最优化方法-步长加速法-
- 格式:ppt
- 大小:481.50 KB
- 文档页数:21
最速下降法(Steepest Descent Method)是一种数值优化算法,用于求解无约束优化问题的最小值。
下面是最速下降法的一般解题步骤:
1.定义目标函数:首先,需要明确要优化的目标函数。
这个函数通常表示为f(x),其中
x 是优化变量。
2.初始化起始点:选择一个合适的起始点x0,作为最速下降法的初始点。
3.计算梯度:计算目标函数在当前点的梯度,即∇f(x)。
这可以通过对目标函数进行偏
导数计算得到。
4.确定搜索方向:将梯度反向取负作为搜索方向d,即d = -∇f(x)。
5.确定步长:确定沿着搜索方向移动的步长,也称为学习率或步长因子。
常见的选择
方法有固定步长、线性搜索和精确线搜索等。
6.更新当前点:根据步长和搜索方向,更新当前点x,即x = x + αd,其中α 表示步
长。
7.判断终止条件:判断是否满足终止条件,可以是达到预定的迭代次数、目标函数值
变化很小或梯度变化很小等。
8.若不满足终止条件,则返回第3步,重新计算梯度,并重复3-7步骤,直到满足终
止条件。
最速下降法的关键在于选择合适的步长和搜索方向。
步长过大可能导致无法收敛,步长过小可能导致收敛速度慢。
搜索方向的选择应该保证在当前点能够使目标函数值下降最快。
需要注意的是,最速下降法可能会陷入局部最小值,而无法达到全局最小值。
为了克服这个问题,可以考虑使用其他优化算法,如共轭梯度法、牛顿法等。
最优化方法求解技巧最优化问题是数学领域中的重要课题,其目标是在给定一组约束条件下寻找使目标函数取得最大(或最小)值的变量取值。
解决最优化问题有多种方法,下面将介绍一些常用的最优化方法求解技巧。
1. 直接搜索法:直接搜索法是一种直接计算目标函数值的方法。
它的基本思路是在给定变量范围内,利用迭代计算逐步靠近最优解。
常用的直接搜索法包括格点法和切线法。
- 格点法:格点法将搜索区域均匀划分成若干个小区域,然后对每个小区域内的点进行计算,并选取最优点作为最终解。
格点法的优点是简单易行,但对于复杂的问题,需要大量的计算和迭代,时间复杂度较高。
- 切线法:切线法是一种基于目标函数的一阶导数信息进行搜索的方法。
它的基本思路是沿着目标函数的负梯度方向进行迭代搜索,直到找到最优解为止。
切线法的优点是收敛速度较快,但对于非光滑问题和存在多个局部最优点的问题,容易陷入局部最优。
2. 数学规划法:数学规划法是一种将最优化问题转化为数学模型的方法,然后借助已有的数学工具进行求解。
常用的数学规划法包括线性规划、非线性规划、整数规划等。
- 线性规划:线性规划是一种求解目标函数为线性函数、约束条件为线性等式或线性不等式的优化问题的方法。
常用的线性规划求解技巧包括单纯形法和内点法。
线性规划的优点是求解效率高,稳定性好,但只能处理线性问题。
- 非线性规划:非线性规划是一种求解目标函数为非线性函数、约束条件为非线性等式或非线性不等式的优化问题的方法。
常用的非线性规划求解技巧包括牛顿法、拟牛顿法、遗传算法等。
非线性规划的优点是可以处理更广泛的问题,但由于非线性函数的复杂性,求解过程相对较复杂和耗时。
- 整数规划:整数规划是一种在变量取值为整数的前提下求解优化问题的方法,是线性规划和非线性规划的扩展。
由于整数规划的复杂性,常常利用分支定界法等启发式算法进行求解。
3. 近似法:近似法是一种通过近似的方法求解最优化问题的技巧,常用于处理复杂问题和大规模数据。
简化牛顿法与牛顿下山法的比较1.引言1.1 概述牛顿法和牛顿下山法都是用于求解方程根或最优化问题的常用数值计算方法。
牛顿法是一种迭代方法,通过使用函数的一阶和二阶导数来找到函数的零点或最小值。
而牛顿下山法则是对牛顿法的改进,在每次迭代时引入一个步长参数,以便更快地接近最优解。
在牛顿法中,我们首先需要给定一个初始猜测值,然后通过使用函数的一阶导数和二阶导数来更新猜测值,直到找到函数的零点或最小值。
牛顿法的优点在于其收敛速度较快,在适当的初始化条件下,通常能够快速找到解。
然而,牛顿法也存在局限性,例如可能出现迭代过程发散的情况,并且在某些情况下需要计算复杂的二阶导数。
与之相比,牛顿下山法在牛顿法的基础上引入了步长参数。
通过在每次迭代时选择合适的步长,可以更快地接近最优解。
牛顿下山法的优点在于其对初值的选择较为不敏感,即使初始猜测值较远离最优解,也能够通过适当的步长控制方法逐渐逼近最优解。
然而,牛顿下山法也存在局限性,例如可能会陷入局部最小值而无法找到全局最小值。
综上所述,牛顿法和牛顿下山法都是求解方程根或最优化问题的常用方法。
牛顿法适用于已知初始猜测值较接近最优解的情况,而牛顿下山法适用于对初始猜测值较不确定的情况。
根据具体的问题要求和初始条件,可以选择合适的方法来进行数值计算。
1.2文章结构文章结构是指文章的框架和组织方式,用于展示文章中各个部分之间的逻辑关系。
本文旨在比较简化牛顿法和牛顿下山法,因此文章的结构应该清晰地展示这两种方法的差异和优劣,同时对它们进行详细的介绍和分析。
下面是文章1.2部分的内容:1.2 文章结构在本文中,我们将按照以下结构来比较简化牛顿法和牛顿下山法:1.2.1 算法原理:- 简化牛顿法的算法原理:该部分将详细介绍简化牛顿法的基本思想和计算步骤,包括如何利用一阶导数和二阶导数进行迭代优化。
- 牛顿下山法的算法原理:这部分将详细介绍牛顿下山法的基本原理,包括如何结合简化牛顿法和线性搜索,在每次迭代中选择合适的下降方向。
最优化算法(⽜顿、拟⽜顿、梯度下降)1、⽜顿法 ⽜顿法是⼀种在实数域和复数域上近似求解⽅程的⽅法。
⽅法使⽤函数f (x)的泰勒级数的前⾯⼏项来寻找⽅程f (x) = 0的根。
⽜顿法最⼤的特点就在于它的收敛速度很快。
具体步骤: ⾸先,选择⼀个接近函数f (x)零点的x0,计算相应的f (x0) 和切线斜率f ' (x0)(这⾥f ' 表⽰函数f 的导数)。
然后我们计算穿过点(x0, f (x0)) 并且斜率为f '(x0)的直线和x 轴的交点的x坐标,也就是求如下⽅程的解: 我们将新求得的点的x 坐标命名为x1,通常x1会⽐x0更接近⽅程f (x) = 0的解。
因此我们现在可以利⽤x1开始下⼀轮迭代。
迭代公式可化简为如下所⽰: 已经证明,如果f ' 是连续的,并且待求的零点x是孤⽴的,那么在零点x周围存在⼀个区域,只要初始值x0位于这个邻近区域内,那么⽜顿法必定收敛。
并且,如果f ' (x)不为0, 那么⽜顿法将具有平⽅收敛的性能. 粗略的说,这意味着每迭代⼀次,⽜顿法结果的有效数字将增加⼀倍。
下图为⼀个⽜顿法执⾏过程的例⼦。
由于⽜顿法是基于当前位置的切线来确定下⼀次的位置,所以⽜顿法⼜被很形象地称为是"切线法"。
⽜顿法的搜索路径(⼆维情况)如下图所⽰: ⽜顿法搜索动态⽰例图:2、拟⽜顿法(Quasi-Newton Methods) 拟⽜顿法是求解⾮线性优化问题最有效的⽅法之⼀,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。
Davidon设计的这种算法在当时看来是⾮线性优化领域最具创造性的发明之⼀。
不久R. Fletcher和M. J. D. Powell证实了这种新的算法远⽐其他⽅法快速和可靠,使得⾮线性优化这门学科在⼀夜之间突飞猛进。
拟⽜顿法的本质思想是改善⽜顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使⽤正定矩阵来近似Hessian矩阵的逆,从⽽简化了运算的复杂度。
最速下降法:算法简单,每次迭代计算量小,占用内存量小,即使从一个不好的初始点出发,往往也能收敛到局部极小点。
沿负梯度方向函数值下降很快的特点,容易使认为这一定是最理想的搜索方向,然而事实证明,梯度法的收敛速度并不快.特别是对于等值线(面)具有狭长深谷形状的函数,收敛速度更慢。
其原因是由于每次迭代后下一次搜索方向总是与前一次搜索方向相互垂直,如此继续下去就产生所谓的锯齿现象。
从直观上看,在远离极小点的地方每次迭代可能使目标函数有较大的下降,但是在接近极小点的地方,由于锯齿现象,从而导致每次迭代行进距离缩短,因而收敛速度不快.牛顿法:基本思想:利用目标函数的一个二次函数去近似一个目标函数,然后精确的求出这个二次函数的极小点,从而该极小点近似为原目标函数的一个局部极小点。
优点 1. 当目标函数是正定二次函数时,Newton 法具有二次终止性。
2. 当目标函数的梯度和Hesse 矩阵易求时,并且能对初始点给出较好估计时,建议使用牛顿法为宜。
缺点:1. Hesse 矩阵可能为奇异矩阵,处理办法有:改为梯度方向搜索。
共轭梯度法:优点:收敛速度优于最速下降法,存贮量小,计算简单.适合于优化变量数目较多的中等规模优化问题.缺点:变度量法:较好的收敛速度,不计算Hesse 矩阵1.对称秩1 修正公式的缺点(1)要求( ) ( ) ( ) ( ) ( ) 0 k k k T k y B s s − ≠0(2)不能保证B ( k ) 正定性的传递2.BFGS 算法与DFP 算法的对比对正定二次函数效果相同,对一般可微函数效果可能不同。
1) BFGS 算法的收敛性、数值计算效率优于DFP 算法;(2) BFGS 算法要解线性方程组,而DFP 算法不需要。
基本性质:有效集法:算法思想:依据凸二次规划问题的性质2,通过求解等式约束的凸二次规划问题,可能得到原凸二次规划问题的最优解。
有效集法就是通过求解一系列等式约束凸二次规划问题,获取一般凸二次规划问题解的方法。