木质纤维素化学方法预处理
- 格式:ppt
- 大小:581.50 KB
- 文档页数:12
高温液态水预处理木质纤维素赵孟姣;李国民;徐刚;徐琴琴;张昱;银建中【摘要】Physical and chemical properties of hot liquid water were introduced.Lignocellulose dissolution in the process of hot liquid water pretreatment,the factors and mechanism of hemicellulose hydrolysis were re-viewed and analyzed in this paper.The hydrolytic process of cellulose was discribed.Both the lignocellulose type and enzyme hydrolysis efficiency should be taken into consideration while choosing pretreatment process of hot liquid water.In addition,the mechanism of hemicellulose hydrolysis in hot liquid water was discussed in order to guide and control the pretreatment process.%介绍了高温液态水的物化性质,对木质纤维素在高温液态水预处理过程中的溶解情况及半纤维素水解的影响因素、机理进行了较详细的综述和分析,简述了纤维素的水解过程,指出选择高温液态水预处理工艺应综合考虑木质纤维素的种类与酶水解效果,进一步探讨了半纤维素的高温液态水水解机理,以指导和控制预处理过程。
【期刊名称】《化学与生物工程》【年(卷),期】2015(000)003【总页数】7页(P11-17)【关键词】木质纤维素;高温液态水;预处理;水解【作者】赵孟姣;李国民;徐刚;徐琴琴;张昱;银建中【作者单位】大连理工大学化工机械学院,辽宁大连 116024; 辽宁石油化工大学机械工程学院,辽宁抚顺 113001;大连理工大学化工机械学院,辽宁大连116024;大连理工大学化工机械学院,辽宁大连 116024;大连理工大学化工机械学院,辽宁大连 116024;大连理工大学化工机械学院,辽宁大连 116024; 内蒙古工业大学化工学院,内蒙古呼和浩特 010051;大连理工大学化工机械学院,辽宁大连 116024【正文语种】中文【中图分类】TQ352煤炭、石油等不可再生能源的大量使用导致能源危机与环境污染,迫使人们寻找可持续的清洁能源取代传统的化石燃料,生物燃料乙醇就是非常重要的可持续清洁能源。
目前利用木质纤维素生物质的方法主要是在纤维素转化阶段之前利用溶剂或化学品脱除木质素的方法,秸秆等木质纤维素原料的利用思路如下:利用溶剂或化学品溶解木质素的过程往往需要高温处理,一旦降温,木质素即沉淀析出,易造成浆液浓稠,设备结垢的难题。
超临界方法作为一种绿色化学的处理工艺,目前已经在木质纤维素的预处理过程中有所应用,主要原理是在超临界状态下利用CO2等溶剂及改性剂的作用破坏纤维素与半纤维素、木质素的链接,达到提高木质纤维素产糖率的目的。
可以查询到的专利有:一种以棉籽壳为原料制备纤维素类化合物的方法(CN103122034A,2013年5月公布);一种玉米秸秆预处理方法(CN101565725A,2009年10月);从木质纤维素生物质生产木质素(CN103502320A,2014年1月公布);从木质纤维素生物质生产木质素(CN103502383A,2014年1月公布)等。
综合以上处理方法,其主要工艺流程可归纳如下:(a)样品处理;粉碎机处理样品,使样品的表面积尽可能增加。
(b)木质素去除;利用醇(甲醇,乙醇,丁醇,戊醇)、超临界CO2(31度,1072 psig)、亚临界水(250-280度)、超临界水(>374度,>221 bar)的一种或多种作为反应萃取溶剂。
采用间歇式或连续式的方法处理木质纤维素样品。
有报道采用流量20g/min CO2,33%的戊醇水溶液作为萃取剂,在180度,15MPa的条件下处理秸秆后,其最终产糖率由8%提高到93%,木质素去除率达到90%。
为了防止木质素沉降聚集,制备木质素微粒(粒度范围50-500微米),在脱除木质素的过程中有专利提出了采用多级降温降压的措施。
(c)纤维素及其衍生物的制备;经过有机酸/无机酸进一步除杂后,可获得的产物为微晶纤维素,可直接用于发酵或与氯乙酸,氢氧化钠,尿素,3-氯-2羟丙基三甲基氯化铵等物质反应制备氨基甲酸酯纤维素,羧甲基纤维素,羟乙基甲基纤维素等醚类化合物。
纤维素的预处理和再生纤维素是一种存在于植物细胞壁中的天然聚合物,由葡萄糖分子通过β-1,4-糖苷键连接而成。
它具有许多优秀的性质,比如高强度、高模量、良好的生物相容性等,因此被广泛应用于纺织、造纸、医药、食品等领域。
然而,在纤维素被使用之前,通常需要进行预处理和再生过程,以提高其性能和可用性。
1.分离纤维素:在纤维素材料中,纤维素与其他非纤维素成分(如木质素、半纤维素等)混合在一起。
通过预处理,可以将纤维素与其他成分有效地分离开来,以获得纯净的纤维素材料。
2.改变纤维素结构:纤维素的结构与性质密切相关。
预处理可以改变纤维素的结晶度、分子量、孔隙度等参数,从而改善其力学性能、溶解性能、吸湿性能等。
3.提高纤维素的可用性:纤维素本身存在一些限制,如难溶解、难加工等。
通过预处理,可以改善纤维素的可加工性能,并增加其应用的范围和灵活性。
纤维素的再生是指对废弃的纤维素材料进行处理,以获得再生纤维素材料。
再生纤维素材料具有与新生产的纤维素材料相似的性能和功能,但其制备过程更加环保和可持续。
纤维素的再生过程通常包括以下几个步骤:1.收集废弃纤维素材料:废弃纤维素材料可以来自于废纸、纺织品废料、农业废弃物等,通过收集这些废弃材料,可以减少资源的浪费和环境的污染。
2.分离和纯化:收集到的废弃纤维素材料通常混合着其他杂质,如油脂、颜料、黏合剂等。
通过物理或化学方法,可以将这些杂质与纤维素有效分离开来,并获得纯净的纤维素。
3.预处理和再生:废弃纤维素材料通常需要经过预处理步骤,这包括干燥、碱处理等,以改变纤维素材料的性质和结构。
然后,再生纤维素材料可以通过溶解、纺丝、沉淀等方法获得。
4.再生纤维素的应用:获得再生纤维素材料后,可以将其应用于各种领域,如纺织、造纸、包装、建筑等。
再生纤维素材料具有与新生产的纤维素材料相似的性能和功能,因此可以在许多方面替代传统的纤维素材料。
纤维素的预处理和再生旨在提高纤维素材料的性能和可持续性。
木质纤维素预处理方法的研究进展摘要:概述了几种比较实用的木质纤维素预处理技术,总结了各种预处理技术的方法、原理以及优缺点,进而对木质纤维素预处理方法的发展前景进行了展望。关键词:木质纤维素;预处理方法;研究进展Research Advances of Pretreatment Technology of LignocelluloseAbstract: Some practical pretreatment technologies of lignocellulose were briefly introduced, including the main methods, principles, advantages and disadventages. And the development prospect of pretreatment technology of lignocellulose was put forward.Key words: lignocellulose; pretreatment method; research progress随着世界经济的不断发展和石油资源的日益消耗,开发更加长久有效的能源是各国面临的一个巨大难题。作为一种可再生能源,生物质能源是中国能源可持续发展的必然战略选择之一。利用木质纤维素生产生物乙醇、丁醇等生物质燃料是生物质能源开发的重要内容。我国天然纤维素原料非常丰富(包括农作物秸秆、林业副产品、城市垃圾和工业废弃物等),利用生物技术分解和转化木质纤维素既是资源利用的有效途径,对于解决环境污染、食品短缺和能源危机又具有重大的现实意义。1 木质纤维素的结构木质纤维素是指以纤维素、半纤维素和木质素为主要成分的原料,3种成分在植物原料中的含量分别为35%~50%、15%~25%和15%~30%。纤维素是聚合度在 1 000~10 000的葡萄糖的线性直链聚合物,由结晶相和非结晶相交错形成,结晶相结构致密,阻碍纤维素的分解。半纤维素结构较纤维素简单,主要是由木糖、阿拉伯糖等戊糖及少量的葡萄糖、甘露糖和半乳糖等己糖形成的直链或支链聚合物,在适宜的温度下易于溶解在稀酸溶液中并降解成单糖。木质素是一种由苯丙烷结构单体组成的具有复杂三维结构的芳香族高聚物,在植物结构中发挥胶粘作用,将纤维素和半纤维素紧密结合在一起,增大茎秆的机械强度,起到木质化作用,阻碍微生物对植物细胞的攻击,同时减小了细胞壁的透水性。纤维素和半纤维素作为可酵解糖类,占原料总重的65%~75%[1]。2 预处理的目的木质纤维素的转化利用可分为原料预处理、酶水解和糖发酵3个阶段,主要的技术瓶颈在于预处理技术不够成熟以及纤维素酶活性较低,造成生产成本过高。通过原料的预处理,可以破坏纤维素的结晶结构,降低木质素的聚合度,提高木质纤维素材料的多孔性,增加酶与底物的接触面积,从而提高酶解的效率,达到节约时间和降低成本的目的。好的预处理应满足以下4个条件:①有利于提p 3.1.1 机械粉碎法通过机械削切和研磨分别将木质纤维处理成粒径为10~30 mm和0.2~2.0 mm的颗粒,可有效降低木质纤维素的结晶度和消化效率[2]。震动球磨技术能比普通球磨技术更有效地降低木质纤维素的结晶度和消化特性。相对来说,机械粉碎耗时长、耗能高,造成预处理成本太高,无法在工业化生产中广泛使用[3]。3.1.2 蒸汽爆破蒸汽爆破是当今应用最为广泛的木质纤维素预处理技术。通过将经高压饱和蒸汽溶解的木质纤维素瞬间降压,达到破坏木质纤维素结构的目的。通常认为,半纤维素被爆破过程中产生的醋酸和其他的有机酸所溶解,从而导致纤维素暴露出来,增大了微纤维与酶的可及性。木质素的含量变化不大,只有小部分被溶解,但是在溶解过程中木质素发生解聚/再聚合反应,从而使木质纤维素的表面结构发生变化。瞬时爆破使样品得以破碎降解,从而增大了反应的可接触面积,这些因素都能够提高纤维素的水解效率。影响蒸汽爆破处理效果的因素主要有以下几方面:压力保持时间、温度、颗粒的粒径大小和含水量。高温短时处理(270 ℃、1 min)或者低温长时间处理都能够使半纤维素达到最大程度的溶解。相对于机械粉碎,蒸汽爆破法可以节省大约70%的能量,同时对环境不产生污染。近几年来,通过加入各种催化剂(酸或碱)或者改换不同的蒸汽介质(如氨水),发展出许多新型的爆破技术,有效推动了预处理技术的发展,使蒸汽爆破成为最接近商业化应用的预处理方法。大量不同种类的木质纤维素预处理试验证明了蒸汽爆破技术的可行性,其使用规模也在不断扩大。加拿大的Iogen工厂已经建立了一套利用该技术处理木质纤维素的中试装置。尤其在阔叶树木及农作物秸秆的处理方面,蒸汽爆破法被看作是最具有经济价值的预处理技术[1]。蒸汽爆破法的局限主要包括半纤维素的分解、木质素的不完全降解以及在处理过程中产生的对于后续酶水解和发酵有害的物质。因此,需要用大量的水冲洗预处理产物以去除这些有害物质。但冲洗的同时带走了可溶性的糖,其中包括一大部分的可溶性半纤维素,降低了总的糖产量。3.1.3 超临界水处理超临界水处理是指利用处于超临界状态(T>374.2 ℃、P>22.1 MPa)的水处理木质纤维素的方法,通常与亚临界水解技术联合使用。在临界点(T=374.2 ℃、P=22.1 MPa)时,水的溶剂化能力突然增强,电离程度增大,可有效打破木质素的包裹作用同时降低纤维素的结晶度,使纤维素可以很容易地溶解在超临界的水溶液中,并且迅速分解成低聚糖,低聚糖进而快速分解成葡萄糖。阳金龙等[4]研究了该技术在玉米秸秆预处理中的应用,将40 mg玉米秸秆和2.5 mL水置于380~400 ℃的密闭容器中反应15~35 s,然后对产物进行分析。结果表明,玉米秸秆在388 ℃的超临界水相中,经21 s的反应时间后,低聚糖转化率和可检测转化率最高,分别为24.1%和43.6%。相对于传统预处理技术,超临界水处理具有反应时间短、水解效率高、资源和环境成本低等优点,但是作为一项新兴技术,其理论研究相对不足,尚无法解决葡萄糖分解产物较多、副产物成分复杂、发酵糖产量较低等问题。3.2 化学法化学法是用碱、酸、有机溶剂等预处理木质素、纤维素的方法,主要目的是破坏细胞壁中半纤维素与木质素之间的共价键,破坏纤维素的结晶结构及纤维素与木质素的连接键,从而提高秸秆的消化率。3.2.1 酸处理酸处理是利用稀酸、浓酸和无水有机酸等酸性物质水解秸秆中纤维素的方法。酸处理可大致分为无机酸处理和有机酸处理。无机酸处理主要作用是使半纤维素变成单糖进入溶液中,增大试剂与纤维素的接触面积,提高可及度。预处理后的原料中木质素含量基本不变,半纤维素含量变少,纤维素的含量和聚合度有一定程度的下降。Silverstein等[5]研究了硫酸、氢氧化钠、过氧化氢和臭氧在不同条件下预处理的效果。结果表明,这几种物质都能够明显降解木质素或者提高单糖得率,而硫酸预处理时半纤维素降解率最高,在121 ℃、0.1 MPa、2% H2SO4、90 min的条件下,木质素降解率为95.23%,但是对后续的纤维素水解影响最大,葡萄糖的转化率最低,为23.85%。唐锘[6]在研究中发现,稀硫酸预处理方法对秸秆各组分降解率最高,在最适水解条件(0.7%稀硫酸、121 ℃、1 h)下,半纤维素、纤维素、木质素的降解率分别为46.15%、43.75%和50.00%。有机酸处理原理与无机酸相似,主要是使原料中半纤维素和木质素溶解,降低二者在原料中的含量,一般在使用时增添无机酸作为催化剂。但是,相对于无机酸,有机酸对容器的腐蚀性小,对后续水解过程的毒性低,具有更大的发展潜力。3.2.2 碱处理常见的碱处理试剂有氢氧化钙、氢氧化钠、碳酸氢钠或者过氧化氢等。秸秆碱化的原理在于氢氧根阴离子能削弱半纤维素、纤维素之间的氢键,打开木质素和半纤维素之间的醚键,皂化木质素和半纤维素之间的酯键。碱处理能够使木质素发生降解以及降低纤维素的结晶度。Silverstein等[5]用2%的NaOH 处理棉花秸秆,能够明显去除秸秆中的木质素、提高纤维素的转化率。Wang等[7]研究了百慕大海草在不同浓度的氢氧化钠预处理后结构和物质的变化,结果发现,在NaOH浓度大于或等于1%的情况下,30 min的处理时间可以起到明显的去木质化的作用。在整个处理过程中,纤维素的去除率变化很小(在10%之内),而半纤维素的去除率随着NaOH浓度的增大而增大,而且效果明显。碱处理是现在人们普遍采用的方法,但是在用碱处理秸秆时除溶解掉一部分木质素外,也使部分半纤维素被分解,损失较大,同时与用酸处理相同,用碱进行预处理也存在着试剂的回收、中和以及洗涤等问题,这些问题都不可避免地会造成环境污染。随着技术的发展,酸或碱处理通过与其他的物理或者化学方法(包括球磨法、蒸汽爆破、微波或者氧化技术)进行组合,将形成一些更有效的预处理方法。3.3 生物方法微生物方法预处理被认为是目前最有前途的一种处理手段,它具有对环境无污染、降解率高、用途广、周期短、可再生、成本低等优点,能提高秸秆的综合利用效率,利于可持续发展。微生物法主要利用菌类产生的一些酶来降解木质素和半纤维素,而对纤维素的降解作用较小。目前常用的真菌有白腐菌、褐腐菌等,如黄孢原毛平革菌、彩绒革盖菌等,利用这些真菌产生的木质素分解酶系来对物料进行分解。Kurakake等[8]对城市垃圾中办公室用纸采用两种菌株(Sphingomonas paucimobilis 和Bacillus circulans)进行混合预处理,然后再用酶水解。研究表明,混合菌株生物预处理技术能够有效提高废弃办公用纸的酶水解率,糖回收率可达94%,预处理效果显著。参考文献[1] 波吉特K,帕特里克R G,迈克K. 生物炼制——工业过程与产品(上卷)[M]. 马延和,译. 北京:化学工业出版社,2007. 160-166.[2] SUN Y, CHENG J. Hydrolysis of lignocellulosic materials for ethanol production: A review[J]. Bioresour Technol,2002,83(1):1-11.[3] GALBE M, ZACCHI G. Pretreatment of lignocellulosic materials for efficient bioethanol production[J]. Adv Biochem Eng Biotechnol,2007,108:41-65.[4] 阳金龙,赵岩,陆文静,等. 玉米秸秆超临界预处理与水解[J]. 清华大学学报(自然科学版),2010(9):1408-1411.[5] SILVERSTEIN R A, CHEN Y, SHARMA-SHIVAPPA R R, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresource Technology,2007,98(16):3000-3011.[6] 唐锘. 秸秆预处理方法的筛选[J].化工时刊,2008(7):22-26.[7] WANG Z, KESHW ANI D R, REDDING A P, et al. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass[J]. Bioresour Technol, 2010, 101(10): 3583-3585.[8] KURAKAKE M, IDE N, KOMAKI T. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper[J]. Curr Microbiol, 2007, 54: 424-428.。
稀酸预处理生物质的准备1、引言1.1、木质素、纤维素生物质原料是典型的含有大量(比重大约55-75%)有五碳或者六碳糖聚合而成的糖水化合物。
大部分的这些碳水化合物能够通过生物技术转变成乙醇。
然而,为了让生物转化过程更好的发生,聚合物首先必须被破坏成低分子量的或者原始的单体糖,并且大部分人采用的优先途径为酶促水解。
但是,纤维素中的一部分碳水化合物是难以进行酶促分解的,因此,为了让其能够积极响应酶解过程一些预处理步骤是必需的。
虽然在调查下发现一批各种各样的预处理方法,但是稀硫酸预处理方法确定已被NREL采用,来准备预处理用来发酵的生物质。
2、范围2.1、这步阐述了这种稀酸预处理方法已被NREL采用于乙醇发酵课题来预处理准备用于发酵研究的生物质的方法。
生物质用稀硫酸在160℃下地压力反应器中预处理10分钟。
这种方法在NREL已经发展作为几年预处理研究的结果并且发现通过它能够得到令人满意的高木糖产出率和高预处理固体酶解力的预水解产物(稀酸预处理过程中产生的液相)。
根据研究目标决定预处理的生物质需不需要进行洗涤。
然而,在这种方法中运用的起作用的条件还没有把木糖产出率酶解力,或者能够通过发酵获得的乙醇产出率优化到最大化。
而且,最理想的预处理条件被期望应该是特有的方法。
2.2、所有分析过程都应该参考QAP乙醇课题项目中制定的准则。
3、参考文献4、意义及应用4.1、木质素、纤维素生物质中的碳水化合物能够经过生物技术转化成乙醇之前,预处理过程是必需的。
稀酸预处理方法是一种已经通过彻底审查的技巧并发现其效果较好。
5、仪器设备5.1、Parr仪器公司的压力反应器系统,包括一个2加仑或一个有20号元素Cb-3材料制成的反应容器,一个相配套的搅拌器,电子加热器外罩和一个由温度/搅拌控制单元组成的温差电偶,所有的安装在一个可活动的金属平台上。
附属在反应容器顶板上的一个搅拌棒、一个压力表、一个通风孔、一个化学注射剂阀门、一个压力分割盘和一个热力井。
林业工程学报,2024,9(2):1-13JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.20232020收稿日期:2023-02-28㊀㊀㊀㊀修回日期:2023-10-18基金项目:国家自然科学基金(32171731);南京林业大学科研启动基金(GXL2018036)㊂作者简介:张军华,男,教授,研究方向为木质纤维原料转化制取生物能源和化学加工㊂文沛瑶为共同第一作者㊂E⁃mail:junhuazhang@njfu.edu.cn过氧化氢预处理强化木质纤维原料酶水解研究进展张军华,文沛瑶ә,林子贺,应文俊(南京林业大学化学工程学院,南京210037)摘㊀要:在木质纤维素的生物降解和转化过程中,木质纤维素的复杂结构和木质素组分限制了碳水化合物的高效酶水解㊂过氧化氢预处理可以通过破坏木质纤维素的物理化学结构并氧化降解部分木质素,从而改善原料的酶水解效率㊂过氧化氢预处理主要有过氧化氢⁃酸㊁过氧化氢⁃碱㊁活化过氧化氢这3类预处理方法㊂笔者主要归纳了不同预处理过程中的木质素降解机理,总结了过氧化氢预处理强化木质纤维原料酶水解的效果,探讨了预处理对木质纤维原料降解产物的影响,评价了各类过氧化氢预处理的可行性和优缺点㊂最后,根据过氧化氢预处理的特点分析了过氧化氢预处理的研究策略,展望了过氧化氢预处理的发展趋势㊂从安全性和经济可行性的角度来看,低试剂用量㊁低温和低压的预处理条件是未来过氧化氢预处理的主要研究方向㊂关键词:过氧化氢预处理;木质素氧化;降解产物;经济分析;研究策略中图分类号:TQ35㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2024)02-0001-13AreviewofenhancementoflignocelluloseenzymatichydrolysisviahydrogenperoxidepretreatmentsZHANGJunhua,WENPeiyaoә,LINZihe,YINGWenjun(CollegeofChemicalEngineering,NanjingForestryUniversity,Nanjing210037,China)Abstract:Intheprocessofbiomassconversion,theintricatestructureandthepresenceoflignininlignocelluloseshinderthesaccharificationofcarbohydratecomponentsthroughenzymatichydrolysis.Pretreatmentcanremoveligninanddestroythephysicalandchemicalstructuresoflignocelluloses,thusachievingefficientconversionofbiomasstomonosaccharide.Hydrogenperoxideiswidelyusedinthepretreatmentoflignocellulosesbecauseofitsstrongoxida⁃tivedegradationabilitytolignin.Hydrogenperoxidepretreatmentmethodsmainlyconsistofhydrogenperoxide⁃acid,hydrogenperoxide⁃alkali,andhydrogenperoxide⁃activatorpretreatments.Thisreviewsummarizedthemecha⁃nismoflignindegradationinthesehydrogenperoxidepretreatments.Inacidicmedia,hydrogenperoxideactsasanelectrophilicreagentbyforminghydroniumion.Thearomatichydroxylationofhydroniumionbysubstitution/addi⁃tionreactionisthemainreactionfordegradationoflignininacidicmediaofhydrogenperoxide.Inalkalinemedi⁃um,someactivereactionsubstances(hydrogenperoxideanion,hydroxylgroupradical,andsuperoxideanionradi⁃cal)areformedbythedecompositionofhydrogenperoxide.Thealkeneandcarbonylgroupsofthesidechainoflig⁃nincanbeattackedbythoseactivereactionsubstanceswithanucleophilicreaction.Inhydrogenperoxide⁃activatorsystems,hydrogenperoxidecanbeactivatedbytransitionmetalionstoenhancetheoxidationabilityofthehydrogenperoxideforthelignindegradation.Theimprovementsofenzymatichydrolysisoflignocellulosesthroughhydrogenperoxidepretreatmentsweresummarized.Inthehydrogenperoxidepretreatment,hydrogenperoxide⁃acidpretreat⁃mentshowsthestrongestligninremovalabilityandthehigherimprovementontheenzymatichydrolysisoflignocel⁃luloses.Themainlignindegradationproductsinhydrogenperoxidepretreatmentwereorganiccarboxylicacidsandphenoliccompounds.Theadvantagesanddisadvantagesofvarioushydrogenperoxidepretreatmentswerecompared.Thefeasibilityofvarioushydrogenperoxidepretreatmentmethodswasevaluatedbyeconomicanalysis.Hydrogenperoxide⁃alkalipretreatmentshowsthelowesteconomiccostinthosethreehydrogenperoxidepretreatmentmethods.Gramineousplantsaresuitableforhydrogenperoxide⁃alkalipretreatmentandwoodmaterialsaresuitableforthehy⁃drogenperoxide⁃acidpretreatment.Finally,thedevelopmenttrendofhydrogenperoxidepretreatmentwaspredictedandprospectedbasedonthecharacteristicsofthesepretreatmentmethods.Thedecompositionofhydrogenperoxide,林业工程学报第9卷thedesignofreactionequipment,thesafetyofpretreatmentsystems,andtheutilizationofdegradationproductsoflignocellulosesarethemainresearchdirectionsofhydrogenperoxidepretreatmentinthefuture.Inconclusion,hy⁃drogenperoxidepretreatmentswithlowreagentdose,lowtemperature,andlowsystempressurewerethemainre⁃searchdirectionofhydrogenperoxidepretreatmentinthefuture.Theobjectiveofthisworkwastocomprehensivelyreviewvarioushydrogenperoxidepretreatmentmethodsandofferinsightsintopotentialresearchdirectionsinthefieldofhydrogenperoxidepretreatment.Keywords:hydrogenperoxidepretreatment;oxidationoflignin;degradationproduct;economicanalysis;researchstrategy㊀㊀木质纤维原料主要包含纤维素㊁半纤维素和木质素㊂其中,碳水化合物组分经过酶解糖化后可以转化成生物能源和化学品[1]㊂然而,在木质纤维素原料的酶解糖化过程中,木质素的空间阻碍和对纤维素酶的非生产性吸附影响了纤维素酶对底物的可及性,从而限制了原料的高效酶水解[2]㊂使用预处理技术可以破坏木质纤维原料的物理结构并移除部分木质素,从而提高原料的酶解糖化效率[3]㊂过氧化氢是一种强氧化剂,对木质素有较强的氧化降解能力,因而被广泛应用于木质纤维原料的预处理[4]㊂过氧化氢可以协同碱㊁酸或金属类催化剂对木质素进行氧化降解[5]㊂过氧化氢预处理木质纤维原料的研究内容主要包括过氧化物的原位合成㊁木质素氧化降解机理㊁过氧化氢预处理改善原料酶水解特性㊁过氧化氢预处理降解产物等㊂基于过氧化氢预处理良好的木质素移除效果,其在木质纤维原料的生物炼制领域具有广阔的应用前景㊂笔者首先介绍了过氧化氢⁃酸㊁过氧化氢⁃碱和活化过氧化氢预处理的反应机理;然后总结了3种预处理方法强化木质纤维原料酶水解的研究进展,归纳了各类预处理方法降解产物,对比了各类过氧化氢预处理的优缺点;最后对过氧化氢预处理技术应用于木质纤维素原料的前景进行了展望,为今后该预处理技术在生物炼制领域的应用提供参考㊂1㊀过氧化氢预处理的方法过氧化氢是一种绿色的强氧化剂,可以将木质素氧化降解成醛类㊁酚类㊁有机酸㊁小分子化合物,从而实现木质纤维原料中碳水化合物和木质素的分离[5]㊂酸㊁碱或活化剂可增强过氧化氢的氧化效率㊂常见的过氧化氢预处理有过氧化氢⁃酸㊁过氧化氢⁃碱和活化过氧化氢3种方法㊂其中过氧化氢⁃酸预处理中常见的酸性试剂有甲酸㊁乙酸和磷酸[6-8];过氧化氢⁃碱预处理中常见的碱性试剂有氢氧化钠㊁氢氧化钙和碳酸钠[9-11];活化过氧化氢预处理中常用的活化方式有紫外和过渡金属离子活化2种方式[12-14]㊂过氧化氢⁃酸体系主要产生过氧酸以实现木质素的氧化[15]㊂过氧化氢⁃碱体系中,碱能促进过氧化氢分解产生活性物质(OOH-㊁㊃HO和㊃O-2)从而氧化木质素[16]㊂此外,过氧化氢还可以通过活化产生自由基,实现木质素的高级氧化反应[17]㊂由此可见,引入不同协同试剂会对过氧化氢氧化木质素的机理产生影响,进而影响过氧化氢预处理对木质素的移除效果㊂2㊀过氧化氢⁃酸预处理2.1㊀过氧化氢⁃酸预处理氧化木质素机理在酸性介质中,过氧化氢通过形成水合氢离子(OH+)作为亲电试剂[4],其形成过程为:H2O2+H+↔H+2OOH↔H2O+OH+,其中HO+是一种强亲电离子,容易与木质素中的富电子点位发生反应[18]㊂HO+离子和木质素模型反应发现,HO+取代/加成的芳环羟基化反应是过氧酸降解木质素的主要反应[19]㊂在酸性环境下,过氧化氢可以和酸混合形成过氧酸㊂具体的酸性过氧化氢氧化木质素的路径由对应酸形成的过氧化物所决定㊂例如,过氧化氢和硫酸㊁甲酸㊁乙酸可形成过氧硫酸㊁过氧甲酸和过氧乙酸㊂以过氧化氢⁃乙酸(HPAA)为例,HPAA溶液反应生成的过氧乙酸O O键能为159kJ/mol,低于过氧化氢的键能(213kJ/mol),因而过氧乙酸具有更优异的活性[20]㊂过氧乙酸的氧化还原电位与过氧化氢接近,因此也具有较强的氧化能力㊂此外,过氧乙酸溶液中可活化产生羟基㊁甲基㊁乙酰氧基和乙酰过氧基等活性自由基氧化降解有机物[10]㊂这些活性物质直接参与木质素的氧化反应,从而增强HPAA对木质素的降解能力㊂HPAA预处理中,过氧乙酸与木质素的初始反应是芳环㊁邻氧㊁对氧基团活性位的亲电羟基化反应[21](图1),依次通过3个反应历程氧化木质素:2㊀第2期张军华,等:过氧化氢预处理强化木质纤维原料酶水解研究进展木质素基团的亲电羟基化反应㊁脱甲氧基化反应和醌环氧化裂解开环[5]㊂图1㊀过氧化氢⁃乙酸预处理解聚木质素模型物[21]Fig.1㊀DepolymerizationofmodelligninbyHPAApretreatment㊀㊀过氧化氢⁃磷酸(PHP)预处理中,降解产物形成的过氧乙酸和过氧化氢生成的OH+是氧化木质素的主要物质[22]㊂PHP预处理对木质素氧化降解路径如图2所示㊂由图2可见,其主要包括木质素的愈创木酰基单元解聚㊁芳香环和侧脂肪链的分解,其中芳烃的开环反应和C O C键的裂解是PHP预处理中木质素氧化降解的2个重要途径㊂图2㊀过氧化氢⁃磷酸预处理中木质素模型物降解路径[22]Fig.2㊀DegradationpathofligninmodelinPHPpretreatment2.2㊀过氧化氢⁃酸预处理强化木质纤维原料酶水解常见的过氧化氢⁃酸预处理主要有过氧化氢⁃甲酸㊁HPAA㊁PHP这3种预处理方法,其对木质纤维原料的木质素移除和酶水解改善的效果不同㊂2.2.1㊀过氧化氢⁃甲酸预处理过氧化氢和甲酸混合后产生过氧甲酸,其通过Baeyer⁃Villiger反应可以破坏木质素的β⁃O⁃4醚键,实现对木质素的高效降解[6]㊂根据该原理,Chang等[23]利用过氧化氢⁃甲酸预处理对糠醛中的木质素进行分离,制备了纳米纤维素㊁木质素和纳米木质素㊂如表1所示[23-31],过氧化氢⁃甲酸预处理对糠醛渣和甘蔗渣的木质素移除十分高效㊂然而,在80 90ħ预处理糠醛渣后,固形物回收率不足31%,这就表明有大量的碳水化合物组分被降3林业工程学报第9卷解移除[23]㊂采用室温条件的过氧化氢⁃甲酸预处理可以减少碳水化合物组分的损失㊂例如,室温条件下过氧化氢⁃甲酸预处理甘蔗渣可在移除84.3%木质素的同时,保证纤维素回收率高于95%[24],甘蔗渣的酶水解糖化效率接近100%㊂上述研究表明,过氧化氢⁃甲酸预处理不仅能在移除木质素组分的同时保留大部分碳水化合物组分,还极大改善了固体残渣的酶水解性能㊂表1㊀过氧化氢⁃酸预处理对木质纤维原料木质素移除和酶水解的影响Table1㊀Effectofhydrogenperoxide⁃acidpretreatmentonligninremovalandenzymatichydrolysisoflignocellulosematerials原料预处理条件木质素移除率/%酶水解效果参考文献糠醛渣过氧化氢⁃甲酸,80 90ħ,6h>98.0 [23]甘蔗渣过氧化氢⁃甲酸,室温,2h84.3酶解效率约100%[24]稻草HPAA,80ħ,2h85.1酶解糖质量浓度>10g/L[25]杨树HPAA,60ħ,2h92.0葡萄糖得率95.0%[26]玉米秸秆HPAA,80ħ,2h45.0糖化效率提高2.1倍[27]甘蔗渣69.1%HPAA,80ħ,26.5h97.1水解得率93.6%[28]小麦秸秆PHP,50ħ,5h78.3水解得率约100%[29]小麦秸秆PHP,50ħ,5h71.8葡萄糖质量浓度164.9g/L[30]橡树PHP,50ħ,5h87.8葡萄糖得率100%[31]2.2.2㊀过氧化氢⁃乙酸预处理HPAA预处理也可对木质纤维原料的木质素选择性降解(表1)㊂HPAA预处理通过对木质素组分的移除,增加了纤维素酶对原料的纤维素可及性,从而改善了原料的酶水解效率[27]㊂硫酸催化剂可以促进HPAA中的乙酸和过氧化氢合成过氧乙酸,从而强化HPAA预处理对木质素的移除效果㊂Tan等[28]使用质量分数69.1%HPAA溶液在80ħ下对甘蔗渣处理26.5h后,97.1%的木质素被移除㊂相同温度和HPAA浓度下,使用质量分数0.5%的硫酸作为催化剂,只需预处理3h木质素移除率就可达97%㊂Ying等[32]研究发现在80%HPAA预处理中,硫酸浓度从0mmol/L增加至200mmol/L,杨木木质素移除率从21%提高至86%㊂由此可见,硫酸催化在调控HPAA预处理效率和脱除木质素能力上具有重要作用㊂此外,HPAA预处理会增加木质纤维原料的乙酰基含量,不利于后续的纤维素酶水解[26,33]㊂Wen等[26]使用1%NaOH移除了HPAA预处理杨木中92.0%的乙酰基,将杨木酶水解的葡萄糖得率从85.7%提升至95.0%以上㊂Liao等[34]使用NaOH对HPAA预处理的杨木进行乙酰基的移除,结果不仅改善了酶水解得率,而且还节省了33.3%的HPAA用量㊂因此,HPAA预处理协同脱乙酰化步骤可以实现更佳的预处理效果㊂除此之外,HPAA预处理后的木质纤维原料残渣富含纤维素组分,预处理液中溶解有部分半纤维素和木质素组分,这些分离的组分可转换为燃料㊁化学品和生物基材料[7]㊂2.2.3㊀过氧化氢⁃磷酸预处理PHP预处理主要以降解木质纤维原料的半纤维素和木质素为主㊂PHP预处理小麦秸秆后,残渣主要以纤维素为主,从预处理液中可以得到低聚糖和具有功能性官能团的木质素[8]㊂Qiu等[30]研究表明,PHP(79.6%磷酸和1.9%过氧化氢)移除了71.8%的小麦秸秆木质素,但半纤维素组分被完全降解㊂而经此条件预处理的原料在20%的底物质量分数下,酶水解的葡萄糖质量浓度可达164.9g/L,同步糖化发酵中的乙醇质量浓度可达71.2g/L㊂由此可知,PHP预处理在制备高浓度单糖和同步糖化发酵制备乙醇中具有较好的应用前景㊂PHP预处理对木质素移除效率会因原料差异有所不同㊂从表1可以看出,PHP在预处理杨树和橡树这类木材类原料时有着较高的木质素移除率,对秸秆类原料的木质素移除效果不佳,故而木材类原料更适合PHP预处理㊂2.3㊀过氧化氢⁃酸预处理木质纤维素原料的降解产物㊀㊀在过氧化氢⁃甲酸预处理中,木质素被过度降解成亲水性很强的小分子化合物,这导致后续降解产物很难被回收[23]㊂过氧化氢⁃甲酸预处理主要以降解木质素组分为主,通过向预处理液中加蒸馏水回收33.8% 46.6%的木质素[23]㊂类似地,HPAA预处理液也可回收部分木质素[19]㊂HPAA中的木质素降解产物主要包括酚类和有机酸类4㊀第2期张军华,等:过氧化氢预处理强化木质纤维原料酶水解研究进展(香草酸㊁乳酸㊁丙二酸㊁乙醇酸㊁甲酸㊁琥珀酸㊁富马酸㊁苯甲酸)化合物[23,35]㊂五氧化二铌可以催化过氧乙酸将木质素选择性氧化成单酚化合物,得率可达47%[21]㊂PHP预处理液中的纤维素降解产物主要为甲酸㊁乙酸㊁草酸㊁5⁃甲基⁃2⁃呋喃甲醛等[36]㊂半纤维素在PHP预处理中发生氧化分解反应,氧化产物甲酸来源于半纤维素氧化,乙酸来源于半纤维素的乙酰基[37]㊂PHP中,木糖经过2⁃呋喃羧酸ң2(5H)⁃呋喃酮ң丙烯酸ң甲酸这一主要途径进行氧化降解[22]㊂PHP预处理中,部分木质素可以通过沉淀回收[38]㊂此外,木质素中烷烃结构还可以被PHP氧化成酚酸类化合物,烷烃结构被氧化成甲酸㊁乙酸等小分子有机酸[22]㊂此外,PHP中产生的有机酸会进一步和过氧化氢生成过氧有机酸从而加强氧化降解效果㊂过氧化氢⁃酸预处理降解产物的研究不仅有助于分析组分的降解路径,更是对该预处理制备高附加值化学品提供了参考㊂2.4㊀过氧化氢⁃酸预处理的经济分析基于HPAA预处理过程中的原料㊁电能和化学试剂进行经济分析可知,HPAA预处理杨木生产乙醇的成本为3.7美元/L,其中过氧化氢和乙酸的使用成本为1.9美元/L[35]㊂采用室温条件的过氧化氢⁃乙酸预处理并对条件加以优化,可以省去预处理的电能费用,同时乙醇生产成本可降低至1.8美元/L[39]㊂PHP预处理中,仅考虑磷酸㊁过氧化氢和酶的经济成本情况下,每处理1t小麦秸秆需投入6119.5元,可产出8294.0元,利润为2174.5元,理论上证明了PHP预处理在生产乙醇时的经济可行性[40]㊂试剂使用量过大是过氧化氢⁃酸预处理成本较高的主要原因㊂在后续研究中,降低试剂使用量㊁回收有机酸㊁提高试剂反应效率是降低过氧化氢⁃酸预处理成本㊁促进其应用于生产的重要措施㊂2.5㊀过氧化氢⁃酸预处理的优缺点与直接使用过氧酸相比,过氧化氢⁃酸预处理能原位合成过氧酸进行木质素的氧化,具有操作简便㊁更易运输㊁不易爆炸等优点[28,41]㊂在预处理温度低于80ħ的条件下,过氧化氢⁃甲酸㊁HPAA㊁PHP这3种预处理方式均可以实现木质纤维原料中木质素组分的高效移除㊂过氧化氢⁃甲酸和HPAA预处理过程中半纤维素损失较少,而PHP预处理几乎能完全降解半纤维素[40]㊂过氧化氢⁃酸预处理均使用了大量酸或过氧化氢,这导致其预处理成本偏高㊂PHP预处理中的过氧化氢使用量可低于3%,故而安全性能较好㊂相反,过氧化氢⁃甲酸和HPAA一般需使用15%的过氧化氢,在加热预处理的情况下极易发生爆炸㊂3㊀过氧化氢⁃碱预处理3.1㊀过氧化氢⁃碱预处理氧化木质素的机理有关过氧化氢⁃碱预处理对木质纤维原料中木质素移除和酶水解影响的报道如表2所示[42-48]㊂在碱性介质中,过氧化氢氧化木质素的过程主要为亲核反应,活性反应物质主要包括过氧化氢阴离子(HOO-)㊁羟基和超氧阴离子自由基(HO-和㊃O2-)[4-5]㊂在碱性介质中形成的HOO-是过氧化氢预处理过程中的主要活性物质,其形成过程为:H2O2+OH-↔OOH-+H2O㊂这种阴离子是强亲核试剂,在预处理过程中优先攻击木质素侧链中的烯基和羰基,从而使醌类㊁肉桂醛和环共轭酮类等发色团在碱性条件下被转化为非发色基团[5,49],氧化路径如图3a所示㊂此外,HOO-还可以氧化开环将木质素芳香环碎片进一步降解成醌,如图3b所示,最后形成一系列低分子羧酸[5,49],氧化路径如图3c所示㊂表2㊀过氧化氢⁃碱预处理对木质纤维原料木质素移除和酶水解的影响Table2㊀Effectofhydrogenperoxide⁃alkalipretreatmentonligninremovalandenzymatichydrolysisoflignocellulosematerials原料预处理条件木质素移除率/%半纤维素移除率/%酶水解得率参考文献麦秆2%过氧化氢,pH11.5,35ħ,24h50.010.0>60%[42]杨木2%过氧化氢,pH11.5,35ħ,24h29.0<30.0<30%[42]棕树干3%过氧化氢,pH11.5,70ħ,0.5h50.057.159.8%[43]黄杉4%过氧化氢,pH11.6,180ħ,1h22.078.0(葡甘露聚糖) [44]杨木1%过氧化氢和2%氢氧化钠,160ħ,2h64.9>50.088.2%[45]玉米芯1%过氧化氢和0.5%氢氧化钙,120ħ,0.5h46.437.0 [46]柚木超声,1mol/L过氧化氢和0.2mol/L碳酸钠,90ħ,70min>86.0>25.0 [47]玉米秸秆1.8%过氧化氢和5%碳酸钠,120ħ,1h57.7<23.079%[48]5林业工程学报第9卷a)侧链氧化;b)芳环氧化成醌;c)芳环裂解㊂图3㊀过氧化氢⁃碱对木质素的氧化机理[5]Fig.3㊀Oxidationmechanismsofligninbyhydrogenperoxide3.2㊀过氧化氢⁃碱预处理强化木质纤维原料酶水解过氧化氢⁃碱预处理中常用的碱为氢氧化钠,此外,氢氧化钙和碳酸钠也可作为碱性试剂㊂3.2.1㊀过氧化氢⁃氢氧化钠预处理碱性过氧化氢能高效生成自由基,具有较强的脱木素能力,被广泛用于木质纤维原料的预处理㊂常用的碱性试剂为氢氧化钠,预处理体系的pH一般调控在11.5左右[50]㊂Correia等[9]研究发现,过氧化氢⁃氢氧化钠预处理中最佳底物质量分数应控制在10%以下㊂从表2可以看出,在相同的过氧化氢⁃氢氧化钠预处理条件下,禾本科植物木质素更容易被移除,纤维素更容易被酶降解㊂但是,过氧化氢⁃氢氧化钠预处理温度过高(>150ħ)会导致半纤维素损失增大,而且木材类原料要想通过氧化氢⁃氢氧化钠预处理实现高效酶水解需要较高的预处理温度㊂3.2.2㊀过氧化氢⁃氢氧化钙预处理氢氧化钙成本低于氢氧化钠,也可用于碱性过氧化氢预处理中㊂相同条件下,过氧化氢⁃氢氧化钙预处理对玉米芯的木质素和半纤维素的移除效果不如过氧化氢⁃氢氧化钠预处理[46]㊂在预处理甘蔗渣时也有相似的结论[51]㊂此外,和过氧化氢⁃氢氧化钠预处理相比,过氧化氢⁃氢氧化钙预处理的原料酶水解效率更低[46,51]㊂总体来看,使用氢氧化钙代替氢氧化钠虽能降低预处理成本,但是预处理效果不佳㊂3.2.3㊀过氧化氢⁃碳酸钠预处理过氧化氢和碳酸钠可以在室温和常压下反应生成过碳酸钠,并产生具有较高活性的自由基从而实现对木质素的氧化降解[11]㊂从表2可看出,过氧化氢⁃碳酸钠预处理中半纤维素的脱除率不高(<30%)㊂若过氧化氢⁃碳酸钠结合超声波预处理,其对木质纤维原料木质素的移除效果优于过氧化氢⁃氢氧化钠预处理㊂3.3㊀过氧化氢⁃碱预处理木质纤维原料的降解产物过氧化氢⁃碱预处理液中,木质素组分可以通6㊀第2期张军华,等:过氧化氢预处理强化木质纤维原料酶水解研究进展过调节预处理液pH进行回收,半纤维素可加入3倍体积乙醇回收[45,47]㊂过氧化氢⁃碱预处理黄杉时,半纤维素的降解产物主要以单糖㊁可溶性低聚糖和有机酸为主[44]㊂过氧化氢⁃氢氧化钠氧化降解木质素时,30% 50%木质素可降解为单羧酸和二羧酸[52]㊂过氧化氢⁃氢氧化钠预处理液中几乎不产生糠醛和5⁃羟甲基糠醛等发酵抑制物,这有利于后续酶水解和发酵[9]㊂3.4㊀过氧化氢⁃碱预处理的经济分析过氧化氢⁃碱处理可在较低的温度条件下进行,与普通酸碱预处理相比能耗更低[53-54]㊂例如,在50ħ下使用过氧化氢⁃氢氧化钠预处理玉米秸秆3h,生物乙醇的生产成本最低仅为0.45美元/L[55]㊂虽然该过程试剂使用较少且较低的反应温度降低了生物乙醇的生产能耗和成本,但纤维酶的使用和设备维护仍需一定成本[54]㊂使用离子液体和稀酸预处理制备乙醇的成本分别为1.30和0.84美元/L[56-57]㊂而过氧化氢⁃氢氧化钠预处理制备乙醇成本仅需0.72美元/L㊂因此,从成本角度来看,过氧化氢⁃氢氧化钠预处理最具有潜力㊂虽然过氧化氢⁃碱预处理可以提高木质纤维原料发酵产甲烷的量,但是甲烷的总生产成本并不一定会降低㊂例如,当使用未处理的芒草制备甲烷时,其甲烷成本是0.45美元/m3[58]㊂然而,过氧化氢⁃氢氧化钠预处理芒草后,制备甲烷的生产成本是0.67美元/m3[58]㊂类似地,在藻类原料制备甲烷过程中,过氧化氢⁃碱预处理也增加了甲烷的生产成本[54]㊂造成这一问题的主要原因是预处理中的化学试剂和后续处理成本过高㊂因此,过氧化氢⁃碱预处理不适合用于预处理木质纤维原料生产甲烷㊂3.5㊀过氧化氢⁃碱预处理的优缺点禾本科植物进行过氧化氢⁃碱预处理时,预处理温度一般低于100ħ,甚至可在20 35ħ[20,55,59]㊂较低的预处理温度可以降低能耗㊁简化操作㊁缩减成本㊂但是,在阔叶材杨木的过氧化氢预处理中,预处理温度需要160ħ[45]㊂较高的预处理温度不但会增加设备耐压要求,而且会增加爆炸的风险㊂因此过氧化氢⁃碱预处理更适合抗性较低的禾本科植物原料㊂过氧化氢溶液为弱酸性,故而在碱性条件下极易发生分解[60]㊂过快的过氧化氢分解会导致其不能参与木质素的氧化而直接产生无效分解[60]㊂此外,由于过氧化氢⁃碱预处理在碱性条件下进行,预处理液不仅容易腐蚀反应设备,增加维护成本,而且会对环境造成污染㊂4㊀活化过氧化氢预处理4.1㊀活化过氧化氢预处理氧化木质素机理过氧化氢或过氧化氢⁃有机酸体系(过氧有机酸)可经紫外线㊁过渡金属离子(如铁和钴离子)㊁过渡金属氧化物和碳质材料活化而强化该体系氧化木质素的能力㊂此类反应被称为高级氧化反应,如芬顿反应预处理,它通过二价铁离子活化过氧化氢氧化降解木质素㊂其反应机理为:H2O2+Fe3+ңFe2++㊃OOH+H+,H2O2+Fe2+ңFe3++㊃OH+OH-,㊃OH+木质素ң木质素降解产物㊂其中,过氧化氢可以通过活化剂产生活性自由基降解有机物[20]㊂活化过氧化氢降解木质素的机理还受体系pH的影响,其影响机理与酸碱催化过氧化氢机理相似,即碱性条件发生亲核反应,酸性条件发生亲电反应㊂此外,活化剂还可以强化过氧化氢⁃有机酸体系中过氧有机酸的氧化性能㊂铁离子可活化过氧乙酸,产生一系列活性物质而氧化木质素㊂由于过氧乙酸溶液中混有过氧化氢,因此预处理液中的过氧乙酸和过氧化氢会被同时活化而参与木质素的降解反应[61-62]㊂4.2㊀活化过氧化氢预处理强化木质纤维原料酶水解㊀㊀过氧化氢的活化方法主要有光催化和金属离子活化2种㊂常见的活化过氧化氢预处理主要有紫外光活化㊁铁离子活化和铜离子活化3种方法(表3)[63-68]㊂4.2.1㊀过氧化氢⁃紫外光预处理紫外光可以活化过氧化氢而增强其氧化能力,因而常被用于高级氧化反应技术[12]㊂紫外光可使过氧化氢的O O键发生断裂,生成HO㊃,从而实现木质素的氧化降解[69]㊂在此体系中,木质素氧化后可得到芳香中间体,它们经氧化开环可产生脂肪族羧酸,最后羧酸被氧化成二氧化碳和水[70]㊂该方法仅使用过氧化氢作为试剂且容易去除,目前主要用于制浆造纸废液中木质素的降解[12]㊂4.2.2㊀过氧化氢⁃铁离子预处理铁离子活化过氧化氢预处理也被称为芬顿预处理㊂如表3所示,芬顿预处理一般反应温度较低,木质素移除效果不佳㊂此外,芬顿预处理体系的pH会逐渐升高,铁离子易沉淀形成铁泥,造成催化剂损失㊂有报道采用沸石固定铁离子用于过氧化氢预处理,可减少催化剂损失㊂铁离子经过沸石固定后,催化剂协同4%过氧化氢处理桉木90min后,酶解产生的还原糖高达435.1mg/g桉7林业工程学报第9卷木[65]㊂FeOCl作为新的非均相芬顿催化剂也被用于过氧化氢预处理[66],它被重复使用5次后仍能保持较高的催化活性(90%),它可以活化过氧化氢产生过氧根离子催化木质素的氧化降解,从而提高纤维素酶的可及性,促进原料的纤维素酶水解㊂另外,值得注意的是,铁离子催化HPAA预处理杨木有较好的木质素移除率,但半纤维素损失高达88.6%[67]㊂表3㊀活化过氧化氢预处理对木质纤维原料木质素移除和酶水解的影响Table3㊀Effectofactivationofhydrogenperoxidepretreatmentonligninremovalandenzymatichydrolyseoflignocellulosematerials原料预处理条件木质素移除率/%酶水解效果参考文献剑麻紫外,过氧化氢⁃碱,30ħ,6h76.6葡萄糖得率91.6%[63]杨木0.01mo/LFe2+和1mol/L过氧化氢,28ħ,12h15.2葡萄糖得率405.9mg/g[13]玉米秸秆0.2mo/LFe2+和0.3%过氧化氢,25ħ,24h14.2还原糖浓度提升1.21倍[64]桉木超声,沸石负载Fe2+,4%过氧化氢,90min27.8降至23.2还原糖435.1mg/g,还原糖产量提升至4.27倍[65]玉米秸秆0.16g/LFeOCl,0.8mol/L过氧化氢,25ħ,6h24.2葡萄糖得率>50.0%[66]杨木HPAA,0.05mol/L氯化铁,100ħ,60min53.9糖化效率85.9%[67]松木2mmol/LCu2+和1%过氧化氢,pH11.5,30ħ,24h 葡萄糖得率80.0%[14]桉木第1步:2%NaOH,160ħ,1h第2步:1mmol/LCu2+和2%过氧化氢,室温,24h>60.0葡萄糖得率>80.0%[68]4.2.3㊀过氧化氢⁃铜离子预处理在过氧化氢预处理中添加铜离子可以增加木质纤维原料细胞壁破坏程度,从而提高其酶水解效率[14,71]㊂室温条件下对杨木㊁松木㊁桦木㊁枫木4种硬木原料进行碱性过氧化氢⁃铜离子预处理(1%过氧化氢和2mmol/L铜离子),酶水解预处理后桦木的葡萄糖得率可达80%以上,但是酶水解杨木和枫木的葡萄糖得率均低于60%[14]㊂由此可见,过氧化氢⁃铜离子预处理对木质纤维原料种类的选择有一定局限㊂为了改善碱性过氧化氢⁃铜离子预处理效果,通常在该预处理前再添加一步碱预处理,从而形成两步预处理策略[69,72-74]㊂4.3㊀活化过氧化氢预处理木质纤维原料的降解产物㊀㊀过氧化氢经过活化后可以将木质素氧化成一些小分子酚类化合物或有机酸㊂此外,将碱性过氧化氢⁃铜离子预处理液的pH调节至2时,可以得到木质素沉淀[72]㊂从碱性过氧化氢⁃铜离子预处理液中回收的木质素有较高的脂肪羟基含量和对异氰酸酯的反应活性,是生产聚氨酯的理想原料[73]㊂在铁㊁铜离子作为催化剂时,过氧化氢可以将木聚糖氧化为多羟基羧酸[75]㊂因此,活化过氧化氢预处理液中的木质素和半纤维素降解产物可用于制备一些高副加值的酚类和羧酸化合物[76-78]㊂4.4㊀活化过氧化氢预处理的经济分析对碱处理和碱性过氧化氢⁃铜离子两步预处理过程中进行经济预算分析发现,当碱处理温度为30ħ时,两步预处理制备生物乙醇的成本是1.1美元/L[79]㊂当碱提取温度提升至120ħ,生物乙醇的制备成本为0.9美元/L[79]㊂适当提高碱提取温度可改善生物质原料的转换效率,从而降低乙醇生产成本㊂此外,通过在碱性过氧化氢⁃铜离子预处理中加入氧气作为助氧剂,生物乙醇的成本从1.08美元/L降低至0.85美元/L[80]㊂若对木质素加以回收利用,其成本可以进一步被压缩至0.73美元/L[80]㊂在芬顿预处理的玉米秸秆酶水解中,纤维素酶成本是主要支出成本(6.27美元/kg)[81]㊂芬顿预处理不仅增加了玉米秸秆的乙醇产量,而且减少76.2%纤维素酶用量[81]㊂在对30万t/a生物乙醇的技术经济分析中,芬顿预处理降低了27.0%的乙醇生产成本[81]㊂4.5㊀活化过氧化氢预处理的优缺点活化过氧化氢预处理的温度不高,甚至可以在室温下进行,所以该预处理能耗较低[79]㊂过氧化氢⁃紫外光预处理具有绿色无污染的特点,但是紫外光需要大量的能耗和设备的维护费用[12]㊂过氧化氢⁃铜离子预处理单独使用效果不理想,需要协同碱处理同时使用,这增加了工艺步骤和生产成本[80]㊂过氧化氢⁃铁离子预处理中,铁离子容易转换成铁泥造成催化剂损失[66]㊂此外,活化过氧化氢预处理存在较多的过氧化氢无效分解㊂因此,开发稳定的过氧化氢活化方法是过氧化氢氧化脱除木质素未来重要的研究方向㊂5㊀过氧化氢预处理的研究策略禾本科原料只需移除部分木质素就可通过纤8。