零像散宽波段平场全息凹面光栅的优化设计
- 格式:pdf
- 大小:270.00 KB
- 文档页数:5
蔡司光电二极管阵列光谱仪模块(diode array spectrometer module)发展外况由于光学技术、材料技术、电子技术、计算机技术的迅速发展,蔡司于十年已开始光电二极管阵列光谱仪模块的生产及应用推广。
现今这类产品已成为测量和分析的基本单元。
只要在进行系统设计的基础上,配以相应的辅助部件、电路、计算机、软件等,能够研制出满足各种需求的精密仪器设备。
以光電二极管阵列光谱仪模块为核心的设备能够测量的参数:发光辐射度、荧光发射度、波长测量、颜色测量、膜层厚度测量、温度测量、浓度测量、气体成分测量等;能够测量的光谱达到的范围:紫外、可见、近红外和红外波段;能够测量的对象:激光、照明光源、发光管、液体、织物、宝石等;模块广泛应用于环境监测、工业分析、缺陷检测、化学分析、食品品质检测、材料分析、医学诊断、临床检验、航空航天、遥感等领域。
模块结构光電二极管阵列光谱仪模块,具有一个设计极佳的结构组成,主体机壳全封闭式的将传送光的光纤(OPTICAL FIBRE)、光纤截面转换器(CROSS SECTION CONVERTER)、凹面成像光栅(CONCAVE GRATING)、二极管阵列紧凑(DIODE ARRAY)、永久的粘在一起,并有相应的电路(CIRCUIT BOARD),构成尽可能小的单元模块。
两种模块形式如图1、图2所示。
模块的集成和微型是随着光纤技术、光栅技术、二极管阵列检测技术、电子元器件技术、材料技术的进步和发展而来,更多地成为现场检测和实时监控仪器的首选单元。
图1 光電二极管阵列光谱仪模块(微型,内置控制电路和前置放大器)图2 光电二极管阵列光谱仪模块(分辨率高,外置控制电路和前置放大器)产品特点1.工艺先进:紧凑的机械结构;全封闭;光学部件永久定位;没有机械调整;具有对机械冲击高度的非敏感性;从而导致非常高的可靠性。
2.仅需要成像光栅,省掉了常规光谱仪中的透镜、凹面镜、平面镜等多个部件。
2 . 当狭缝太宽、太窄时将会出现什么现象? 为什么? 答狭缝太宽则分辨本领将下降如两条黄色光谱线分不开。
狭缝太窄透光太少光线太弱视场太暗不利于测量。
3 . 为什么采用左右两个游标读数? 左右游标在安装位置上有何要求?答采用左右游标读数是为了消除偏心差安装时左右应差1 8 0 º1)测d和λ时,,,,实验要保证什么条件?如何实现如何实现如何实现如何实现????答要求条件1:分光计分光计分光计分光计望远镜适合观察平行光,平行光管发出平行光,并且二者光轴均垂直于分光计主轴。
实现:先用自准法调节望远镜,再用调节好的望远镜观察平行光管发出的平行光,调节缝宽和平行光管的高度,使得狭缝的象最清晰而且正好被十字叉丝的中间一根横线等分,分光计就调节好了。
要求条件2:光栅平面与平行光管的光轴垂直。
实现:如本文4.1所述,首先粗调,然后,当发现两者相差超过2′时,应当判断零级谱线更接近哪一侧的谱线,若接近左侧谱线,则光栅应顺时针旋转(从分光计上方看),反之应该逆时针旋转,再次测量。
3、用什么办法来测定光栅常数?光栅常数与衍射角有什么关系?答:用测量显微镜来测量光栅常数。
根据光栅衍射方程dsinφ=kλ知道,光栅常数d与衍射角的正弦sinφ成反比。
4、测光波长应保证什么条件?实验时这些条件是怎样保证的?答:测光波长应保证入射的单色平行光垂直于光栅平面,否则该式将不成立。
实验时通过调节平行光管与光栅平面垂直来保证式成立。
5、分光计主要由哪几部分组成?各部分的作用是什么?为什么要设置一对左右游标?答:分光计主要包括:望远镜、平行光管、刻度盘、游标盘等。
设置一对左右游标的目的是为了消除刻度盘与游标盘之间的偏心差。
6、调节分光计的基本要求是什么?为什么说望远镜的调节是分光计调节中的关键?答:简单地说,调节分光计的基本要求是使分光计各部分都处于良好的工作状态。
因为分光计的水平调节、平行光管的调节等都要借助于望远镜,所以说望远镜的调节是分光计调节中的关键。
光学设计总结(优秀范文五篇)第一篇:光学设计总结1.什么是光学设计?所谓光学系统设计,就是根据仪器所提出的使用要求,设计出光学系统的性能参数、外形尺寸和各光组的结构等。
2.光学设计工作内容?光学设计所要完成的工作包括光学系统设计和光学结构设计。
3.光学设计各个阶段的主要内容?(1).根据仪器总体的技术要求,拟定光学系统的原理图,并初步计算系统的外形尺寸。
称为“初步设计”或者“外形尺寸计算” ;(2).根据初步设计的结果,确定每个透镜组的具体结构参数。
称为“像差设计”或称“光学设计”。
4.光学系统设计的一般过程和步骤?一、光学系统设计的一般过程1、制定合理的技术参数;2、光学系统总体设计和布局;3、光学部件(光组、镜头)的设计;一般分为选型、确定初始结构参数、像差校正三个阶段。
(1)选型;(2)初始结构的计算和选择;A、解析法;B、缩放法;(3)像差校正、平衡与像质评价。
4、长光路的拼接与统算;5、绘制光学系统图、部件图和光学零件图;6、编写设计说明书;7、必要时进行技术答辩。
二、光学设计的具体设计步骤1、选择系统的类型;2、分配元件的光焦度和间隔;3、校正初级像差;4、减小残余像差(高级像差)。
5.光学仪器对光学系统的性能和质量要求一、光学系统的基本特性二、系统的外形尺寸三、成像质量四、仪器的使用条件与环境此外,在进行光学系统设计时,还要考虑它应具有良好的工艺性和经济性。
1.什么是孔径?什么是视场?2.七种像差的基本概念、怎样表示、特点、初级像差描述形式、基本校正方法?像差:实际像与理想像之间的差异(1)球差概念:轴上点发出的同心光束经光学系统各个球面折射以后,不再是同心光束,其中与光轴成不同角度的光线交光轴于不同的位置上,相对于理想像点有不同的偏离,这种偏离称之为球差。
表示:特点:或初级球差描述形式:式中,称为初级球差系数(也称第一赛得和数),为每个面上的初级球差分布系数。
危害:球差使得在高斯像面上得到的不是点像而是一个圆形弥散斑。
第55讲:波动光学——光学衍射(2)
内容:§17-8,§17-9,§17-10
1.圆孔衍射与光学仪器的分辨率
2.光栅衍射
3.X光衍射
要求:
1.掌握圆孔衍射艾理斑公式,并能用来分析光学仪器的分辨率;
2.掌握光栅衍射的基本规律;
3.理解X光衍射
重点与难点:
1.圆孔衍射
2.光栅方程
作业:
问题:P172:18,19,20,21
习题:P177:23,24,25,26
预习:§17-12,§17-13
复习:
●光的衍射现象
●惠更斯-菲涅耳原理
●衍射的分类
●单缝夫琅和费衍射实验现象
●单缝夫琅和费衍射的定性解释
一、圆孔夫琅和费衍射:
一个透镜成像的光路可用两个透镜的作用来等效,如图所示:
点物就相当于在透镜L物方焦点处,经通光孔径A,进行夫琅和费衍射,
D
a
λ
λ
22
61
λ
λ
θ22
.1
61
.0
=
=
当两个物点距离足够小时,就存在能否分辨的问题。
.说明:
)分辨本领:与D成正比,与λ成反比
简短小结:
●由一组相互平行,等宽、等间隔的狭缝构成的光学器件称为光栅。
由于各
在相邻的两个极大
个暗
个次级大
以致在缝数很多的
两主极大明纹之
间实际上形成一片暗区。
光栅上的每一狭缝
都要单独产生衍射图样,
减小,单缝衍射中央包线宽度变宽,中央包线内亮纹数目增加;。
第31卷 第6期光 学 学 报V ol .31,N o .62011年6月ACTA OPTICA SINICAJune ,2011基于Zemax 的部分补偿透镜的优化设计孟晓辰 郝 群 朱秋东 胡 摇(北京理工大学光电学院,北京100081)摘要 用部分补偿法检测非球面时,部分补偿透镜的优化设计是关键技术之一。
针对这一难点,提出了一种以剩余波前斜率作为优化目标的基于Zemax 的部分补偿透镜设计方法,分析了剩余波前斜率与干涉条纹密度以及弥散圆之间的关系,得到了弥散圆可以定量表征剩余波前斜率的结论,并将弥散圆半径作为优化函数。
针对3种不同参数的非球面进行了部分补偿透镜的优化设计,设计结果表明,该方法可在保证干涉条纹可探测的前提下,简单、快速、全面直观地实现部分补偿透镜的优化设计,减小剩余波前斜率,降低干涉条纹密度,从而扩大干涉仪可测非球面面形误差的测量范围,提高可测的空间频率。
关键词 光学设计;部分补偿透镜;剩余波前斜率;弥散圆中图分类号 O435 文献标识码 A do i :10.3788/AO S 201131.0622002Optimization Design of Partially Compensating Le ns Base d on Ze maxMeng Xiaochen Hao Qun Zhu Qiudong Hu Yao(School of Opt oelectronics ,Beijing Institute of Technology ,Beijing ,100081,China )Abstract Optimization design of partially compensating lens is one of the key problems for aspheric surface testingusing partia lly compensating lens .A design method for the partially compensating lens based on Zemax ,which takes the slope of wave -front as the optimization objective ,is proposed .First the relation among residua l wave -front slope ,and interference fringe density and dispersive spot are analyzed ,leading to the conclusion that the dispersive spot can quantitatively characterize the residual wave -front slope and its radius is taken as the optimization target .Then the method is applied to the optimization design of partially compensating lenses corresponding to three kinds of aspheric surfaces .The results indic ate that ,on the prec ondition that the interference fringes are detectable ,the method can help complete the optimization design of partially compensating lens m ore simply ,faster and more visually ,resulting in dec rease of the residual wave -front slope and reduction in the interference fringes density .Therefore ,the mea surement range of the interferometer for testing aspheric surface is expanded ,and aspheric surfaces with higher spatial frequency can still be measured without increasing the resolution of interferogram detector .Key wo rds optical design ;partially compensating lens ;residual wave -front slope ;dispersive spot OCIS co des 220.1250;220.2740;220.1000;220.3620;220.4840 收稿日期:2010-12-31;收到修改稿日期:2011-02-22基金项目:国家自然科学基金(60578053)资助课题。
序号科研热词推荐指数序号科研热词
1零级像消除11零级像
2有限脉冲响应滤波器12虚拟仿真
3数字再现13菲涅尔积分
4数字全息14色散提取
5细胞检测
6细胞
7空间光调制器
8离散余弦变换
9相邻像素相减法则
10相位延迟阵列
11相位分布
12特征
13检测
14数字图像处理
15数字全息
16复值加密图像
17图像处理
18双随机相位编码
19医用光学与生物技术
20全息
21光散射
22光学相干层析成像
23光学全息
24二阶色散
25一步相移数字全息
26fourier变换
2008年2009年
光谱仪简介光谱仪( Spectroscope)是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线,。
阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、X射线等等。
通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。
这种技术被广泛地应用于空气污染、水污染、食品卫生、金属工业等的检测中。
将复色光分离成光谱的光学仪器。
光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。
按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。
按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。
单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。
图片图中所示是三棱镜摄谱仪的基本结构。
狭缝S与棱镜的主截面垂直,放置在透镜L的物方焦面内,感光片放置在透镜L的像方焦面内。
用光源照明狭缝S,S的像成在感光片上成为光谱线,由于棱镜的色散作用,不同波长的谱线彼此分开,就得入射光的光谱。
棱镜摄谱仪能观察的光谱范围决定于棱镜等光学元件对光谱的吸收。
普通光学玻璃只适用于可见光波段,用石英可扩展到紫外区,在红外区一般使用氯化钠、溴化钾和氟化钙等晶体。
目前普遍使用的反射式光栅光谱仪的光谱范围取决于光栅条纹的设计,可以具有较宽的光谱范围。
表征光谱仪基本特性的参量有光谱范围、色散率、带宽和分辨本领等。
基于干涉原理设计的光谱仪(如法布里-珀罗干涉仪、傅立叶变换光谱仪)具有很高的色散率和分辨本领,常用于光谱精细结构的分析。
单色仪科技名词定义中文名称:单色仪英文名称:monochromator定义:从一束电磁辐射中分离出波长范围极窄单色光的仪器。
所属学科:机械工程(一级学科) ;光学仪器(二级学科) ;物理光学仪器(三级学科)本内容由全国科学技术名词审定委员会审定公布monochromator光谱仪器中产生单色光的部件。
第1章衍射光栅:刻划型和全息型衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。
(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行.全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布.全息光栅可在平面、球面、超环面以及很多其他类型表面生成.本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。
1。
1 基础公式在介绍基础公式前,有必要简要说明单色光和连续谱。
提示:单色光其光谱宽度无限窄.常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。
这些即为大家所熟知的“线光源"或者“离散线光源”。
提示:连续谱光谱宽度有限,如“白光”。
理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。
有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。
本书中的公式适用于空气中的情况,即m0=1.因此,l=l0=空气中的波长。
定义单位α —(alpha)入射角度β - (beta)衍射角度k - 衍射阶数整数定义单位n - 刻线密度刻线数每毫米DV- 分离角度µ—折射率无单位λ —真空波长纳米λ0—折射率为µ介质中的波长其中λ0= λ/µ1 nm = 10—6 mm; 1 mm = 10—3 mm; 1 A = 10-7 mm最基础的光栅方程如下:(1-1)在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。
因此,分离角D V成为常数,由下式决定,(1—2)对于一个给定的波长l,如需求得a和b,光栅方程(1—1)可改写为:(1—3)假定D V值已知,则a和b可通过式(1-2)、(1—3)求出,参看图1.1、1。
一、光栅尺将光源、圆型的旋转编码盘(编码盘的线数有360线到2400线数不同)和光电检测器件等组合在一起构成的通常称光电旋转编码器,码盘的线数决定了旋转角精度。
同样两块长光栅(动尺和定尺)光栅的单位密度也决定了其单位精度,与光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。
旋转编码器每旋转一格光栅角,每一个光栅电信号对应一个旋转角或光栅尺每输出一个电信号,动尺移动一个栅距,输出电信号便变化一个周期,通过对信号变化周期的测量来测出动就与定就职相对位移。
目前使用的光电旋转编码器与光栅尺的输出信号一般有两种形式,一是相位角相差90o的2路方波信号,二是相位依次相差90o的4路正弦信号。
这些信号的空间位置周期为W。
针对输出方波信号的光栅进行计数,而对于输出正弦波信号的光栅,经过整形可变为方波信号输出进行计数。
就可以检测。
输出方波的旋转编码器、光栅尺有A相、B相和Z 相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。
Z信号可以作为较准信号以消除累积误差。
二、光栅光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。
在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。
光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。
如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。
光栅原理光栅也称衍射光栅。
是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。