q Q Q κκκκ=结论:最速下降法的收敛速度比较慢,通常将其用在某些算法的初始阶段求较好的初始点或作为某些算法的间插步.【实验环境】Win 7; Matlab7.0二、实验内容: 【实验方案】1、求梯度;2、向梯度相反的方向移动x ,其中 为步长。
如果步长足够小,则可以保证每一次迭代都在减小,但可能导致收敛太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛。
3、循环迭代步骤2,直到x 的值变化到使得在两次迭代之间的差值足够小,比如0.00000001,也就是说,直到两次迭代计算出来的基本没有变化,则说明此时已经达到局部最小值了。
4、此时,输出x ,这个x 就是使得函数最小时的x 的取值 。
【实验过程】梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。
其迭代公式为,其中代表梯度负方向,表示梯度方向上的搜索步长。
梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。
一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标ak+1看做是的函数,然后求满足f(ak+1)的最小值的 即可。
数学与计算科学学院
实验报告
实验项目名称使用精确搜索算法确定步长的最速下降法所属课程名称最优化方法
实验类型算法编程
实验日期201
班级
学号
姓名
成绩
令,k:=k+1
【实验结论】
最小值:0.0006096631611
最优解时:x1=0.0329218107
X2=-0.008230452675
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。